STUDIE. Analýza přežívání čertic a čertů
|
|
- Marcel Netrval
- před 8 lety
- Počet zobrazení:
Transkript
1 Analýza přežívání čertic a čertů Ing. Milan Němeček Vzpomeňme si na pohádku s Čerty nejsou žerty. V ní Lucifer (dále jen Lůca) pověřil čerta Janka, aby přinesl Dorotu Máchalovou do pekla, poněvadž míra jejích hříchů přesáhla přípustnou hranici. Předtím než Janek vyrazil na cestu, dostal od Lůci zevrubný plán vesnice a následující varování: Pozor na peří a žádný alkohol. První varování bylo v příběhu náležitě vysvětleno a my nyní zkusíme odhadnout, proč to druhé. Večer pátého prosince Mikuláš s andělem a čertem nebo nádhernou čerticí obcházejí domácnosti a rozdávají dětem dárky. Přiznejme si, čerti a čertice působí jako výchovný prvek. Na nejmenší ratolesti určitě, u náctiletých působí už poněkud jinak. Za přinesené dárky a výchovné působení často dostane návštěva z nebes i z pekla něco pro zahřátí na jejich další cestu. Stává se, že chudáci z pekla se někdy musí za někoho ze skupiny obětovat, například za anděla, a mohou jim nastat problémy při plnění jejich povinností. Byl proveden reálný průzkum se základním cílem odhadnout bezporuchovost čerta v závislosti na počtu přijatých odměn. Pro následnou analýzu bylo shromážděno třicet dva záznamů, viz tabulka níže, jedná se tedy o reálná data. 1
2 Každá bytost byla požádána, aby uvedla nebo odhadla, kolik panáků je schopná vypít, když není v kondici (zkrátka jí to nesedne), potom byla požádána o údaj při jejím normálním stavu. Na závěr odhadla (nebo uvedla ze zkušenosti) extrémní množství odměn, které je schopna přežít a nepadnout za peklo. Samozřejmě, někteří jedinci nechtěli uvést údaje, ale přesto se povedlo shromáždit malý soubor dat, v němž je možné zkusit nalézt určité informace. Pokud vás to bude zajímat, čertice byly sdílnější. Výše uvedené údaje obsahují určitou míru nejistoty, a proto je nutné použít metody statistické analýzy. Zvolíme neparametrické metody. Těm dáváme přednost při malém počtu dat, poněvadž není možné aplikovat centrální limitní větu na výběrový průměr. Dále můžeme předpokládat výrazně nenormální rozdělení. Zároveň se nám v záznamech vyskytuje cenzorovaný údaj. Program STATISTICA ve svém modulu Pokročilé lineární/nelineární modely nabízí skupinu metod spadající do oblasti Analýzy přežívání. Tyto metody začaly být poprvé používány v medicíně a biologii, velmi brzo však našly uplatnění i v technických oborech, například v oblasti spolehlivosti. Počet záznamů je velmi malý, v průzkumové analýze dat bude dostačující provést pouze jejich grafické zobrazení se zakreslenou křivkou aproximujícího normálního rozdělení. Pokud daná bytost (tedy neuvažujeme pohlaví) není v kondici, takto vypadá rozložení četnosti hodnot v souboru. Na vodorovné ose je počet panáků, při kterých je bytost ještě schopna si plnit své povinnosti. Jak vidíme, rozložení hodnot se blíží k exponenciálnímu rozdělení. Níže jsou uvedeny zbývající grafy. 2
3 U posledního grafu vidíme součet dvou různých rozdělení. Jejich oddělení by bylo možné pouze na základě nějakého atributu, např. oblast, pohlaví apod. Stále však musíme mít na paměti, že pracujeme s velmi malým počtem dat, tento předpoklad však při větším rozsahu záznamů nemusí platit nebo může být potvrzen. 3
4 Samozřejmě jsme už zvědaví na rozdíl mezi mužem a ženou. 4
5 Například v krabicovém grafu bychom lépe viděli odlehlé hodnoty nebo extrémy, ale vraťme se nyní k neparametrickým metodám. Program STATISTICA nabízí níže zobrazené metody z oblasti Analýzy přežívání. Kaplan-Meierova metoda patří do skupiny neparametrických metod. Je upřednostňována před výpočty pomocí tabulky života vzhledem k jejím přesnějším výstupům. Obdobou Kaplan- Meierovy metody je Nelson-Altschulerův odhad, jenž však dává lepší výsledky, než je skutečnost. Bez rozlišení pohlaví, státu, věku a za normální kondice čertovské bytosti získáme níže uvedené kvantily doby přežití. Kvantily (Čert) funkce přežíván Čas Kvantily přežív. 25. kvantil (dolní kvartil) 50. kvantil (medián) 75. kvantil (horní kvartil) 3, , ,
6 Dá se předpokládat, že padesát procent pracujících vydrží 6 naturálií v době mikulášských pochůzek. Vypočtené hodnoty jsou přehledněji zobrazeny v Kaplan-Meierově grafu. Zkusme zjistit, zda existuje statisticky významný rozdíl mezi zajištěním služeb v České republice a na Slovensku. Kumulativní podíl přeživajících (Kaplan-Meier) Ukončené Cenzorované Kumulat. podíl přežívajících Čas CR SR 6
7 Podíl přežívajících Podíl přežívajících 0 2,22 3,44 4,67 5,89 7,11 8,33 9, ,0 13,2 14,4 Poč. intervalu CR SR Při malém počtu dat a za předpokladu jejich proložení exponenciálním nebo Weibullovým rozdělením se doporučuje používat Coxův F-test, který má v těchto případech podstatně větší sílu testu jak obvykle používaný Gehanův-Wilcoxonův test. Za nulovou hypotézu je považováno tvrzení, které deklaruje žádný rozdíl. Tedy - jakýkoliv nalezený rozdíl mezi jednotlivými skupinami je způsoben přirozenou variabilitou dat. Hladina významnosti alfa je pravděpodobnost zamítnutí nulové hypotézy při její platnosti, standardně se volí hodnota 5. Coxův F-test (Čert) T1 = 27,06753 T2 = 3, F( 52, 10) = 1, p =,33028 Přesné ukončení R(I) M(I) M/R Kap/Meir odhad 000 2,0000 3,0000 4,0000 5,0000 6,0000 7,0000 8,0000 9, , , , , , , , , , , , , , , , , , , , , Podle vypočtené p-hodnoty > 5 je možné přijetí nulové hypotézy. Mezi oběmi skupinami vzorků dat není statisticky významný rozdíl. Porovnejme čerta a čertici v normální kondici bez přihlédnutí k jejich státní působnosti. 7
8 Podíl přežívajících Podíl přežívajících 0 3,44 5,89 8, ,2 2,22 4,67 7,11 9,56 12,0 14,4 Poč. intervalu Čert Čertice Kumulativní podíl přeživajících (Kaplan-Meier) Ukončené Cenzorované Kumulat. podíl přežívajících Čas Čert Čertice 8
9 Coxův F-test (Čert) T1 = 22,95042 T2 = 8, F( 36, 26) = 2, p =,02920 Přesné ukončení R(I) M(I) M/R Kap/Meir odhad 000 2,0000 3,0000 4,0000 5,0000 6,0000 7,0000 8,0000 9, , , , , , , , , , , , , , , , , , , , , Jak jsme tušili, potvrdil se statisticky významný rozdíl ve výdrži čertů a čertic. Velmi zajímavou informací bude posouzení vlivu věku na výdrž pro blíže specifikovanou bytost. Pro analýzu dat je použita metoda Coxovy regrese s proporcionálním rizikem, tedy s konstantními kovariantami. Opět k analýze jsou použity údaje o výdrži bytostí v normální kondici. Jako nezávislé proměnné (kovarianty) zvolíme věk, stát a pohlaví. V programu STATISTICA byl sestaven příslušný model a podle vložených hodnot je proveden grafický výstup. Funkce přežívání pro definované Čert, 20 let, ČR Kumulativní podíl přežívajících Čas přežívání Takže slečny a paní, na základě analyzovaných dat můžete předpokládat, že 90 procent čertů bude pravděpodobně ještě v kondici při třech panácích. 9
10 Funkce přežívání pro definované Čert, 50 let, ČR Kumulativní podíl přežívajících Čas přežívání A padesát procent padesátiletých čertů po pěti až šesti panácích bude na své horní hranici nebo už bude mít poruchu. Funkce přežívání pro definované Čert, 80 let, ČR Kumulativní podíl přežívajících Čas přežívání A se starším čertem budete muset trochu opatrněji nebo se z vás stane první pomoc. Co vy na to? Všimněme si, že v datech se nevyskytuje údaj o kvalifikaci osmdesátilétého čerta. Na základě sestaveného modelu můžeme provést alespoň odhad. Při porovnávání dvou vzorků dat byl použit Coxův F-test s předpokladem aproximace dat Weibullovým rozdělením. Potvrďme daný předpoklad například pro kategorii čertů a čertic bez rozlišení věku, státní příslušnosti a za jejich standardní kondice. Program STATISTICA ve své nabídce průmyslových statistik nabízí metodu jak grafického, tak i numerického řešení odhadu parametrů Weibullova rozdělení a souvisejících statistik a výpočtů. Pro jednotlivé kategorie dat je provedeno ověření za pomoci Q-Q grafu. 10
11 Teoretický kvantil (standardiz.) Q-Q graf pro aktuální parametry Normální stav, čert, Ind.cenz.: nic N=18 Parametry : Umístění=000 Tvar= 2,0478 Měř.= 7,7187 2,4 2,2,99 2,0 1,8,95 1,6 1,4,85 1,2,75,55,35,15, Čas selhání t Pravděpod. 2,0 Q-Q graf pro aktuální parametry Normální stav, čertice; Ind.cenz.: nic N=13 Parametry : Umístění=000 Tvar= 2,6317 Měř.= 5,8235 Teoretický kvantil (standardiz.) 1,8 1,6 1,4 1,2,99,95,85,75,55,35,15,05,01 Pravděpod Čas selhání t Data jsou proložena přímkou, jejíž směrnice odpovídá tvaru dvou-parametrového rozdělení a měřítko je dáno průsečíkem této přímky s hodnotou 63,2 procent pravděpodobnosti. Z rozmístění bodů kolem přímky můžeme usuzovat na vhodnost aproximace dat Weibullovým rozdělením. Vypočtené parametry rozdělení jsou uvedeny v podnadpisu grafu. Test Hollander-Proschan Mann-Scheuer-Fertig Anderson-Darling Testy kvality proložení (Čert) Normál; Ind.cenz.: nic N=18 Parametry : Umístění=000 Tvar= 2,0478 Měř.= 7,7187 Filtr pro zahrnutí: v1='čert' Test p Hodnota p=, p> p<.05 11
12 Test Hollander-Proschan Mann-Scheuer-Fertig Anderson-Darling Testy kvality proložení (Čert) Normál; Ind.cenz.: nic N=13 Parametry : Umístění=000 Tvar= 2,6317 Měř.= 5,8235 Filtr pro zahrnutí: v1='čertice' Test p Hodnota p=, p> p>.20 Numerické testy rovněž potvrzují shodu dat s předpokládaným Weibullovým rozdělením. Pro jednotlivé kategorie je zobrazen graf spolehlivosti čerta nebo čertice na době selhání (v našem případě počtu panáků) s vyznačeným 90ti procentním intervalem spolehlivosti. Funkce spolehlivost pro MV odhady parametrů Normální stav, čert; Ind.cenz.: nic N=18 Graf znázorňuje odhad. interval spolehliv. : 9% Parametry : Umístění=000 Tvar= 2,0478 Měř.= 7,7187 Spolehlivost R(t) Čas selhání t Funkce spolehlivost pro MV odhady parametrů Normální stav, čertice; Ind.cenz.: nic N=13 Graf znázorňuje odhad. interval spolehliv. : 9% Parametry : Umístění=000 Tvar= 2,6317 Měř.= 5,8235 Spolehlivost R(t) Čas selhání t 12
13 Co říci na závěr? Shrňme si základní informace. Analyzovaná data bylo možné aproximovat Weibullovým rozdělením nebo modelem Coxovy regresní analýzy s proporcionálním rizikem. Není statistický významný rozdíl mezi zajištěním služeb v České republice a na Slovensku. Obecně mají čerti větší výdrž jak čertice. Pokud jsou v normální kondici, dá se předpokládat u čertic 50ti procentní výdrž při pěti zkonzumovaných naturáliích, u čertů přibližně 6 až 7. Budete-li se o Vánocích dívat na pohádku zmíněnou v úvodu článku, odhadněte věk a kondici čerta Janka. Použijte tyto údaje jako vstupní parametry zmíněné regresní analýzy a odhadněte, kolik kaprála stál otisk palce čerta Janka při odvodovém řízení v hospodě. O trial verzi programu STATISTICA můžete požádat u firmy StatSoft. Všem čerticím a čertům děkuji za poskytnutá data, jim a čtenářům tohoto článku přeji hezké prožití vánočních svátků, divokého Silvestra a do dalšího roku hodně zdraví, pohody a splněných přání. 13
Analýza přežití čertic a čertů
StatSoft Analýza přežití čertic a čertů Vzpomeňme si na pohádku s Čerty nejsou žerty. V ní Lucifer (dále jen Lůca) pověřil čerta Janka, aby přinesl Dorotu Máchalovou do pekla, poněvadž míra jejích hříchů
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
KORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica
LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Národníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Diagnostika regrese pomocí grafu 7krát jinak
StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Pearsonův korelační koeficient
I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
Regrese. používáme tehdy, jestliže je vysvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA
Regrese používáme tehd, jestliže je vsvětlující proměnná kontinuální pokud je kategoriální, jde o ANOVA Specifikace modelu = a + bx a závisle proměnná b x vsvětlující proměnná Cíl analýz Odhadnout hodnot
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Jednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
8 Coxův model proporcionálních rizik I
8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Kvantily a písmenové hodnoty E E E E-02
Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
StatSoft Jak poznat vliv faktorů vizuálně
StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení
Univerzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat Semestrální práce Interpolace, aproximace a spline 2007 Jindřich Freisleben Obsah
Cvičení ze statistiky - 3. Filip Děchtěrenko
Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký