Symetrické a kvadratické formy
|
|
- Jiřina Slavíková
- před 8 lety
- Počet zobrazení:
Transkript
1 Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20
2 V celé přednášce uvažujeme číselné těleso R, ačkoliv celou látku ke kvadratickým formám lze vyložit nad obecným tělesem (obvykle C). Dále vektor x R n uvažujeme sloupcový a nad vektor nepíšeme šipku. Definice: Zobrazení Q : R n R nazveme kvadratická forma na R n, existuje-li A R n,n, A = A T taková, že ( x R n )(Q(x) = x T Ax). Dále zobrazení h : R n R n R definované pro x, y R n předpisem h(x, y) = x T Ay nazveme symetrickou formou kvadratické formy Q. Je-li A ij = a ij, potom Q(x) = n i=1 j=1 n a ij x i x j. Můžeme se setkat s různými způsoby zápisu skalárního součinu: x T Ay = x Ay = (x, Ay). BI-LIN (Symetrické a kvadratické formy) 2 / 20
3 Příklad 1: Zobrazení Q zadané předpisem Q(x) = x x x 2 3 2x 1 x 2 + 4x 1 x 3 2x 2 x 3 je kvadratická forma na R 3 s maticí A = Příslušná symetrická forma má tvar h( x, y) = x 1 y 1 + 2x 2 y 2 + 4x 3 y 3 x 1 y 2 x 2 y 1 + 2x 1 y 3 + 2x 3 y 1 x 2 y 3 x 3 y 2. BI-LIN (Symetrické a kvadratické formy) 3 / 20
4 Pozorování: Symetrická forma h je lineární v obou argumentech. Platí-li navíc ( x R n )(x 0)(h(x, x) > 0) (pozitivní definitnost) je h skalární součin na R n. Věta: Bud Q kvadratická forma na R n a h příslušná symetrická forma. Potom pro x, y R n a α R platí 1. h(x, y) = h(y, x), 2. Q(αx) = α 2 Q(x), 3. Q(x + y) = Q(x) + Q(y) + 2h(x, y), 4. Q(x + y) + Q(x y) = 2Q(x) + 2Q(y), (rovnoběžníková rovnost), 5. h(x, y) = 1 4 (Q(x + y) Q(x y)), (polarizační identita). Důkaz: tabule BI-LIN (Symetrické a kvadratické formy) 4 / 20
5 Ve vzorci Q(x) = x T Ax vystupují souřadnice vektoru x ve standardní bázi R n. Bud P R n,n matice přechodu od standardní báze R n k bázi jiné. Víme, že pro nové souřadnice x R n platí vztah x = Px. Matice kvadratické formy se přechodem k jiným souřadnicím změní! Máme totiž Q(x) = x T Ax = (Px ) T APx = x T P T APx. Na pravé straně je kvadratická forma v nových souřadnicích s maticí (je tato matice symetrická?). P T AP BI-LIN (Symetrické a kvadratické formy) 5 / 20
6 V dalším výkladu se budeme snažit najít takovou trasformaci souřadnic (matici P), aby matice kvadratické formy v nových souřadnicích byla diagonální. Tedy hledáme matici přechodu P takovou, že je diagonální matice. D = P T AP Kvadratická forma Q má potom v nových souřadnicích tzv. kanonický tvar, n Q(x) = d ii (x i ) 2. Bázi, k níž přecházíme pomocí P a která převádí Q na kanonický tvar, nazveme polární bází kvadratické formy Q. Z kvadratické formy, která bude v kanonickém tvaru, můžeme ihned vyčíst řadu jejích vlastností (ukážeme později). i=1 BI-LIN (Symetrické a kvadratické formy) 6 / 20
7 Připomeňme větu z kapitoly o vlastních číslech matice: Věta: Bud A R n,n, A = A T, potom exituje ortogonální matice P a reálná diagonální matice D tak, že P T AP = D. Matice P obsahuje ve sloupcích vlastní vektory A, které tvoří ortonormální bázi R n. Matice D má na diagonále vlastní čísla A. Bude-li navíc matice P reálná, dostaneme transformaci souřadnic převádějící Q(x) = x T Ax do kanonického tvaru. Metoda převedení kvadratické formy do kanonického tvaru založená na této větě je početně značně náročná. Vyžaduje nalezení vlastních čísel a vlastních vektorů matice A a to není explicitně možné provést pro obecnou dimenzi n. Ukážeme jednodušší metody založené pouze na elementárních maticových operacích, či algebraických manipulacích s kvadratickou formou. BI-LIN (Symetrické a kvadratické formy) 7 / 20
8 Metoda 1: Řádkovými úpravami GEM převedeme A na horní trojúhelníkovitý tvar. Dostaneme tedy P R n,n regulární tak, že PA je horní trojúhleníková. Jelikož je A symetrická, stejné upravy aplikované na její sloupce ji převedou na dolní trojúhelníkovou matici, tedy AP T je dolní trojúhleníková. Matice PAP T je diagonální! BI-LIN (Symetrické a kvadratické formy) 8 / 20
9 Metoda 1 - pokrač.: Schématický postup výpočtu: (E A E) (P D P T ), střídavě řádkové a sloupcové úpravy, řádkové pouze s maticí vlevo, sloupcové pouze s maticí vpravo. Po dokončení výpočtu jsou matice nalevo a napravo vzájemně transponované. Je tedy nadbytečné provádět a zapisovat operace s oběma jednotkovými maticemi. Stačí rozšířit A zprava jednotkovou maticí a do ní zaznamenáme pouze řádkové úpravy. Sloupcové úpravy provádíme pouze s A. Pak (A E) (D P) a matice P T je matice přechodu k nové bázi. Vektory polární báze kvadratické formy Q s maticí A potom tvoří řádky matice P. BI-LIN (Symetrické a kvadratické formy) 9 / 20
10 Příklad 2: Převed te kvadratickou formu Q definovanou v R 3 do kanonického tvaru, kde Q(x) = 2x x 3 + 4x 1 x 2 + 6x 1 x 3 + 2x 2 x 3. Popište potřebnou transformaci souřadnic a najděte polární bázi Q. BI-LIN (Symetrické a kvadratické formy) 10 / 20
11 Metoda 2: Jiný způsob převodu kvadratické formy Q na kanonický tvar je zapsání výrazu n n Q(x) = a ij x i x j ve tvaru součtu kvadrátů, např., Q(x) = d 1 ( n i=1 q 1i x i ) 2 + d 2 ( n i=2 i=1 j=1 q 2i x i ) d n ( n i=n q ni x i ) 2. Způsob doplňování na čtverce, někdy označováný jako Lagrangeův algoritmus, ilustrujeme na příkladech dále. Definujme Q R n,n tak, že { q ij, i j, Q ij := 0 i > j. Matice Q je horní trojúhleníková s nenulovými čísly na diagonále (tak ji volím!), a tedy Q je regulární. V nových souřadnicích x = Qx je forma Q v kanonickém tvaru. Označíme-li P := Q 1, je P maticí přechodu od standardní báze k polární bázi Q. BI-LIN (Symetrické a kvadratické formy) 11 / 20
12 Příklad 3: Bud Q kvadratická forma na R 3 definovaná jako Q(x) = x x x3 2 2x 1 x 2 + 4x 1 x 3 2x 2 x 3. Nalezneme kanonický tvar, transformační matici a polární bázi Q. Doplněním na čtverce získáme Q( x) = (x 1 x 2 + 2x 3 ) 2 + (x 2 x 3 ) 2 x3 2. S pomocí tohoto vyjádření sestavme transormační matici Q = Tuto matici lze vždy volit regulární a pro její inverze Q 1 = P je maticí přechodu od standardní báze k bázi polární. Tedy sloupce matice P = 0 1 1, tvoří vektory hledané polární báze ((1, 0, 0), (1, 1, 0), ( 1, 1, 1)). BI-LIN (Symetrické a kvadratické formy) 12 / 20
13 Příklad 4: Nalezněte polární bázi kvadratické formy Q na R 3, která má ve standardní bázi tvar Doplněním na čtverce dostaneme Q(x) = x x x 2 3 2x 1 x 2 + 4x 1 x 3. Q(x) = (x 1 x 2 + 2x 3 ) 2 + x 2 2. Třetí řádek transformační matice Q R 3,3 lze volit libovolně ale tak, aby matice Q byla regulární! Dobré je zachovat horní trojúhelníkovitý tvar a nenulovost diagonály Q. Tedy můžeme volit např Q = Další postup je analogický jako v Příkladu 3. BI-LIN (Symetrické a kvadratické formy) 13 / 20
14 Algoritmus doplňování na čtverce, tak jak byl vyložen, někdy nelze aplikovat hned od začátku. Totiž v případech, kdy rovnice kvadratické formy neobsahuje kvadrát. Uvažujme příklad formy na R 3, Q( x) = x 1 x 2 + x 1 x 3 + x 2 x 3. Zde je třeba aplikovat nějakou zahajovací substituci, která nám kvadráty vytvoří. To znamená, že vyjádříme formu Q v jiné bázi, kde již kvadráty budou. Vezměme např. x 1 = y 1 + y 2, x 2 = y 1 y 2 a x 3 = y 3. Potom Q(x) = Q(y) = y 2 1 y y 1 y 3 a již lze aplikovat Lagrangeův algoritmus. Pozor, transformační matici, která nám vyjde upravením Q na čtverce je třeba ještě vynásobit zleva maticí první substituce Takto získáme matici Q a můžeme pokračovat jako v Příkladu 3. BI-LIN (Symetrické a kvadratické formy) 14 / 20
15 Věta(Zákon setrvačnosti kvadratických forem): Necht Q je kvadratická forma na R n a (a 1,..., a n ) je její polární báze. Necht p, q, r je počet kladných, resp. záporných, resp. nul v posloupnosti (Q(a 1 ),..., Q(a n )). Potom uspořádaná trojice p, q, r nezávisí na volbě polární báze. Důkaz: neuvedeme Tedy každé dva kanonické tvary kvadratické Q mají stejný počet kladných koeficientů, stejný počet záporných koeficientů a stejný počet nulových koeficientů. Tato věta ospravedlňuje následující definici. Definice: Čísla p, resp. q z předchozí věty nazýváme kladným, resp. záporným indexem setrvačnosti kvadratické formy Q. Dvojice (p, q) se nazývá signatura Q. Číslo p + q nazveme hodnost Q. BI-LIN (Symetrické a kvadratické formy) 15 / 20
16 Definice: Bud Q kvadratická forma na R n. Říkáme, že Q je 1. pozitivně definitní (PD) ( x L)(x 0)(Q(x) > 0), 2. negativně definitní (ND) ( x L)(x 0)(Q(x) < 0), 3. pozitivně semidefinitní (PSD) ( x L)(Q(x) 0) ( x 0 L)(x 0 0)(Q(x 0 ) = 0), 4. negativně semidefinitní (NSD) ( x L)(Q(x) 0) ( x 0 L)(x 0 0)(Q(x 0 ) = 0), 5. indefinitní (IND) ( x, y L)((Q(x) > 0)) (Q(y) < 0)). Pozorování: Známe-li signaturu (p, q) kvadratické formy Q, můžeme určit její definitnost. Platí totiž: Q je PD p = n, Q je ND q = n, Q je PSD p < n q = 0, Q je NSD p = 0 q < n, Q je IND pq 0. BI-LIN (Symetrické a kvadratické formy) 16 / 20
17 Pozorování: Je-li A R n,n, A = A T, potom je vztahem určena kvadratická forma Q A na R n. Q A (x) = x T Ax, (x R n ) Definice: Symetrickou matici A R n,n nazveme PD, resp. ND, resp. PSD, resp. NSD, resp. IND, jestliže je Q A PD, resp. ND, resp. PSD, resp. NSD, resp. IND. BI-LIN (Symetrické a kvadratické formy) 17 / 20
18 Značení: Bud A R n,n, k ˆn. Potom označíme A[k] R k,k takovou, že ( i, j ˆk)(A[k] ij = A ij ). Tedy A[k] vznikne z A vynecháním (k + 1)-ního až n-tého řádku a sloupce. Věta (Jacobiho): Necht Q je kvadratická forma na R n s maticí A. Necht k ˆn platí k := det A[k] 0. Potom existuje polární báze A kvadratické formy Q taková, že x L platí Q(x) = 1 1 ξ ξ ξ n 1 n ξ 2 n, kde (ξ 1,..., ξ n ) jsou souřadnice vektoru x v bázi A. Důkaz: konstruktivní, uvést podle časových možností BI-LIN (Symetrické a kvadratické formy) 18 / 20
19 Věta (Sylvestrovo kritérium): Necht Q je kvadratická forma na R n s maticí A. Necht k = det A[k]. Potom i) Q je PD právě když ( k ˆn)( k > 0), ii) Q je ND právě když ( k ˆn)(( 1) k k > 0). Důkaz: podle časových možností Důsledek: Symetrická matice A R n,n je PD právě když ( k ˆn) (det A[k] > 0) a ND právě když ( k ˆn)(( 1) k det A[k] > 0). Pozn.: Existuje pododbné kritérium pro PSD/NSD, ale jeho formulace je komplikovanější a v praxi se používá zřídka. BI-LIN (Symetrické a kvadratické formy) 19 / 20
20 Příklad: Rozhodněte o definitnosti matice A = Protože 1 = (1) = 1 > 0, ( ) 2 = 1 1 = 2 > 0, = det A = 4 > 0, je podle Sylvestrova kritéria matice A PD. BI-LIN (Symetrické a kvadratické formy) 20 / 20
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
1 Kvadratické formy. 2 Matice kvadratické formy. Definice Necht B je bilineární forma na V. Q B : V R. Q B (x) = B(x, x), x V
LA 11. cvičení matice bilineární formy, kvadratické formy Lukáš Pospíšil, Martin Hasal,011 1 Kvadratické formy Definice 1.0.1 Necht B je bilineární forma na V. Kvadratickou formou příslušnou bilineární
P 1 = P 1 1 = P 1, P 1 2 =
1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Vlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer
Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.
Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
Afinní transformace Stručnější verze
[1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Lineární algebra : Změna báze
Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Kapitola 5. Symetrické matice
Kapitola 5 Symetrické matice Symetrické matice mají mezi všemi maticemi významné postavení. Nejen, že se častěji vyskytují v aplikacích, ale i jejich matematické vlastnosti jsou specifické. V této kapitole
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
11. Skalární součin a ortogonalita p. 1/16
11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
z textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření
Drsná matematika I 13. přednáška Kvadriky a projektivní rozšíření Jan Slovák Masarykova univerzita Fakulta informatiky 12. 12. 2007 Obsah přednášky 1 Literatura 2 Kvadratické formy a kvadriky 3 Projektivní
Soustavy lineárních rovnic-numerické řešení
Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22
Transformace souřadnic
Transformace souřadnic Odpřednesenou látku naleznete v kapitolách 8.2 a 8.3 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01AG 5.11.2015: Transformace souřadnic 1/17 Minulá přednáška
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
1. Algebraické struktury
1. Algebraické struktury Definice 1.1 : Kartézský součin množin A,B (značíme A B) je množina všech uspořádaných dvojic [a, b], kde a A, b B. N-tou kartézskou mocninou nazveme A n. Definice 1.2 : Nechť
Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců
Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).