Důkaz správnosti Zbývá dokázat, že nalezená kostra vstupního grafu je minimální. Bez újmy na obecnosti
|
|
- Vojtěch Marek
- před 6 lety
- Počet zobrazení:
Transkript
1 Minimální kostra Představme si následující problém: Chceme určit silnice, které se budou v zimě udržovat sjízdné, a to tak, abychom celkově udržovali co nejméně kilometrů silnic, a přesto žádné město od ostatních neodřízli. Města a silnice si můžeme představit jako nám už dobře známý graf, o kterém nyní budeme předpokládat, že je souvislý. Kdyby nebyl, náš problém nijak vyřešit nelze. Výsledný podgraf/seznam silnic, který řeší náš problém se sněhem, nazývají matematici minimální kostra grafu. Co se v souvislém grafu přesně myslí pod pojmem kostra? Nazveme jí libovolný podgraf, který obsahuje všechny vrcholy a zároveň je stromem. Strom jsme si definovali v kapitole o grafech; jsou to přesně ty grafy, které jsou souvislé (z každého vrcholu dojedeme do každého jiného) a bez kružnice (takže nemáme v silniční síti žádné přebytečné cesty). Pokud každou hranu grafu ohodnotíme nějakou vahou, což v našem případě bude vždy kladné číslo, dostaneme ohodnocený graf. V takových grafech pak obvykle hledáme mezi všemi kostrami kostru minimální, což je taková, pro kterou je součet vah jejích hran nejmenší možný. Graf může mít více minimálních koster například jestliže jsou všechny váhy hran jedničky, všechny kostry mají stejnou váhu n 1 (kde n je počet vrcholů grafu), a tedy jsou všechny minimální. Pro vyřešení problému hledání minimální kostry se nám bude hodit datová struktura Disjoint-Find-Union (DFU). Ta umí pro dané disjunktní množiny (disjunktní znamená, že každé 2 množiny mají prázdný průnik neboli žádné společné prvky) rychle rozhodnout, jestli dva prvky patří do stejné množiny, a provádět operaci sjednocení dvou množin. Algoritmus Algoritmus na hledání minimální kostry, který si předvedeme, je typickou ukázkou tzv. hladového algoritmu. Nejprve setřídíme hrany vzestupně podle jejich váhy. Kostru budeme postupně vytvářet přidáváním hran od té s nejmenší vahou tak, že hranu do kostry přidáme právě tehdy, pokud spojuje dvě (prozatím) různé komponenty souvislosti vytvořeného podgrafu. Jinak řečeno, hranu do vytvářené kostry přidáme, pokud v ní zatím neexistuje cesta mezi vrcholy, které zkoumaná hrana spojuje. Je zřejmé, že tímto postupem získáme kostru, tj. acyklický podgraf grafu, který je souvislý (pokud vstupní graf je souvislý, což mlčky předpokládáme). Než si ukážeme, že nalezená kostra je opravdu minimální, podívejme se na časovou složitost našeho algoritmu: Pokud vstupní graf má N vrcholů a M hran, tak úvodní setřídění hran vyžaduje čas O(M log M) (použijeme některý z rychlých třídicích algoritmů popsaných v jednom z minulých dílů kuchařky) a poté se pokusíme přidat každou z M hran. V druhé části kuchařky si ukážeme datovou strukturu, s jejíž pomocí bude M testů toho, zda mezi dvěma vrcholy vede hrana, trvat nejvýše O(M log N). Celková časová složitost našeho algoritmu je tedy O(M log N) (všimněte si, že log M log N 2 = 2 log N). Paměťová složitost je lineární vzhledem k počtu hran, tj. O(M). 47
2 Důkaz správnosti Zbývá dokázat, že nalezená kostra vstupního grafu je minimální. Bez újmy na obecnosti můžeme předpokládat, že váhy všech hran grafu jsou navzájem různé: Pokud tomu tak není již na začátku, přičteme k některým z hran, jejichž váhy jsou duplicitní, velmi malá kladná celá čísla tak, aby pořadí hran nalezené naším třídicím algoritmem zůstalo zachováno. Tím se kostra nalezená hladovým algoritmem nezmění a pokud bude tato kostra minimální s modifikovanými váhami, bude minimální i pro původní zadání. Označme si nyní T alg kostru nalezenou hladovým algoritmem a T min nějakou minimální kostru. Co by se stalo, kdyby byly různé? Víme, že všechny kostry mají stejný počet hran, takže musí existovat alespoň jedna hrana e, která je v T alg, ale není v T min. Ze všech takových hran si vyberme tu, která má nejmenší váhu, tedy kterou algoritmus přidal jako první. Když se podíváme na stav algoritmu těsně před přidáním e, vidíme, že sestrojil nějakou částečnou kostru F, která je ještě součástí jak T min, tak T alg. Přidejme nyní hranu e ke kostře T min. Tím vznikl podgraf vstupního grafu, který zjevně obsahuje nějakou kružnici C už před přidáním hrany e totiž T min byla souvislá. Protože kostra T alg neobsahuje žádnou kružnici, na kružnici C musí být alespoň jedna hrana e, která není v T alg. Všimněme si, že hranu e nemohl algoritmus zpracovat před hranou e: hrana e neleží v T min na žádném cyklu, takže tím spíš netvoří cyklus v F a kdyby ji algoritmus zpracoval, musel by ji přidat do F, což, jak víme, neučinil. Z toho plyne, že váha hrany e je větší než váha hrany e. Když nyní z kostry T min odebereme hranu e a přidáme místo ní hranu e, musíme opět dostat souvislý podgraf (e a e přeci ležely na společné kružnici), tudíž kostru vstupního grafu. Jenže tato kostra má celkově menší váhu než minimální kostra T min, což není možné. Tím jsme došli ke sporu, a proto T min a T alg nemohou být různé. Cvičení V důkazu jsme předpokládali, že váhy hran jsou různé (resp. jsme je různými udělali). Není potřeba i v samotném algoritmu přičítat velmi malá čísla k hranám se stejnou vahou? Disjoint-Find-Union Datová struktura DFU slouží k udržování rozkladu množiny na několik disjunktních podmnožin (čili takových, že žádné dvě nemají společný prvek). To znamená, že pomocí této struktury můžeme pro každé dva z uložených prvků říci, zda patří či nepatří do stejné podmnožiny rozkladu. V algoritmu hledání minimální kostry budou prvky v DFU vrcholy zadaného grafu a budou náležet do stejné podmnožiny rozkladu, pokud mezi nimi v již vytvořené části kostry existuje cesta. Jinými slovy podmnožiny v DFU budou odpovídat komponentám souvislosti vytvářené kostry. S reprezentovaným rozkladem umožňuje datová struktura DFU provádět následující dvě operace: 48
3 find: Test, zda dva prvky leží ve stejné podmnožině rozkladu. Tato operace bude v případě našeho algoritmu odpovídat testu, zda dva vrcholy leží ve stejné komponentě souvislosti. union: Sloučení dvou podmnožin do jedné. Tuto operaci v našem algoritmu na hledání kostry provedeme vždy, když do vytvářené kostry přidáme hranu (tehdy spojíme dvě různé komponenty souvislosti dohromady). Povězme si nejprve, jak budeme jednotlivé podmnožiny reprezentovat. Prvky obsažené v jedné podmnožině budou tvořit zakořeněný strom. V tomto stromě však povedou ukazatele (trochu nezvykle) od listů ke kořeni. Operaci find lze pak jednoduše implementovat tak, že pro oba zadané prvky nejprve nalezneme kořeny jejich stromů. Jsou-li tyto kořeny stejné, jsou prvky ve stejném stromě, a tedy i ve stejné podmnožině rozkladu. Naopak, jsou-li různé, jsou zadané prvky v různých stromech, a tedy jsou i v různých podmnožinách reprezentovaného rozkladu. Operaci union provedeme tak, že mezi kořeny stromů reprezentujících slučované podmnožiny přidáme ukazatel a tím tyto dva stromy spojíme dohromady. Implementace dvou výše popsaných operací, jak jsme se ji právě popsali, následuje. Pro jednoduchost množina, jejíž rozklad reprezentujeme, bude množina čísel od 1 do N. Rodiče jednotlivých vrcholů stromu si pak pamatujeme v poli parent, kde 0 znamená, že prvek rodiče nemá, tj. že je kořenem svého stromu. Funkce root(v) vrátí kořen stromu, který obsahuje prvek v. var parent: array[1..n] of integer; procedure init; var i: integer; for i:=1 to N do parent[i]:=0; function root(v: integer):integer; if parent[v]=0 then root:=v else root:=root(parent[v]); function find(v, w: integer):boolean; find:=(root(v)=root(w)); procedure union(v, w: integer); v:=root(v); w:=root(w); if v<>w then parent[v]:=w; 49
4 S právě předvedenou implementací operací find a union by se ale mohlo stát, že stromy odpovídající podmnožinám budou vypadat jako hadi a pokud budou obsahovat N prvků, na nalezení kořene bude potřeba čas O(N). Ke zrychlení práce DFU se používají dvě jednoduchá vylepšení: union by rank: Každý prvek má přiřazen rank. Na začátku jsou ranky všech prvků rovny nule. Při provádění operace union připojíme strom s kořenem menšího ranku ke kořeni stromu s větším rankem. Ranky kořenů stromů se v tomto případě nemění. Pokud kořeny obou stromů mají stejný rank, připojíme je libovolně, ale rank kořenu výsledného stromu zvětšíme o jedna. path compression: Ve funkci root(v) přepojíme všechny prvky na cestě od prvku v ke kořeni rovnou na kořen, tj. změníme jejich rodiče na kořen daného stromu. Než si obě metody blíže rozebereme, podívejme se, jak se změní implementace funkcí root a union: var parent: array[1..n] of integer; rank: array[1..n] of integer; procedure init; var i: integer; for i:=1 to N do parent[i]:=0; rank[i]:=0; {změna path compression} function root(v: integer): integer; if parent[v]=0 then root:=v else parent[v]:=root(parent[v]); root:=parent[v]; {stejna jako minule} function find(v, w: integer):boolean; find:=(root(v)=root(w)); {změna kvůli union by rank} procedure union(v, w: integer); v:=root(v); 50
5 w:=root(w); if v=w then exit; if rank[v]=rank[w] then parent[v]:=w; rank[w]:=rank[w]+1; end else if rank[v]<rank[w] then parent[v]:=w else parent[w]:=v; Zaměřme se nyní blíže na metodu union by rank. Nejprve učiníme následující pozorování: Pokud je prvek v s rankem r kořenem stromu v datové struktuře DFU, pak tento strom obsahuje alespoň 2 r prvků. Naše pozorování dokážeme indukcí podle r. Pro r = 0 tvrzení zřejmě platí. Nechť tedy r > 0. V okamžiku, kdy se rank prvku v mění z r 1 na r, slučujeme dva stromy, jejichž kořeny mají rank r 1. Každý z těchto dvou stromů má dle indukčního předpokladu alespoň 2 r 1 prvků, a tedy výsledný strom má alespoň 2 r prvků, jak jsme požadovali. Z našeho pozorování ihned plyne, že rank každého prvku je nejvýše log 2 N a prvků s rankem r je nejvýše N/2 r (všimněme si, že rank prvku v DFU se nemění po okamžiku, kdy daný prvek přestane být kořen nějakého stromu). Když tedy provádíme jen union by rank, je hloubka každého stromu v DFU rovna ranku jeho kořene, protože rank kořene se mění právě tehdy, když zvětšujeme hloubku stromu o jedna. A protože rank každého prvku je nanejvýš log 2 N, hloubka každého stromu v DFU je také nanejvýš log 2 N. Potom ale procedura root spotřebuje čas nejvýše O(log N), a tedy operace find a union stihneme v čase O(log N). Amortizovaná časová složitost Abychom mohli pokračovat dále, musíme si vysvětlit, co je amortizovaná časová složitost. Řekneme, že nějaká operace pracuje v amortizovaném čase O(t), pakliže provedení libovolných k takových operací trvá nejvýše O(kt). Přitom provedení kterékoliv konkrétní z nich může vyžadovat čas větší. Tento větší čas je pak v součtu kompenzován kratším časem, který spotřebovaly některé předchozí operace. Nejdříve si předveďme tento pojem na jednoduchém příkladě. Řekněme, že máme číslo zapsané ve dvojkové soustavě. Přičíst k tomuto číslu jedničku jistě netrvá konstantní čas, neboť záleží na tom, kolik jedniček se vyskytuje na konci zadaného čísla. Pokud se nám ale povede ukázat, že N přičtení jedničky k číslu, které je na počátku nula, zabere čas O(N), pak můžeme říci, že každé takové přičtení trvalo amortizovaně O(1). Jak tedy ukážeme, že N přičtení jedničky k číslu zabere čas O(N)? Použijeme k tomu penízkovou metodu. Každá operace nás bude stát jeden penízek, a pokud jich na N operací použijeme jen O(N), bude tvrzení dokázáno. 51
6 Každé jedničce, kterou chceme přičíst, dáme dva penízky. V průběhu celého přičítání bude platit, že každá jednička ve dvojkovém zápisu čísla má jeden penízek (když začneme jedničky přičítat k nule, tuto podmínku splníme). Přičítání bude probíhat tak, že přičítaná jednička se podívá na nejnižší bit (tj. ve dvojkovém zápise na poslední cifru) zadaného čísla (to ji stojí jeden penízek). Pokud je to nula, změní ji na jedničku a dá jí svůj zbylý penízek. Pokud to je jednička, vezme si přičítaná jednička její penízek (čili už má zase dva), změní zkoumanou jedničku na nulu a pokračuje u dalšího bitu, atd. Takto splníme podmínku, že každá jednička v dvojkovém zápisu čísla má jeden penízek. Tedy N přičítání nás stojí 2N penízků. Protože počet penízků utracených během jedné operace je úměrný spotřebovanému času, vidíme, že všech N přičtení proběhne v čase O(N). Není těžké si uvědomit, že přičtení některých jedniček může trvat až O(log N), ale amortizovaná časová složitost přičtení jedné jedničky je konstantní. Dokončení analýzy DFU Pokud bychom prováděli pouze path compression a nikoliv union by rank, dalo by se dokázat, že každá z operací find a union vyžaduje amortizovaně čas O(log N), kde N je počet prvků. Toto tvrzení nebudeme dokazovat, protože tím bychom si nijak oproti samotnému union by rank nepomohli. Proč tedy vlastně hovoříme o obou vylepšeních? Inu proto, že při použití obou metod současně dosáhneme mnohem lepšího amortizovaného času O(α(N)) na jednu operaci find nebo union, kde α(n) je inverzní Ackermannova funkce. Její definici můžete nalézt na konci kuchařky, zde jen poznamenejme, že hodnota inverzní Ackermannovy funkce α(n) je pro všechny praktické hodnoty N nejvýše čtyři. Čili dosáhneme v podstatě amortizovaně konstantní časovou složitost na jednu (libovolnou) operaci DFU. } Dokázat výše zmíněný odhad časové složitosti funkcí α(n) je docela těžké, my si zde předvedeme poněkud horší, ale technicky výrazně jednodušší časový odhad O((N + L) log N), kde L je počet provedených operací find nebo union a log N je tzv. iterovaný logaritmus, jehož definice následuje. Nejprve si definujeme funkci 2 k rekurzivním předpisem: 2 0 = 1, 2 k = 2 2 (k 1). Máme tedy 2 1 = 2, 2 2 = 2 2 = 4, 2 3 = 2 4 = 16, 2 4 = 2 16 = 65536, 2 5 = , atd. A konečně, iterovaný logaritmus log N čísla N je nejmenší přirozené číslo k takové, že N 2 k. Jiná (ale ekvivalentní) definice iterovaného logaritmu je ta, že log N je nejmenší počet, kolikrát musíme číslo N opakovaně zlogaritmovat, než dostaneme hodnotu menší nebo rovnu jedné. Zbývá provést slíbenou analýzu struktury DFU při současném použití obou metod union by rank a path compression. Prvky si rozdělíme do skupin podle jejich ranku: k-tá skupina prvků bude tvořena těmi prvky, jejichž rank je mezi (2 (k 1)) + 1 a 2 k. Např. třetí skupina obsahuje ty prvky, jejichž rank je mezi 5 a 16. Prvky jsou tedy rozděleny do 1 + log log N = O(log N) skupin. Odhadněme shora počet 52
7 prvků v k-té skupině: N N (2 (k 1)) k = N 2 2 (k 1) N 2 1 = N 2 (k 1) 2 k. 2 k 2 (k 1) i=1 1 Teď můžeme provést časovou analýzu funkce root(v). Čas, který spotřebuje funkce root(v), je přímo úměrný délce cesty od prvku v ke kořeni stromu. Tato cesta je pak následně rozpojena a všechny prvky na ní jsou přepojeny přímo na kořen stromu. Rozdělíme rozpojené hrany této cesty na ty, které naúčtujeme tomuto volání funkce root(v), a ty, které zahrneme do faktoru O(N log N) v dokazovaném časovém odhadu. Do volání funkce root(v) započítáme ty hrany cesty, které spojují dva prvky, které jsou v různých skupinách. Takových hran je zřejmě nejvýše O(log N) (všimněte si, že ranky prvků na cestě z listu do kořene tvoří rostoucí posloupnost). Uvažme prvek v v k-té skupině, který již není kořenem stromu. Při každém přepojení rank rodiče prvku v vzroste. Tedy po 2 k přepojeních je rodič prvku v v (k + 1)-ní nebo vyšší skupině. Pokud v je prvek v k-té skupině, pak hrana z něj na cestě do kořene nebude účtována volání funkce root(v) nejvýše (2 k)-krát. Protože k-tá skupina obsahuje nejvýše N/(2 k) prvků, je počet takových hran pro všechny prvky této skupiny nejvýše N. A protože počet skupin je nejvýše O(log N), je celkový počet hran, které nejsou započítány voláním funkce root(v), nejvýše O(N log N). Protože funkce root(v) je volána 2L-krát, plyne časový odhad O((N + L) log N) z právě dokázaných tvrzení. Inverzní Ackermannova funkce α(n) Ackermannovu funkci lze definovat následující konstrukcí: A 0 (i) = i + 1, A k+1 (i) = A i k(i) pro k 0, kde výraz A i k zastupuje složení i funkcí A k, např. A 1 (3) = A 0 (A 0 (A 0 (3))). Platí tedy následující rovnosti: A 0 (i) = i + 1, A 1 (i) = 2i, A 2 (i) = 2 i i. Ackermannova funkce s jedním parametrem A(k) je pak rovna hodnotě A k (2), čili A(2) = A 2 (2) = 8, A(3) = A 3 (2) = 2 11, A(4) = A 4 (2) atd... Hodnota inverzní Ackermannovy funkce α(n) je tedy nejmenší přirozené číslo k takové, že N A(k) = A k (2). Jak je vidět, ve všech reálných aplikacích platí, že α(n) 4. Úloha : Kormidlo Dan Kráľ, Martin Mareš a Milan Straka Správné námořnické kormidlo s N loukotěmi je v podstatě pravidelný N-úhelník, jehož střed je spojen s každým z N bodů na obvodu. Skládá se tedy z 2N rovných dílů. Kormidlo s třemi a sedmi loukotěmi si můžete prohlédnout na následujícím obrázku i
8 Vilda chce ale kormidlo opravit co nejdříve, a tak se rozhodl, že ho sestaví neúplné pouze z N rovných dílů. Přitom chce, aby z každého z N + 1 vrcholů kormidla vedl alespoň jeden díl a všech N rovných dílů bylo navzájem spojeno (tj. kormidlo se nerozpadá na dva či více dílů). Napište program, který dostane na vstupu N 3. Výstupem vašeho programu by měl být počet způsobů, kterými může sestavit Vilda kormidlo s N loukotěmi z N dílů tak, aby z každého vrcholu neúplného kormidla vedl alespoň jeden díl a kormidlo se nerozpadalo na více částí. Příklad: Pro N = 3 lze kormidlo sestavit 16-ti způsoby. Jsou to posledních 5 ve 3 otočeních. Úloha : Dračí chodbičky Spleť dračích chodeb a jeskyní si představíme jako graf, kde vrcholy jsou jeskyně nebo křižovatky a hrany jsou tunely. Drak by rád co nejvíc chodeb zasypal, ale zároveň chce, aby se dostal do všech jeskyní (vrcholů). Také vám dává seznam míst, ve kterých má část pokladu. K takovým místům by chtěl nechat pouze jednu přístupovou chodbu (tj. z těchto vrcholů mají být listy). Navrhněte, které chodby by měl drak zachovat, aby součet délek zasypaných chodeb byl největší možný. Můžete předpokládat, že zadaný problém má řešení (tzn. z vrcholů s pokladem lze udělat listy, aniž by se graf rozpadl na více komponent). Příklad: Vpravo nahoře je obrázek současného stavu tunelů v Ohnivé hoře (místa s pokladem jsou vyznačena černě). Dole pak vidíte výsledek (zasypané chodby jsou čárkované)
Union-Find problém. Kapitola 1
Kapitola 1 Union-Find problém Motivace: Po světě se toulá spousta agentů. Často se stává, že jeden agent má spoustu jmen/přezdívek, které používá například při rezervaci hotelu, restaurace, na návštěvě
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
Vrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
1. Minimální kostry. 1.1. Od mìsteèka ke kostøe
. Minimální kostry Napadl sníh a přikryl peřinou celé městečko. Po ulicích lze sotva projít pěšky, natož projet autem. Které ulice prohrneme, aby šlo dojet odkudkoliv kamkoliv, a přitom nám házení sněhu
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
PQ-stromy a rozpoznávání intervalových grafů v lineárním čase
-stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S
Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.
Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.
4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a
10 Podgrafy, isomorfismus grafů
Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Definice 1 eulerovský Definice 2 poloeulerovský
Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole.
Kapitola 7 Stromy Stromy jsou jednou z nejdůležitějších tříd grafů. O tom svědčí i množství vět, které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Představíme také dvě
8. Geometrie vrací úder (sepsal Pavel Klavík)
8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás
Funkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla
Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní
1. D Y N A M I C K É DAT O V É STRUKTUR Y
1. D Y N A M I C K É DAT O V É STRUKTUR Y Autor: Petr Mik Abychom se mohli pustit do dynamických datových struktur, musíme se nejdřív podívat na datový typ ukazatel. 1. D AT O V Ý TYP U K A Z AT E L Datové
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
Minimální kostry. Teorie. Štěpán Šimsa
Minimální kostry Štěpán Šimsa Abstrakt. Cílem příspěvku je seznámit s tématem minimálních koster, konkrétně s teoretickými základy, algoritmy a jejich analýzou. Problém.(Minimální kostra) Je zadaný graf
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Nerovnice, grafy, monotonie a spojitost
Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Úvod do řešení lineárních rovnic a jejich soustav
Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Hledání v textu algoritmem Boyer Moore
Zápočtová práce z Algoritmů a Datových Struktur II (NTIN061) Hledání v textu algoritmem Boyer Moore David Pěgřímek http://davpe.net Algoritmus Boyer Moore[1] slouží k vyhledání vzoru V v zadaném textu
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
8 Rovinnost a kreslení grafů
8 Rovinnost a kreslení grafů V přímé návaznosti na předchozí lekci se zaměříme na druhý důležitý aspekt slavného problému čtyř barev, který byl původně formulován pro barevné rozlišení států na politické
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),
Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních
FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta
Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375
Matematika III 10. přednáška Stromy a kostry
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 20. 11. 2007 Obsah přednášky 1 Izomorfismy stromů 2 Kostra grafu 3 Minimální kostra Doporučené zdroje
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Milí řešitelé a řešitelky!
Milí řešitelé a řešitelky! Zdravímevšechny,kteřítosnámivydrželiaždotřetísérie.Vánocejsouzadveřmi,atak jsme si pro vás připravili malou nadílku. Dejte si lžíci bramborového salátu, kousněte si do kapranebosialespoňuždibnětekousekvanilkovéhorohlíčkuaschutísepusťtedočtení...
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran, kde
Kapitola 5 Grafy 5.1 Definice Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran E ( V 2), kde ( ) V = {{x, y} : x, y V a x y} 2 je množina všech neuspořádaných dvojic prvků množiny
Další NP-úplné problémy
Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura
Kreslení grafů na plochy Tomáš Novotný
Kreslení grafů na plochy Tomáš Novotný Úvod Abstrakt. V první části příspěvku si vysvětlíme základní pojmy týkající se ploch. Dále si ukážeme a procvičíme možné způsoby jejich zobrazování do roviny, abychom
4. Kombinatorika a matice
4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
1. Toky, řezy a Fordův-Fulkersonův algoritmus
1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
Přednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0).
Opáčko - Řešení. a) Podíl vlevo není definovaný pro x 8 = 0, a tedy dostáváme podmínku na řešení x. Jedničku převedeme na levou stranu nerovnosti, převedeme na společný jmenovatel a dostáváme Nerovnost
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
5 Minimální kostry, Hladový algoritmus
5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m.
13. přednáška 13. ledna 2010 Důkaz. M = n=0 a nz n a N = n=0 b nz n tedy buďte dvě mocninné řady, které se jako funkce shodují svými hodnotami na nějaké prosté posloupnosti bodů z k C konvergující k nule.
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
13. Třídící algoritmy a násobení matic
13. Třídící algoritmy a násobení matic Minulou přednášku jsme probírali QuickSort, jeden z historicky prvních třídících algoritmů, které překonaly kvadratickou složitost aspoň v průměrném případě. Proč