Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích
|
|
- Zdeněk Kašpar
- před 9 lety
- Počet zobrazení:
Transkript
1 Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity v Brně, ukončení od roku 2008 přednáší oblast finančních trhů, kapitálových trhů a finanční matematiky - od roku 2008: externí spolupráce Fond Shop - od roku 2011: Grantika ČS - od roku 2014: projektový manažer - komisař schválený ČNB pro oblast investic a penzí, zák. č. 426, 427/2011 Sb. - člen akreditační komise pro zkoušky odborné způsobilosti dle ZPKT Finanční matematika Úvod čas ve finanční matematice, daně, inflace Jednoduché a složené úročení Spoření (budoucí hodnota anuity) a pravidelné investice Důchody (současná hodnota anuity) Umořování dluhu Dluhopisy Akcie Čas ve finanční matematice 100 Kč dnes vs. 110 Kč v budoucnu? německý standard 30/360 francouzský standard ACT/360 anglický standard ACT/365!!! úrokové období!!! časové období úrokových sazeb p.a., p.s., p.q., p.m., p.d. 3 1
2 Úroková sazba, zdanění, inflace hrubá vs. čistá nominální vs. reálná čistá reálná výnosnost koho a jak postihuje inflace? 4 Jednoduché a složené úročení rozdíl? polhůtní (dekursivní) předlhůtní (anticipativní) efektivní úroková sazba smíšené úročení spojité úročení 5 Jednoduché vs. složené úročení ,25 0,5 1 1,25 1,5 2 2,25 2,5 3 3,25 3,5 4 Jednoduché Složené 6 2
3 Naspořili jste dostatečně vysokou částku na pořízení automobilu. Je pro Vás výhodnějšíkoupit sivůzhnedza670000kčneboza rokza700000kč. Co je výhodnější, pokud si můžete uložit peníze na dobu jednoho roku při 5% roční úrokové sazbě? [výhodnější zaplatit zarok] Za kolik let se zhodnotí vklad Kč na Kč při úrokové sazbě 4 % p.a. spololetním úrokovým obdobím. Výnosy zúroků podléhají srážkové dani ve výši 15 %. [cca 0,49 roku] Půjčili jste peníze a dlužník Vám nabídl dvě možnosti splacení dluhu: a) za 6 měsíců zaplatí Kč, b) za 12 měsíců zaplatí Kč. Kterou možnost zvolíte při 5% roční úrokové sazbě? Úrokové období je pololetí. [výhodnější b)] 7 Existují dvě možnosti úročení ročního bankovního úvěru: a)sazbou5,5%p.a.nakonciúrokovéhoobdobí, b) sazbou 5% p.a. na začátku úrokového období. [výhodnější b)] Chcete zhodnotit Kč na 2 roky. Máte tři možnosti jejich zhodnocení: a) r = 2,15 % p.a., měsíční úrokové období, b) r = 2,20 % p.a., čtvrtletní úrokové období, c) r = 2,25 % p.a., pololetní úrokové období. [nejlepší c)] Za 1 rok chceme zúčtu vybrat Kč a za 3 roky Kč. Kolik nyní musíme dát na účet, který je první dva roky úročen úrokovou sazbou 3 % p.a. a ve třetím roce 4 % p.a.? Úroky jsou připisovány pololetně. [ Kč] 8 Chceme koupit automobil za cenu Kč. Máme možnost zaplatit za něj ihned při nákupu, nebo dát nyní zálohu Kč a za dva roky doplatit Kč. Která z variant je pro nás výhodnější, můžeme-li uložit peníze při úrokové sazbě 4 % p.a. Předpokládejme roční úrokové období. [výhodnější splátky] Jaký byl počáteční kapitál a úroková sazba, víme-li, že po roce byl jeho stav Kč a po 2 letech Kč při ročním úročení? Úroky byly připsány ke vkladu a dále úročeny s ním stejnou úrokovou sazbou. [ Kč; 10 % p.a.] 9 3
4 Spoření a pravidelné investice anuita budoucí hodnota anuity (spoření) současná hodnota anuity (důchody) principy složeného úročení předlhůtní polhůtní vliv na naspořenou částku? vliv na výši úložky? vliv na dobu spoření? 10 Budoucí hodnota anuity t FV = PV (1 + r) = 1000 (1 + 0,1) (1 + 0,1) (1 + 0,1) = 3641 Kč 11 Budoucí hodnot anuity [polhůtně Kč; předlhůtně Kč] [předlhůtně Kč; polhůtně Kč] [předlhůtně 21,81 čtvrtletí; polhůtně 21,94 čtvrtletí] 12 4
5 Kombinace spoření a jednorázových částek Změna podmínek spoření změna výše úložky [ Kč] změna frekvence spoření změna úrokové sazby změna zdanění změna úrokového období změna typu spoření (předlhůtní, polhůtní) 13 Kombinace spoření a jednorázových částek Změna podmínek spoření [ Kč] [cca Kč] 14 Jaký bude výnos drobného investora, který pravidelně na začátku měsíce investuje Kč do podílového fondu prostřednictvím nákupu podílových listů po dobu 5 let? Uvažujte průměrnou roční výnosnost 5 % (po zohlednění management fee). Dále víte, že si fond účtuje vstupní poplatek 0,50% z investované částky. [ Kč] Kolik bude mít pan Novák po zdanění úrokových příjmů na účtu po 6 letech, pokud první 3 roky bude spořit vždy na konci každého čtvrtletí Kč a další 2 roky vždy na začátku pololetí Kč? Poslední rok pan Novák spořit nebude. Účet má úrokovou sazbu 2 % p.a. pro první 3 roky a 2,4 % pro další léta. Uvažujte vždy pololetní připisování úroků a zdanění úrokovýchpříjmůvevýši15%. [ Kč] Na svůj účet jste uložili částku Kč. Jakou částku získáte za 3 roky, pokud budete na konci každého čtvrtletí ukládat vždy Kč? Úroková sazba činí 4 % p.a., úroky jsou připisovány pololetně a jsou zdaňovány sazboudanězpříjmuvevýši15%. [ Kč] 15 5
6 Důchody a renty současná hodnota anuity renta předlhůtní X polhůtní bezprostřední X odložený dočasný X věčný vliv na počáteční vklad? vliv na výši vyplácené anuity (renty)? vliv na dobu čerpání? 16 Současná hodnota anuity PV = FV = ( 1 + ) t = 2487 r (1 + 0,10 )1 (1 + 0,10 ) 2 (1 + 0,10 ) 3 17 Současná hodnota anuity [předlhůtně Kč; polhůtně Kč] předlhůtně Kč; polhůtně Kč [a) 5,32 pololetí; b)částku nikdy nevyčerpáme, tzn. věčně] 18 6
7 [ Kč] [ Kč] 19 [roční ú.o Kč; měsíční ú.o Kč] 20 [a) 13,89 let; b) nikdy] Úvěry a půjčky 1. anuitní splácení vs. splácení stejným úmorem 2. část úmorová, část úroková 3. úrokové období? 21 7
8 22 Finanční matematika cenných papírů dluhopisy akcie Výnosnost dluhopisů Kupónová výnosnost: Coupon yield poměr KP a nominální hodnoty dluhopisu. Běžná výnosnost: Current yield poměr KP a aktuální ceny dluhopisu. Kapitálová výnosnost: Capital yield poměr rozdílu nominální hodnoty (face value, principal) dluhopisu a aktuální ceny k aktuální ceně dluhopisu. Výnos do doby splatnosti: Yield to Maturity (YTM) Nejdůležitější ukazatel výnosnosti u dluhopisů; celkový výnos (běžný i kapitálový) dosažený držbou obligace až do splatnosti (maturity) resp. po dobu durace při nákupu za aktuální cenu 8
9 Akcie Vymezení a legislativa Majetkový cenný papír Kmenové akcie Prioritní akcie Zaměstnanecké akcie Další typy akcií Akciová práva Emise akcií, emisní ážio, IPO Obchodování akcií Akcie Makroekonomika HDP, úrokové sazby, inflace, politická situace Odvětví Hosp. cyklus, úroveň konkurence, vstup do odvětví, státní zásahy Mikroekonomika Historie, současnost, budoucnost firmy Tržby, podíl na trhu, zisk, dividendy, P/E, volatilita Podrobněji viz Fundamentální analýza (FT III) 9
10 Akcie - odvětví 10
11 Směnky + dluhopisy 31 11
12 Dluhopisy II. + akcie 35 12
13 Dluhopisy II. + akcie + investiční rozhodování 38 13
14 Investiční rozhodování + forwardové měnové kurzy 40 Děkuji za pozornost. 14
Přípravný kurz FA. Finanční matematika Martin Širůček 1
Přípravný kurz FA Finanční matematika 1 Úvod čas ve finanční matematice, daně, inflace Jednoduché a složené úročení, kombinace Spoření a pravidelné investice Důchody (současná hodnota anuity) Kombinace
Téma: Jednoduché úročení
Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové
Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9
K testu průběžný Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat 250 000 při úrokové sazbě 9 % p.a. platné v průběhu prvních 4 let
FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010
Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ DRUHÝ TUTORIÁL 30. 11. 2013 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 INFORMACE V ISu vypsány termíny: So 11. 1. 2014 13:00 učebna P11 So 1.
Složené úročení. Škoda, že to neudělal
Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné
PENÍZE, BANKY, FINANČNÍ TRHY
PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou
Úročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.
Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl
Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé
Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),
4. Přednáška Časová hodnota peněz.
FINANCE PODNIKU 4. Přednáška Časová hodnota peněz. ČASOVÁ HODNOTA PENĚZ Časová hodnota peněz představuje finanční metodu, která umožňuje porovnání různých částek v různých časech se zohledněním skutečnosti,
Základní druhy finančních investičních instrumentů
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základní druhy finančních investičních instrumentů strana 2 strana 3 Akcie Vymezení a legislativa Majetkový
ČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ
ČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ ÚROK z pohledu věřitele odměna za to, že poskytl své volné peněžní prostředky dočasně někomu jinému (zahrnuje náhradu za dočasnou ztrátu kapitálu a za riziko spojené s nesplacením
Finanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice
Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)
Důchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný
Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené
Základní druhy finančních investičních instrumentů
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základní druhy finančních investičních instrumentů strana 2 Směnky a jiné krátkodobé cenné papíry strana
Budoucí hodnota anuity Spoření
Finanční matematika Budoucí hodnota anuity Spoření Doposud vypočítáme konečné (budoucí) hodnoty či počáteční (současné) hodnoty, za předpokladu konstantní (jednorázové) současné hodnoty (jednorázového
Finanční matematika pro každého příklady + CD-ROM
Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady
Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé
Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek
Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,
Finanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky
Otázka: Úročení a příklady výpočtu Předmět: Ekonomie Přidal(a): Penny ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky ÚROKOVÁ SAZBA (MÍRA) = v % vyjadřuje, jakou část z
Pasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová
FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření
Příprava na certifikaci EFA
Hlavní cíle programu Úspěšným absolvováním programu získají poradci špičkové odborné znalosti, které jim umožní získat certifikát FA, který je prestižním evropským certifikátem v oblasti finančního poradenství
Pasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
4. cvičení. Splácení úvěru. Umořovatel.
4. cvičení Splácení úvěru. Umořovatel. UMOŘOVÁNÍ DLUHU Jakým způsobem lze úvěr splácet: jednorázově, postupně: - pravidelnými splátkami: - degresivní splátky, - progresivní splátky, - anuitní splátky (pravidelně
K n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:
Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho
2. cvičení. Úrokování
BANKOVNICTVÍ 2. cvčení Úrokování ÚROK, ÚROKOVÁ MÍRA Úroková míra vyjadřuje poměr výnosu k vloženému (půjčenému) kaptálu, a to buď v relatvním (např. 0,1), nebo procentním (např. 10 %) vyjádření. Úrok je
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah
Vítáme Vás na semináři organizovaném v rámci projektu Klíčové kompetence do obcí obecné i odborné vzdělávání na dosah Reg. číslo projektu: CZ.1.07/3.1.00/50.0015 Tento projekt je spolufinancován Evropským
Základy teorie finančních investic
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)
Carmen Simerská. Ústav matematiky VŠCHT, Praha. Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.
Sbírka příkladů Finanční matematika Carmen Simerská Ústav matematiky VŠCHT, Praha Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter. Sbírka příkladů Finanční
Bankovnictví a pojišťovnictví 5
Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:
Obligace obsah přednášky
Obligace obsah přednášky 1) Úvod do cenných papírů 2) Úvod do obligací (vymezení, dělení) 3) Cena obligace (teoretická, tržní, kotace) 4) Výnosnost obligace 5) Cena kupónové obligace mezi kupónovými platbami
Stavební spoření. Datum uzavření /14 PRG 04/14 V20. Spoření ukončeno dne Splacení úvěru
Základní informace Meziúvěr Naspořená částka Výnos ve fázi spoření Finanční náklady Celkové náklady Celkové náklady meziúvěru / úvěru Efektivita Datum uzavření 20.06.2014 Cílová částka 150 000,00 Kč VOP
FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1
FINANČNÍ A INVESTIČNÍ MATEMATIKA 1 Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové
ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.
ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti
Úročení vkladů. jednoduché složené anuitní
jednoduché složené anuitní Úročení vkladů Úrok = cena půjčených peněz, kterou platí ten, kdo peníze dočasně užívá, je vyjádřen v peněžních jednotkách (v Kč) (míra) = v %, vyjadřuje v procentech jakou část
Časová hodnota peněz (2015-01-18)
Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky
Akcie obsah přednášky
obsah přednášky 1) Úvod do akcií (definice, druhy, základní principy) 2) Akciové analýzy 3) Cena akcie 4) Výnosnost akcie 5) Štěpení akcií 6) definice je cenný papír dokládající podíl akcionáře na základním
2.1.3 Hrubý domácí produkt Nezaměstnanost Cena Daňový systém Přímé daně...~ Nepřímé daně
O bsah 1 Peněžní gramotnost...11 1.1 Peníze... 11 1.2 Česká národní banka (ČNB)...11 1.2.1 Peníze a centrální banka...13 1.2.2 Harmonizované peněžní agregáty ČR...14 1.2.3 Platební styk... 18 1.2.4 IBAN
Finanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
Investiční produkty v rámci finanční skupiny České spořitelny
Fakulta ekonomických studií Katedra financí a finančních služeb Navazující magisterské studium kombinované Bankovnictví ZS 2011 Investiční produkty v rámci finanční skupiny České spořitelny Struktura nabídky
Finanční matematika. v praxi. Oldřich Šoba Martin Širůček Roman Ptáček
Oldřich Šoba Martin Širůček Roman Ptáček Finanční matematika v praxi Spoření a pravidelné investice Investiční rozhodování Úvěry a půjčky Důchody a renty Cenné papíry a měnové kurzy Reálné příklady z praxe
BKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro)
BKF_CZAF CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 13. 11. 2015 1 Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) 322829@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva
ZÁKLADY FINANČNÍ MATEMATIKY
ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr
Příklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.
I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno
3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
Projekt. Globální parametry. Požadovaná výnosnost vlastního kapitálu PPP
RK-19-2014-23, př. 2 počet stran: 11 Projekt Globální parametry Inflace Kumulovaná inflace Koeficient aplikace inflace Reálná diskontní sazba Nominální diskontní sazba Sazba daně z příjmu u PO Sazba daně
Finanční matematika v osobních a rodinných financích
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Finanční matematika v osobních a rodinných financích Martin Širůček, garant předmětu strana 2 Doktorské
Finanční gramotnost pro SŠ -10. modul Investování a pasivní příjem
Modul č. 10 Ing. Miroslav Škvára O investicích O investování likvidita výnosnost rizikovost Kam mám investovat? Mnoho začínajících investorů se ptá, kam je nejlepší investovat? Všichni investiční poradci
Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2
Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl
Sbírka příkladů z finanční matematiky Michal Veselý 1
Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.
Za případné drobné chybky a nepřesnosti v textu se omlouvám. Jednoduché úročení
Jednoduché úročení 1. Jednoduchý příklad na výpočet úrokové sazby ze základní rovnice jednoduchého úročení: FV=PV*(1+r*t). Aby úroková sazba vyšla v p.a., je nutno časovou proměnnou (t) uvažovat v letech
FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1
FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1 Název tématického celku: Úroková sazba a výpočet budoucí hodnoty Cíl: Základním cílem tohoto tematického celku je vysvětlit pojem úroku a roční úrokové
ČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ
ČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ 1. Faktor času ve finančním rozhodování Uplatňuje se zejména při: a) rozhodování o investicích (výběr investičních variant) hodnotíme efektivnost investičních
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ První tutoriál 4. listopad 2012 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 Informace o předmětu 4 kredity Typ ukončení zápočet Dva tutoriály:
Finanční gramotnost pro školy. Senior lektoři: Karel KOŘENÝ Petr PAVLÁSEK
Finanční gramotnost pro školy Senior lektoři: Karel KOŘENÝ Petr PAVLÁSEK r. 2012 1. Zlatá pravidla Pokud chcete dosáhnout finanční nezávislosti, musíte plánovat, být disciplinovaní a rozhodnuti ovládat
1 Umořovatel, umořovací plán, diskont směnky
1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si
Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz
FINANCOVÁNÍ OBCHODNÍCH SPOLEČNOSTÍ Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz Majetková struktura (aktiva) 1. Pohledávky za upsaný základní kapitál
Úročení a časová hodnota peněz
Úročení a časová hodnota peněz V přednášce budou představeny základní pojmy z finanční matematiky. 1 Jednoduché úročení a diskontování V případě jednoduchého úročení nedochází k připisování úroku k původnímu
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.07 Integrovaná střední
Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.
1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku
FINANČNÍ MATEMATIKA Základní pojmy od A do O. www.zlinskedumy.cz
FINANČNÍ MATEMATIKA Základní pojmy od A do O www.zlinskedumy.cz Finanční matematika = soubor obecných matematických metod uplatněných v oblasti financí např. poskytování krátkodobých a dlouhodobých úvěrů,
CVIČNÉ PŘÍKLADY z finanční matematiky
CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...
Způsob, jak dochází k tvorbě hodnoty v podniku, je patrný z následujícího obrázku:
Způsob, jak dochází k tvorbě hodnoty v podniku, je patrný z následujícího obrázku: t 0 Výdaje Vklad vlastního a cizího kapitálu Vázání fi nančních prostředků ve formě investic Lidský kapitál Proměna kapitálu
Finanční matematika. gramotnost. v praxi FINANČNÍ MATEMATIKA V PRAXI. Buďte hrdí na svou finanční. Oldřich Šoba Martin Širůček Roman Ptáček
Oldřich Šoba Martin Širůček Roman Ptáček Podporujeme vydávání knih o financích Jsme hrdí na všechny autory spolupracující s Partners Buďte hrdí na svou finanční gramotnost www.partners.cz inz_grada_167x240.indd
Základní druhy finančních investičních instrumentů
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základní druhy finančních investičních instrumentů strana 2 Podnikové akcie strana 3 Akcie Vymezení a legislativa
Základy teorie finančních investic
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)
Finanční trh. Bc. Alena Kozubová
Finanční trh Bc. Alena Kozubová Finanční trh Finanční trh je místo, kde se obchoduje se všemi formami peněz. Je to největší trh v měřítku národní i světové ekonomiky. Je to trh velice citlivý na jakékoliv
Krátkodobé cenné papíry a Skonto obsah přednášky
Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné
Investování volných finančních prostředků
Investování volných finančních prostředků Rizika investování Lidský faktor Politická rizika Hospodářská rizika Měnová rizika Riziko likvidity Inflace Riziko poškození majetku Univerzální optimální investiční
Finanční matematika. gramotnost. v praxi FINANČNÍ MATEMATIKA V PRAXI. Buďte hrdí na svou finanční. Oldřich Šoba Martin Širůček Roman Ptáček
Oldřich Šoba Martin Širůček Roman Ptáček Podporujeme vydávání knih o financích Jsme hrdí na všechny autory spolupracující s Partners Buďte hrdí na svou finanční gramotnost www.partners.cz inz_grada_167x240.indd
PE 301 Podniková ekonomika 2. Eva Kislingerová. Hodnota kmenových akcií a. obligací. Téma 2. Eva Kislingerová
PE 301 Podniková ekonomika 2 Eva Kislingerová Téma 2 obligací Hodnota kmenových akcií a Téma 2 2-2 Struktura přednášky Cenné papíry akcie, obligace Tržní míra kapitalizace (market capitalization rate)
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 3., 4. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Peníze, mzdy daně, pojistné
CVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 3. 11. 2013 1 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva tutoriály: 3. 11.
Ing. Barbora Chmelíková 1
Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ
FINANČNÍ MATEMATIKA Finanční produkty. www.zlinskedumy.cz
FINANČNÍ MATEMATIKA Finanční produkty www.zlinskedumy.cz Finanční produkty jsou půjčky, hypotéky, spoření, nejrozšířenější jsou produkty, jejichž hlavní zaměřením je: správa financí: běžné účty zhodnocení
Základy teorie finančních investic
Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)
Příjmy z kapitálového majetku
Příjmy z kapitálového majetku Příjmy z kapitálového majetku vymezuje z hlediska FO 8 ZDP, jsou jimi: podíly na zisku (dividendy) z majetkového podílu na akciové společnosti, na společnosti s ručením omezeným
Oldř ich Šoba Martin Širůček. Finanční. matematika. v praxi. 2., aktualizované a rozšířené vydání
Oldř ich Šoba Martin Širůček Finanční matematika v praxi 2., aktualizované a rozšířené vydání Ing. Oldřich Šoba, Ph.D., Ing. Martin Širůček Finanční matematika v praxi Oldř ich Šoba Martin Širůček Finanční
Blok 1 Stručné makroekonomické okénko a co dnes znamená finanční represe. Petr Sklenář
Blok 1 Stručné makroekonomické okénko a co dnes znamená finanční represe Petr Sklenář 1 Stručné makroekonomické okénko 2 Pomalý růst, nízký růst a vyšší zadlužení Růst HDP reálný; % 2006 2015 2016 2017
Analýza cenných papírů 2 Analýza dluhopisů. Alikvótní úrokový výnos a cena dluhopisu mezi kupónovými platbami
Analýza cenných papírů 2 Analýza dluhopisů Alikvótní úrokový výnos a cena dluhopisu mezi kupónovými platbami Analýza dluhopisů Alikvótní úrokový výnos (naběhlý kupón) Cena kupónového dluhopisu mezi kupónovými
Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/ Finanční management I
Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035 Finanční management I Finanční řízení Finanční řízení efektivní financování splnění cílů podniku Manažerské
Pilotní projekt prodeje státních dluhopisů občanům
Pilotní projekt prodeje státních dluhopisů občanům Ministerstvo financí představuje projekt přímého prodeje státních dluhopisů občanům cílem je nabídnout občanům konzervativní a stabilní formu zhodnocení
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.06 Integrovaná střední
SKUPINA ČEZ MEZITÍMNÍ KONSOLIDOVANÁ ÚČETNÍ ZÁVĚRKA ZPRACOVANÁ V SOULADU S MEZINÁRODNÍMI STANDARDY ÚČETNÍHO VÝKAZNICTVÍ K
MEZITÍMNÍ KONSOLIDOVANÁ ÚČETNÍ ZÁVĚRKA ZPRACOVANÁ V SOULADU S MEZINÁRODNÍMI STANDARDY ÚČETNÍHO VÝKAZNICTVÍ KONSOLIDOVANÁ ROZVAHA V mil. Kč Aktiva Dlouhodobý hmotný majetek: Bod K 31. 12. 2016 Dlouhodobý
Otázka: Cenné papíry kapitálového trhu a burzy. Předmět: Ekonomie a bankovnictví. Přidal(a): Lenka CENNÉ PAPÍRY KAPITÁLOVÉHO TRHU
Otázka: Cenné papíry kapitálového trhu a burzy Předmět: Ekonomie a bankovnictví Přidal(a): Lenka CENNÉ PAPÍRY KAPITÁLOVÉHO TRHU Jsou vydávány na dobu delší než 1 rok Stejně jako šeky a směnky mají zákonem
1 Cash Flow. Zdroj: Vlastní. Obr. č. 1 Tok peněžních prostředků
1 Cash Flow Rozvaha a výkaz zisku a ztráty jsou postaveny na aktuálním principu, tj. zakládají se na vztahu nákladů a výnosů k časovému období a poskytují informace o finanční situaci a ziskovosti podniku.
Hodnocení pomocí metody EVA - základ
Hodnocení pomocí metody EVA - základ 13. Metoda EVA Základní koncept, vysvětlení pojmů, zkratky Řízení hodnoty pomocí EVA Úpravy účetních hodnot pro EVA Náklady kapitálu pro EVA jsou WACC Způsob výpočtu
FinAnalysis Vstupní údaje Tisk:
FinAnalysis Vstupní údaje Tisk: 4.11.218 Vstupní data pro finanční analýzu Atlantis PC s.r.o. Gerská 4, 323 Plzeň +42 63 425 485 atlantispc@email.cz Plnou verzi aplikace si můžete zakoupit na www.finanalysis.cz
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
j Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tematický celek:
Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku
Téma 2: Časová hodnota peněz a riziko ve finančním rozhodování 1. Časová hodnota peněz ve finančním rozhodování podniku 2. Riziko ve finančním rozhodování - rizika systematická a nesystematická - podnikatelské
BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4
BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 Sada: Ekonomie Téma: Banky Autor: Mgr. Pavel Peňáz Předmět: Základy společenských věd Ročník: 3. ročník Využití: Prezentace určená pro výklad a opakování Anotace:
4 Zásobitel, reálná úroková míra, diskont směnky
4 Zásobitel, reálná úroková míra, diskont směnky Zásobitel, nebo-li také věčná renta, řeší, kolik dnes uložit peněžních prostředků, aby mi mohla být vyplácena pravidelná částka po určité období. Známe
ÚcFi typové příklady. 1. Hotovostní a bezhotovostní operace
ÚcFi typové příklady 1. Hotovostní a bezhotovostní operace 1. Přijat vklad na běžný účet klienta 10 000,- 2. Klient vybral z běžného účtu 25 000,- 3. Banka přijala v hot. vklad na termínovaný účet 50 000,-
Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba
Investiční činnost Pojem investování vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Druhy investic 1. Hmotné investice vytvářejí