Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9
|
|
- Bohuslav Esterka
- před 8 lety
- Počet zobrazení:
Transkript
1 K testu průběžný
2 Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9 % p.a. platné v průběhu prvních 4 let spoření a úrokové sazbě 6 % platné v průběhu dalších 5 let spoření. Uvažujeme pololetní připisování úroku a srážkovou daň 5 %.
3 Úročení s poplatky Klient si uložil Kč na termínový účet na 10 let při úrokové sazbě 5 % p.a. a ročním připisováním úroků. Kolik bude mít za 10 let na účtu, jestliže banka strhává na konci každého roku poplatek ve výši 350 Kč? Úroky jsou zdaněny srážkovou daní ve výši 15 %.
4 Úročení Developerská společnost nabízí 2 možnosti financování koupě bytu. Buď ihned zaplatit základní cenu Kč anebo zaplatit teď zálohu Kč, na konci 1. roku 50 % ze základní ceny, na konci 2. roku dalších 50 % ze základní ceny. Která varianta je výhodnější pro kupujícího, uvažujete-li refinanční úrokovou míru 5,9 % p.a. a čtvrtletní úročení?
5 Klient spoří na dům počátkem každého čtvrtletí částku Kč při úrokové sazbě 3,5% p.a. a pololetním připisování úroků. Úrokové výnosy podléhají zdanění ve výši 15%. Jaká bude ekvivalentní částka (zaručující stejnou budoucí hodnotu), pokud se rozhodne, že bude ukládat peníze na účet koncem každého měsíce?
6 Klient naspořil za poslední 4 roky částku Kč. Jakou částku naspoří za celkem 12 let, když víte, že úroková míra je neměnná po celou dobu ve výši 4,50 % p.a. a úroky jsou připisovány v půlročním intervalu?
7 Klient bude spořit po dobu 5-ti let koncem každého měsíce částku Kč při úrokové sazbě ve výši 5 % p.a. a čtvrtletním připisováním úroků. Banka strhává na konci každého úrokového období poplatek ve výši 100 Kč. Určete, o kolik by se mohla snížit výše pravidelné úložky v případě, že by banka neúčtovala poplatky (a naspořená částka zůstala stejná)?
8 Klient spořil koncem každého čtvrtletí částku Kč podobu 10-ti let při úrokové sazbě 6 % p.a. a pololetním připisování úroků, které byly zdaněny sazbou 15%. Na konci 7. roku však vybral z účtu částku Kč. Jaká částka mu ještě zůstala na účtu na konci 10. roku?
9 Klient spořil koncem každého čtvrtletí částku Kč po dobu 15-ti let při úrokové sazbě 3 % p.a.. Na konci 10. roku však došlo ke zvýšení úrokové sazby z původních 3 % na 5 % p.a.. O jakou částku na konci každého čtvrtletí mohl klient ukládat méně po této změně, aby naspořil stejnou částku jako v případě, že se úroková míra nezměnila? Úroky po celou dobu byly zdaněny sazbou 15% a připisovány pololetně.
10 Klient spořil počátkem každého měsíce částku Kč po dobu 20 let při úrokové sazbě 4% p.a.. Na konci 14. roku byl po dohodě s bankou proveden částečný výběr z účtu. Jaká částka byla vybrána, když na konci 20. roku na účtu zůstalo ještě Kč. Úroky jsou daněny sazbou 15% připisovány ročně.
11 Spořili jsme Kč měsíčně polhůtně při úrokové sazbě 8 % p.a. se čtvrtletním připisováním úroků. Po 9 letech máme na účtu Kč. Jaký byl počáteční vklad?
12 Jakou částku jsme před 7 lety vybrali z účtu, jestliže na něm máme po 11 letech spoření částku Kč a přitom jsme na konci každého čtvrtletí ukládali Kč? Účet je úročen úrokovou sazbou 5,4 % p.a. s pololetním připisováním úroků, které byly daněny srážkovou daní ve výši 15 %.
13 Spoříme pravidelně vždy počátkem měsíce na účet se čtvrtletním připisováním úroků. Po 10 letech máme naspořeno Kč, na konci 10. roku z této částky vybereme Kč a po 20 letech máme naspořeno Kč. Jakou roční úrokovou sazbou je úročen daný účet?
14 Při jaké roční úrokové míře s pololetním připisováním úroků spořil klient pravidelně na počátku každého čtvrtletí po dobu 6 let, víme-li, že po 4 letech má naspořeno Kč, současně na konci 4. roku vybere z této naspořené částky Kč a po 6 letech bude stav jeho účtu Kč?
15 Nové aerodynamické řešení produktu přineslo za 7 let úsporu 24 mil. Kč. Kolik činila průměrná roční úspora zjištěná ke konci roku, je-li výnosová míra podniku 11,5 % p.a.?
16 Spoříme koncem pololetí Kč po 30 let při 5,8 % p.a. a ročním úročení. Na konci 18. roku banka sníží úrokovou sazbu na 3,8 % p.a.. O kolik se musí zvýšit pravidelná úložka, aby se naspořená částka nezměnila?
17 Při jaké roční úrokové sazbě spořil klient, který koncem každého měsíce ukládal stejnou částku po dobu 9-ti let, víte-li, že po 6 letech má naspořeno Kč a současně na konci 6. roku vybere z této naspořené částky Kč. Dále rovněž víte, že po 9-ti letech je stav jeho spořícího účtu Kč a úroky byly pravidelně připisovány v měsíčním intervalu.
18 Na počátku roku uložíme na účet Kč. Určete, kolik budeme mít na účtu za 10 let, pokud a každá další úložka (ukládáme vždy počátkem dalšího roku) je dvojnásobkem úložky předchozí. Úrokovací období je pololetní a úroková sazba je 8 % p.a.
19 Kolik budeme mít naspořeno na konci roku, spoříme-li koncem každého měsíce a je-li první úložka je rovna Kč a každá následující je o 50 Kč nižší než předchozí. Úrokové období je roční a úroková sazba je 10% p.a.
20 Padesátiletá investice do nemovitosti ve výši bude dle vašeho očekávání přinášet roční příjmy o výši , které každý rok porostou o 2 %. Náklady na údržbu jsou každé pololetí. Zároveň za 20 let očekáváte velkou rekonstrukci o nákladech Jaká je NPV investice, pokud je požadovaná výnosnost 5 %?
21 Kolik musíte začít za 2 roky měsíčně polhůtně spořit, abyste si mohli za 40 let nechat po dobu 30ti let vyplácet měsíční předlhůtní důchod ve výši 9 000, pokud víte, že si penzijní fond účtuje roční poplatek (pouze důchody), úroková sazba je 4 % p.a. a úrokovací období roční?
22 Jaká je hodnota nekonečného předlhůtního měsíčního důchodu, pokud je první měsíc a každý následující měsíc roste o 0,2 %. Poplatek fondu za výplatu důchodu je 100 měsíčně polhůtně a úroková míra při spojitém úročení je 3 % p.a.
23 Který z investorů zhodnotil svoje peníze reálně více, pokud na počátku investoval v domácí měně na pět let? A)Investor zhodnocující peníze s 3 % roční úrokovou mírou při nulové dani, 2% inflaci a pololetním připisování úroků B)Investor zhodnocující peníze při 9 % sazbě p.a. a spojitém úročení při 4% inflaci a 20% daňové sazbě
24 Na jakou maximální cenu by měl investor přistoupit u investice s životností 5 let, která by v 1. roce přinesla příjem ve výši 2 mil. Kč a v dalších letech by tržba rostla konstantním tempem 3%. Počáteční výdaje na tuto investici by činily 6 mil. Kč a na konci životnosti by bylo zapotřebí 1,5 mil. Kč k demolici investice. Investor požaduje roční míru výnosu ve výši 10%.
25 Klient spořil Kč koncem každého měsíce. Po 10 letech klient zvýšil ukládanou částku na Kč a takto spořil dalších 20 let. Kolik měl klient na spořícím účtu za 30 let, když mu banka za vedení účtu strhávala čtvrtletně poplatek 120 Kč? Úroky jsou připisovány pololetně a úroková sazba činí 5 % p.a.
26 Koncem každého měsíce klient spoří 900 Kč po dobu 30 let. V 18. roce vybere ze spořícího účtu Kč. Jak velký důchod si tím zabezpečí, když chce, aby mu byl vyplácen začátkem měsíce po dobu 15 let. Úroková míra je po celou dobu neměnná ve výši 3,6% p. a. Úroky jsou připisovány každé 4 měsíce.
Téma: Jednoduché úročení
Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad
VíceBudoucí hodnota anuity Spoření
Finanční matematika Budoucí hodnota anuity Spoření Doposud vypočítáme konečné (budoucí) hodnoty či počáteční (současné) hodnoty, za předpokladu konstantní (jednorázové) současné hodnoty (jednorázového
Více19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích
Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity
VícePřípravný kurz FA. Finanční matematika Martin Širůček 1
Přípravný kurz FA Finanční matematika 1 Úvod čas ve finanční matematice, daně, inflace Jednoduché a složené úročení, kombinace Spoření a pravidelné investice Důchody (současná hodnota anuity) Kombinace
VíceDůchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný
Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené
VíceSložené úročení. Škoda, že to neudělal
Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel
VíceK n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:
Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové
VíceÚroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé
Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ DRUHÝ TUTORIÁL 30. 11. 2013 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 INFORMACE V ISu vypsány termíny: So 11. 1. 2014 13:00 učebna P11 So 1.
VíceFINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010
Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web
VíceSPOŘENÍ KRÁTKODOBÉ. Finanční matematika 5
SPOŘENÍ KRÁTKODOBÉ Finanční matematika 5 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm05
VíceÚročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.
Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl
Více3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,
VíceČa Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek
Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice
Více8.2.11 Příklady z finanční matematiky II
8.2. Příklady z finanční matematiky II Předpoklady: 82 Inflace Peníze nemají v dnešní době žádnou hodnotu samy o sobě, jejich používání reguluje stát, v případě zhroucení ekonomiky se může stát, že svou
VíceÚročení vkladů. jednoduché složené anuitní
jednoduché složené anuitní Úročení vkladů Úrok = cena půjčených peněz, kterou platí ten, kdo peníze dočasně užívá, je vyjádřen v peněžních jednotkách (v Kč) (míra) = v %, vyjadřuje v procentech jakou část
VíceStřední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo
VícePasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
VícePENÍZE, BANKY, FINANČNÍ TRHY
PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou
VíceČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ
ČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ ÚROK z pohledu věřitele odměna za to, že poskytl své volné peněžní prostředky dočasně někomu jinému (zahrnuje náhradu za dočasnou ztrátu kapitálu a za riziko spojené s nesplacením
VícePasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
VícePenzijní připojištění - změny od 1.1.2013
Penzijní připojištění - změny od 1.1.2013 Víte, co se stane v rámci důchodové reformy od roku 2013 s penzijním připojištěním? Mimo jiného se změní výše státního příspěvku, posune se hranice pro možnost
VíceJakou formou je penzijní připojištění podporováno státem? (dle současné právní úpravy k 1. 1. 2006)
Doktorand: Jiří Vopátek VŠE Praha, Fakulta managementu v J. Hradci Anotace: Příspěvek je zaměřen na problematiku II. pilíře v rámci důchodového zabezpečení ve stáří. Příspěvek přibližuje uvedený pilíř
VíceIng. Barbora Chmelíková 1
Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ
VíceÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky
Otázka: Úročení a příklady výpočtu Předmět: Ekonomie Přidal(a): Penny ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky ÚROKOVÁ SAZBA (MÍRA) = v % vyjadřuje, jakou část z
VíceUkázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné
VíceFinanční matematika. Téma: Důchody. Současná hodnota anuity
Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění
Více1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
VíceFinanční řízení podniku 1. cvičení. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.
Finanční řízení podniku 1. cvičení I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto
VíceStavební spoření. Datum uzavření /14 PRG 04/14 V20. Spoření ukončeno dne Splacení úvěru
Základní informace Meziúvěr Naspořená částka Výnos ve fázi spoření Finanční náklady Celkové náklady Celkové náklady meziúvěru / úvěru Efektivita Datum uzavření 20.06.2014 Cílová částka 150 000,00 Kč VOP
VíceSbírka příkladů z finanční matematiky Michal Veselý 1
Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.
VíceKlíčové kompetence do obcí obecné i odborné vzdělávání na dosah
Vítáme Vás na semináři organizovaném v rámci projektu Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah Reg. číslo projektu: CZ.1.07/3.1.00/50.0015 Tento projekt je spolufinancován Evropským
Více3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
Více2. cvičení. Úrokování
BANKOVNICTVÍ 2. cvčení Úrokování ÚROK, ÚROKOVÁ MÍRA Úroková míra vyjadřuje poměr výnosu k vloženému (půjčenému) kaptálu, a to buď v relatvním (např. 0,1), nebo procentním (např. 10 %) vyjádření. Úrok je
Více4. cvičení. Splácení úvěru. Umořovatel.
4. cvičení Splácení úvěru. Umořovatel. UMOŘOVÁNÍ DLUHU Jakým způsobem lze úvěr splácet: jednorázově, postupně: - pravidelnými splátkami: - degresivní splátky, - progresivní splátky, - anuitní splátky (pravidelně
VíceVýpočet dopadů do státního rozpočtu při změně státního příspěvku v DPS
Výpočet dopadů do státního rozpočtu při změně státního příspěvku v DPS Vzhledem k neexistujícímu průzkumu veřejného mínění jsou výpočty pravděpodobné a přibližné. Tyto výpočty byly provedeny na základě
VíceStřední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo
VíceFinanční gramotnost pro SŠ -10. modul Investování a pasivní příjem
Modul č. 10 Ing. Miroslav Škvára O investicích O investování likvidita výnosnost rizikovost Kam mám investovat? Mnoho začínajících investorů se ptá, kam je nejlepší investovat? Všichni investiční poradci
VíceÚkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku
Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v
VícePříklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.
I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno
VíceFinanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice
Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)
VíceČasová hodnota peněz (2015-01-18)
Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky
VíceEfektivita III. pilíře - 3 scénáře změn. 5. zasedání Komise pro spravedlivé důchody Ministerstvo práce a sociálních věcí
Efektivita III. pilíře - 3 scénáře změn 5. zasedání Komise pro spravedlivé důchody 28. 6. 2019 Ministerstvo práce a sociálních věcí 1 Závěry minulého jednání neefektivita III. pilíře Třetí pilíř neplní
VíceStřední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 2 Číslo
VíceVýhody poradce Money Plus +
PRESENTÁTOR Popis práce finančního trenéra Sociální dávky při pracovní neschopnosti, Půjčky vs. Investice, Financování bydlení a Finanční svoboda Výhody poradce Money Plus + penzijní fond hypotéka leasing
VíceFinanční gramotnost pro školy. Senior lektoři: Karel KOŘENÝ Petr PAVLÁSEK
Finanční gramotnost pro školy Senior lektoři: Karel KOŘENÝ Petr PAVLÁSEK r. 2012 1. Zlatá pravidla Pokud chcete dosáhnout finanční nezávislosti, musíte plánovat, být disciplinovaní a rozhodnuti ovládat
Více7.1. Jistina, úroková míra, úroková doba, úrok
7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina
VíceZÁKLADY FINANČNÍ MATEMATIKY
ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr
VíceVěra Keselicová. Prosinec 2011
VY_62_INOVACE_VK11 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová Prosinec 2011 8.
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154
VíceVY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:
Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ.1.07/1.4.00/21.2362 Kód: 01.02 Pořadové číslo materiálu: 34 I/2 Inovace a zkvalitnění výuky
VíceExcel COUNTIF COUNTBLANK POČET
Excel Výpočty a vazby v tabulkách COUNTIF Sečte počet buněk v oblasti, které odpovídají zadaným kritériím. Funkce je zapisována ve tvaru: COUNTIF(Oblast;Kritérium) Oblast je oblast buněk, ve které mají
Více5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA
5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté
VíceOsobní údaje Klient Martina Plánovací. Váš financní trenér. Financní bilance. Deti. Príjmy - celkové
Dobrý den, v rukou držíte financní plán, který Vám má ukázat cestu ke splnení Vašich životních cílu. Vycházeli jsme z dukladné analýzy Vašich príjmu, výdaju a plánu, které chcete v budoucnu uskutecnit.
VíceStavební spoření v ČR co by měl vědět bankéř
Stavební spoření v ČR co by měl vědět bankéř Petr Kielar petr@kielar.cz http://petr.kielar.cz 1 Obsah 1. Historický úvod 2. Konstrukce tarifu (postavte si vlastní stavební spořitelnu) 3. Rovnováha mezi
VíceStavební spoření. HOR_62_INOVACE_8.ZSV.25.notebook. September 04, 2013
Stavební spoření HOR_62_INOVACE_8.ZSV.25 Mgr. Jana Horná 8. ročník ( VI/2 EU OPVK) 3. 4. 2013 Základy společenský věd 8. ročník; Stavební spoření 1 Výukový materiál je připraven pro 8. ročník s využitím
VíceBKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro)
BKF_CZAF CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 13. 11. 2015 1 Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) 322829@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ První tutoriál 4. listopad 2012 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 Informace o předmětu 4 kredity Typ ukončení zápočet Dva tutoriály:
VíceFinanční matematika pro každého příklady + CD-ROM
Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady
VícePracovní list. Workshop: Finanční trh, finanční produkty
Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda
VíceFinanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem
Finanční rozbor současného penzijního připojištění se státním příspěvkem, srovnání s bankovním účtem Studie z předmětu KMA/MAB, LS 2009/2010, A09N0169P Finanční informatika a statistika tomi.rosi@seznam.cz
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 3. 11. 2013 1 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva tutoriály: 3. 11.
VíceFINANČNÍ MATEMATIKA Finanční produkty. www.zlinskedumy.cz
FINANČNÍ MATEMATIKA Finanční produkty www.zlinskedumy.cz Finanční produkty jsou půjčky, hypotéky, spoření, nejrozšířenější jsou produkty, jejichž hlavní zaměřením je: správa financí: běžné účty zhodnocení
VíceFinanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.
Finanční řízení podniku cvičení 1 I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto
Více4 Zásobitel, reálná úroková míra, diskont směnky
4 Zásobitel, reálná úroková míra, diskont směnky Zásobitel, nebo-li také věčná renta, řeší, kolik dnes uložit peněžních prostředků, aby mi mohla být vyplácena pravidelná částka po určité období. Známe
VíceDigitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.07 Integrovaná střední
Více1 Časová hodnota peněz
1 Časová hodnota peněz Př výpočtech vycházíme ze standardu 30E/360evropský standard) kdy používáme měsíce s 30dnyaujednohorokuuvažujeme360dní. 1.1 Inflace, reálná a nomnální úroková míra Přvýpočtureálnéúrokovémíryvycházímezevzorce
VíceBankovnictví a pojišťovnictví 5
Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:
VíceKDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT
KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT Mgr. Ing. Šárka Dytková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním
VíceFINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová
FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření
Více4. Přednáška Časová hodnota peněz.
FINANCE PODNIKU 4. Přednáška Časová hodnota peněz. ČASOVÁ HODNOTA PENĚZ Časová hodnota peněz představuje finanční metodu, která umožňuje porovnání různých částek v různých časech se zohledněním skutečnosti,
VíceDotazník Osobní finanční plán. Diskrétní
Dotazník Osobní finanční plán Diskrétní Osobní informace Celá jména Klient Partner/ka Pohlaví muž žena muž žena Rodné číslo Datum narození / / / / Rodinný stav svobodn(ý/á) rozvoden(ý/á) ženat(ý/á) vdov(ec/a)
VíceUžití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
VícePENZIJNÍ PŘIPOJIŠTĚNÍ
PENZIJNÍ PŘIPOJIŠTĚNÍ Mgr. Erika Chmelířová, CHM_62_INOVACE_8.M.36 8. ročník (VI/2 EU OPVK) 12.6.2013 Matematické praktikum 8. roč. PENZIJNÍ PŘIPOJIŠTĚNÍ Výukový materiál je připraven pro 8. ročník s využitím
VícePasivní služby stavební a penzijní pojištění
Stavební spoření Nejznámější stavební spořitelny Pasivní služby stavební a penzijní pojištění Českomoravská stavební spořitelna ( ), Stavební spořitelna České spořitelny (.), Modrá pyramida, Spoření se
VíceSPOŘÍCÍ ÚČET. Finanční matematika 7
SPOŘÍCÍ ÚČET Finanční matematika 7 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm07
Vícechtěl bych Vám ukázat úplně jinou možnost spoření, než jakou jste nejspíš znali doposud.
VS Dobrý den, chtěl bych Vám ukázat úplně jinou možnost spoření, než jakou jste nejspíš znali doposud. Můj názor je, že když si spořím, tak ať to stojí za to. Nyní Vám ukážu na porovnání, jak a kde lze
VícePrezentace k finanční gramotnosti.jak spořit, jaké jsou druhy spoření. Stavební spořitelny v ČR.
Anotace Autor Jazyk Očekávaný výstup Speciální vzdělávací potřeby Klíčová slova Druh učebního materiálu Druh interaktivity Cílová skupina Prezentace k finanční gramotnosti.jak spořit, jaké jsou druhy spoření.
VíceProdukty finanční matematiky. Podle standardů finanční. gramotnosti pro střední školy. Předmět matematika Praktické využití posloupností a řad
N{zev školy Číslo šablony/číslo sady Gymnázium J. V. Jirsíka, Fráni Šrámka, České Budějovice VI/2/ Poř. číslo v sadě 1 Jméno autora Období vytvoření materi{lu N{zev souboru Zařazení materi{lu podle ŠVP
VíceFunkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
VíceInvestování volných finančních prostředků
Investování volných finančních prostředků Rizika investování Lidský faktor Politická rizika Hospodářská rizika Měnová rizika Riziko likvidity Inflace Riziko poškození majetku Univerzální optimální investiční
VíceVáš průvodce důchodovou reformou ...---. JIŘí PĚNKAVA. ČESKÉ POJIŠŤOVNY a.s, REFORMA PENZí ) PENZIJNí FOND ČESKÉ POJlŠŤOVNY
JIŘí PĚNKAVA pojišťovací a investiční poradce ČESKÉ POJIŠŤOVNY a.s, Agentura 336 Plzeň II, jednatelství Rokycany Bydliště: Iěškovská 557, Mýto, 33805 Tel.: 723 599657, TeIJFax: 371 750126 REFORMA PENZí
VíceMetodika výpočtu RPSN stavebního spoření
Metodika výpočtu RPSN stavebního spoření 1. Východiska 1.1. Základním východiskem je zákon Způsob výpočtu RPSN vychází ze Zákona o úvěru pro spotřebitele (dále jen ZÚS). Tato metodika pouze sjednocuje
VíceKrátkodobé cenné papíry a Skonto obsah přednášky
Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné
VíceSTAVEBNÍ SPOŘENÍ. Finanční matematika 8
STAVEBNÍ SPOŘENÍ Finanční matematika 8 Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_Něm08
VíceEkonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé
Vícenaopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.
Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají
VícePenzijní připojištění se státním příspěvkem. Stručná metodická příručka prodeje
Penzijní připojištění se státním příspěvkem Stručná metodická příručka prodeje březen 2008 Otázky a odpovědi prodejce Penzijního fondu České pojišťovny Proč právě Penzijní fond České pojišťovny Penzijní
VíceNové trendy v investování
AC Innovation s.r.o. Projekt: Praktický průvodce ekonomikou aneb My se trhu nebojíme! Registrační číslo: CZ.1.07/1.1.34/02.0039 Vzdělávací oblast: Nové trendy v investování Ing. Yveta Tomášková, Ph. D.
VícePŮJČKY - pokračování
PŮJČKY - pokračování Výukový materiál je připraven pro 8. ročník s využitím Power pointové prezentace a sešitu. Žáci se seznámí s různými možnostmi půjček, s jejich výhodami a nevýhodami, pracují s tabulkou,
VíceVážení přátelé stavebního spoření,
v roce 2018 Vážení přátelé stavebního spoření, do roku 2018 jsme vstupovali s velkým očekáváním. Jsem velmi rád, že skutečnost byla nakonec ještě lepší. Stavební spoření v České republice loni zaznamenalo
VíceJak dál v rozvoji doplňkového penzijního spoření?
Jak dál v rozvoji doplňkového penzijního spoření? JUDr. Vít Samek PT 1 Praha, MPSV, 21. května 2015 Odborná komise pro důchodovou reformu Mandát 2015 PT1 Odborné komise pro DR Analyzovat efektivitu státní
VíceTaké Vám rodiče spořili na byt a koupili jste si tak akorát mikrovlnku?
Také Vám rodiče spořili na byt a koupili jste si tak akorát mikrovlnku? Asi všichni máme zkušenost s tím, že nám rodiče spořili, a když jsme se k penězům v osmnácti letech dostali, nebylo z nich skoro
VíceAktuální výsledky sektoru. a vývojové trendy
Aktuální výsledky sektoru penzijního spoření a vývojové trendy Odborná komise pro důchodovou reformu PT1 Praha, 22.6.2017 Aleš Poklop 1 Vývoj počtu účastníků ve III. pilíři Počet účastníků III. pilíře
Více1 Běžný účet, kontokorent
1 Běžný účet, kontokorent Běžný účet je základním bankovním nástrojem pro správu klientových financí. Jeho primárním účelem je umožnit klientovi hospodařit s peněžní prostředky prostřednictvím některého
VíceZa případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení
Jednoduché úročení 1. Jednoduchý příklad na výpočet úrokové sazby ze základní rovnice jednoduchého úročení: FV=PV*(1+r*t). Aby úroková sazba vyšla v p.a., je nutno časovou proměnnou (t) uvažovat v letech
VíceFinanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
VíceCVIČNÉ PŘÍKLADY z finanční matematiky
CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...
VíceObchodní a ekonomické ukazatele fondů penzijních společností za 1. pololetí 2016
Obchodní a ekonomické ukazatele fondů penzijních společností za 1. pololetí 2016 Prezentace pro PT1 Praha 25.8.2016 ÚČASTNÍCI POČET ÚČASTNÍKŮ 6 000 000 5 000 000 4 000 000 3 000 000 2 000 000 1 000 000
Více