ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky
|
|
- Barbora Bártová
- před 8 lety
- Počet zobrazení:
Transkript
1 Otázka: Úročení a příklady výpočtu Předmět: Ekonomie Přidal(a): Penny ÚROK = částka v Kč, kterou dostaneme z uložené nebo zaplatíme z vypůjčené částky ÚROKOVÁ SAZBA (MÍRA) = v % vyjadřuje, jakou část z uložené nebo půjčené částky bude úrok činit Může být dána různě: roční ÚS = p.a. (per annum) pololetní ÚS = p.s. (per semestrum) čtvrtletní ÚS = p.q. (per quartale) měsíční ÚS = p.m. (per mensem) Banka při jejím stanovení zohledňuje nabídku a poptávku sazby konkurence sazby ČNB své náklady bonitu klientů (kvalita- spolehlivost klientů) délku vkladů (úvěrů) výši vložené nebo poskytnuté částky inflaci, 2 způsoby stanovení sazeb: pevná ÚS - stejná po celou dobu splatnosti 1 / 7
2 pohyblivá ÚS - mění se v průběhu trvání vkladů (úvěru) např. úrokové sazby se zvyšují při inflaci, při tlaku konkurence... U každé banky je úroková sazba jiná, někdy je stanovená určitá proměnná sazba (základní, referenční) sazba, která se podle situace zvyšuje, či snižuje o určité % Druhy úročení Jednoduché úročení- pro úročení vkladů do jednoho roku ÚROK= (Počáteční jistina)/100 x ÚS x (Počet dní)/360 (měsíc 30 dní, kolik 360) Počet dní= (měsíc ukončení vkladu měsíc uložení vkladu) x 30 dní + (den ukončení vkladu den uložení vkladu) Př.: Uložili jsme Kč při úrokové sazbě 1 % a vybrali jsme včetně úroku. Vypočtěte částku k výběru. Postup: 1. Počet dní= (11 4) x 30 + (15-6) = 219 dní 2. Úrok= ( )/100 x1x 219/360 = Částka k výběru= Kč Složené úročení pro úročení vkladů déle než jeden rok úroky nevybíráme postupně stávají se součástí vkladu a jsou také úročeny (úroky z úroků) KJ = Konečná jistina, budoucí hodnota PJ= Současná hodnota KJ = PJ * úročitel 2 / 7
3 úročitel=(1+i/100) i.. úroková sazba n. doba splatnosti Úročitel vyjadřuje, na kolik Kč vzroste vklad 1 Kč za dobu n při úrokové sazbě i KJ (budoucí hodnota) představuje částku, kterou budeme mít za určitou dobu z vložených peněz Zahrnutí zdanění a vlivy inflace do úročení a) zdanění - občanům je banka povinna z úroků vybrat tzv. srážkovou daň (15 %) U vkladů do jednoho roku se daň odečte z vpočteného úroku: Př. Uložili jsme ,-- na 1 rok při ÚS 4 % p. a. Vypočtěte částku k výplatě se zahrnutím srážkové daně. úrok=( )/100*4=4000 čistý úrok = ( ,15) = Kč částka k výběru je Kč U vkladu nad jeden rok se o daň snižuje přímo úroková sazba: Př. Uložili jsme Kč na 3 roky při ÚS 4 % p. a. Vypočtěte částku k výplatě se zahrnutím srážkové daně. ÚS = 4 % 3 / 7
4 čistá úroková sazba = 4 % - (4*0,15) = 3,4 % KJ = * (1+3,4/100 )^3 = Kč b) vliv inflace - inflace znehodnocuje naše vklady - přičítáme tzv. reálnou ÚS = ÚS míra inflace Př. Uložili jsme na jeden rok při ÚS 4 % p. a. Míra inflace je 2,1 %. Zjistěte, zda se zvýší reálná hodnota našich úspor (počítejte se srážkovou daní). čistá ÚS = 4 % - (4*0,15)= 3,4 % reálná ÚS= 3,4 2,1 = 1,3 % reálný úrok = *0,013 = Kč Ano zvýšila by se. Př. Paní Spořivá uložila Kč na 4 roky při úrokové sazbě 5 % p. a. Roční míra inflace 3,2 %. Srážková daň 15 %. Konečná jistina=?. ÚS = 5-(5*0,15) = 5-0,75 = 4,25 % reálná ÚS = 4,25 3,2 = 1,05 % KJ = * (1 + 1,05/100 )^4 KJ = Kč 4 / 7
5 Diskontování - opak úročení odúročení - je to postupné snižování budoucí hodnoty směrem k dnešku o úroky tj. zjišťování současné hodnoty (diskontovaná částka) Současná hodnota = kolik máme dnes investovat, jestliže chceme mít z této investice v budoucnu přesně danou částku Využití: a) pro banky při odkupu směnek splatných za určitou dobu 1. b) pro vkladatele kolik musíme ukládat (uložit) spoříme li na určitou věc - kolik máme zaplatit za určitou věc (maximálně), aby tato investice byla výnosnější než uložení peněz do banky - diskontování v jednom období za období menší než jeden rok (odečítaný úrok) diskont = PJ/100*ÚS* (Počet dní)/360 Diskontovaná částka = PJ úroky (diskont) Př. Banka eskontovala směnku při diskontní sazbě 8 %. Směnka byla vystavena na a je splatná k bankovní poplatek činní 200 Kč. a) vypočteme počet dní od eskontu po splatnost Počet dní = (6-4) * 30 dní + (30-12)= 78 dní 1. b) Diskont = ( )/100*8* 78/360 = Kč 2. c) diskontovaná částka = = ,- 3. d) po odečtení poplatků = = ,- Př. Směnka na Diskontní sazba 9 %. Eskontovaná , splatná / 7
6 Poplatek 500 Kč. 1. a) (4-2) * 30 + (10-20) = b) diskont = ( )/100*9*50/360= c) diskontovaná částka = = Kč 4. d) po odečtení poplatků = = Kč Diskontování za více období - za období delší než jeden rok 1. a) počítáme s jednorázovým vkladem 2. b) odúročujeme i úroky (Současná hodnota) Diskontovaná částka = KJ (Budoucí hodnota) * odúročitel Odúročitel = 1/úročitel = 1/((1+i/100 )^n ) Př. Kolik máme dnes jednorázově vložit do banky, abychom tam za 5 let při ÚS 5 % p. a SH = *1/((1+5/100 )^5 ) = * 1/((1+0,05)^5 )= * 0, = Kč 3. splácení dluhu (úvěru): - úvěr se nejčastěji splácí anuitně - anuita: zahrnuje splátku úvěru (ÚMOR) + úroky Roční splátka (RS) = velikosti úvěr * umořovatel umořovatel = i/100*(1+i/100)[(1+i/100 )^n- 1] Podnikatel si vypůjčil Kč na 4 roky, ÚS 15 % p. a., bude splácet měsíčně. Vypočtěte - roční splátku - měsíční splátku 6 / 7
7 Powered by TCPDF ( Studijni-svet.cz Úročení a příklady výpočtu - maturitní otázka z ekonomie - zaplaceno celkem včetně úroků - zaplaceno na úrocích 7 / 7
Úročení vkladů. jednoduché složené anuitní
jednoduché složené anuitní Úročení vkladů Úrok = cena půjčených peněz, kterou platí ten, kdo peníze dočasně užívá, je vyjádřen v peněžních jednotkách (v Kč) (míra) = v %, vyjadřuje v procentech jakou část
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO154
VícePENÍZE, BANKY, FINANČNÍ TRHY
PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou
VíceČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ
ČASOVÁ HODNOTA PENĚZ ÚROKOVÁNÍ ÚROK z pohledu věřitele odměna za to, že poskytl své volné peněžní prostředky dočasně někomu jinému (zahrnuje náhradu za dočasnou ztrátu kapitálu a za riziko spojené s nesplacením
Více3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy
3 Jednoduchý a složený úrok, budoucí a současná hodnota, střadatel, fondovatel, nestejné peněžní proudy Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu,
Více4. Přednáška Časová hodnota peněz.
FINANCE PODNIKU 4. Přednáška Časová hodnota peněz. ČASOVÁ HODNOTA PENĚZ Časová hodnota peněz představuje finanční metodu, která umožňuje porovnání různých částek v různých časech se zohledněním skutečnosti,
Více1 Umořovatel, umořovací plán, diskont směnky
1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si
Více4. cvičení. Splácení úvěru. Umořovatel.
4. cvičení Splácení úvěru. Umořovatel. UMOŘOVÁNÍ DLUHU Jakým způsobem lze úvěr splácet: jednorázově, postupně: - pravidelnými splátkami: - degresivní splátky, - progresivní splátky, - anuitní splátky (pravidelně
VíceOtázka: Obchodní banky a bankovní operace. Předmět: Ekonomie a bankovnictví. Přidal(a): Lenka OBCHODNÍ BANKY
Otázka: Obchodní banky a bankovní operace Předmět: Ekonomie a bankovnictví Přidal(a): Lenka OBCHODNÍ BANKY Podnikatelské subjekty, a. s. ZK min. 500 mil. Kč + další podmínky Hlavním cílem zisk Podle zákona
VíceFINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010
Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web
VíceÚročení (spoření, střádání) (2015-01-18) Základní pojmy. Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému.
Úročení (spoření, střádání) (2015-01-18) Základní pojmy Úrok je finančně vyjádřená odměna za dočasné poskytnutí kapitálu někomu jinému. Věřitel (ten, kdo půjčil) získává tedy úrok za to, že dočasně poskytl
VíceFinanční matematika. Mgr. Tat ána Funioková, Ph.D. 17. 9. 2012. Katedra matematických metod v ekonomice
Finanční matematika 1. přednáška Mgr. Tat ána Funioková, Ph.D. Vysoká škola báňská Technická univerzita Ostrava Katedra matematických metod v ekonomice 17. 9. 2012 Mgr. Tat ána Funioková, Ph.D. (VŠB TUO)
Více19.10.2015. Finanční matematika. Čas ve finanční matematice. Finanční matematika v osobních a rodinných financích
Finanční matematika v osobních a rodinných financích Garant: Ing. Martin Širůček, Ph.D. Lektor: Ing. Martin Širůček, Ph.D. - doktorské studium oboru Finance na Provozně ekonomické fakultě Mendelovy univerzity
VíceÚvěrový proces. Ing. Dagmar Novotná. Obchodní akademie, Lysá nad Labem, Komenského 1534
VY_32_INOVACE_BAN_113 Úvěrový proces Ing. Dagmar Novotná Obchodní akademie, Lysá nad Labem, Komenského 1534 Dostupné z www.oalysa.cz. Financováno z ESF a státního rozpočtu ČR. Období vytvoření: 12/2012
VícePřípravný kurz FA. Finanční matematika Martin Širůček 1
Přípravný kurz FA Finanční matematika 1 Úvod čas ve finanční matematice, daně, inflace Jednoduché a složené úročení, kombinace Spoření a pravidelné investice Důchody (současná hodnota anuity) Kombinace
VíceČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ
ČASOVÁ HODNOTA PENĚZ VE FINANČNÍM ROZHODOVÁNÍ 1. Faktor času ve finančním rozhodování Uplatňuje se zejména při: a) rozhodování o investicích (výběr investičních variant) hodnotíme efektivnost investičních
VíceTéma: Jednoduché úročení
Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad
VíceSložené úročení. Škoda, že to neudělal
Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel
VíceČa Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek
Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice
VíceČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.
ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti
Více7.1. Jistina, úroková míra, úroková doba, úrok
7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO153
Více1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
Více4 Zásobitel, reálná úroková míra, diskont směnky
4 Zásobitel, reálná úroková míra, diskont směnky Zásobitel, nebo-li také věčná renta, řeší, kolik dnes uložit peněžních prostředků, aby mi mohla být vyplácena pravidelná částka po určité období. Známe
VíceUžití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové
Více2. cvičení. Úrokování
BANKOVNICTVÍ 2. cvčení Úrokování ÚROK, ÚROKOVÁ MÍRA Úroková míra vyjadřuje poměr výnosu k vloženému (půjčenému) kaptálu, a to buď v relatvním (např. 0,1), nebo procentním (např. 10 %) vyjádření. Úrok je
VíceProsté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor. Složené úročení: roční úrokový faktor umocněný na počet let
Prosté úročení: Denní sazba krát počet dní, plus 1 = úrokový faktor PV (1 + u) u (sazba) r (sazba p.a.) d (dní) (dní) Složené úročení: roční úrokový faktor umocněný na počet let Úroky lze vyplácet nebo
VíceDodavatelsko odběratelské vztahy a platební styk
Dodavatelsko odběratelské vztahy a platební styk Zařazení Didaktické zpracování učiva pro střední školy 1. ročník Podnikové činnosti, podnik a okolí 3-4. ročník Finanční trh, bankovnictví Zahraniční obchod
VíceFinanční matematika pro každého příklady + CD-ROM
Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady
VíceKolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat při úrokové sazbě 9
K testu průběžný Kolik musíme pravidelně na daný účet spořit, vždy koncem každého druhého měsíce, abychom si za 9 let mohli z účtu vybrat 250 000 při úrokové sazbě 9 % p.a. platné v průběhu prvních 4 let
VíceK n = lim K 0.(1 + i/m) m.n. K n = K 0.e i.n. Stav kapitálu při spojitém úročení:
Finanční matematika Spojité úročení Doposud při výpočtu stavu kapitálu na konci doby uložení byl proveden za (tacitního) předpokladu, že četnost připisování úroku za 1 rok m je konečné číslo délka jednoho
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ DRUHÝ TUTORIÁL 30. 11. 2013 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 INFORMACE V ISu vypsány termíny: So 11. 1. 2014 13:00 učebna P11 So 1.
VíceBANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4
BANKOVNÍ SOUSTAVA VY_62_INOVACE_FGZSV_PN_4 Sada: Ekonomie Téma: Banky Autor: Mgr. Pavel Peňáz Předmět: Základy společenských věd Ročník: 3. ročník Využití: Prezentace určená pro výklad a opakování Anotace:
VíceFINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová
FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření
Více3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota
3 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.
VíceUkázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné
VícePříklady z FM. Zdůvodněte rozdíly a určete odpovídající hodnoty t r podle v praxi používaných standardů.
I. PŘÍKLADY Z FINANČNÍ MATEMATIKY Rozšíření spektra příkladů ze skript Bezvoda, Blahuš. Verze 11.3 2009 Metodické poznámky k zadaným příkladům. Všude jsou výsledky, zhusta naznačen postup. Výpočty je nutno
VíceVY_42_INOVACE_M2_34 Základní škola a mateřská škola Herálec, Herálec 38, ; IČ: ; tel.:
Operační program: Vzdělávání pro konkurenceschopnost Projekt: ŠKOLA PRO ŽIVOT Registrační číslo projektu: CZ.1.07/1.4.00/21.2362 Kód: 01.02 Pořadové číslo materiálu: 34 I/2 Inovace a zkvalitnění výuky
VíceÚroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé
Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ První tutoriál 4. listopad 2012 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz 1 Informace o předmětu 4 kredity Typ ukončení zápočet Dva tutoriály:
VíceSbírka příkladů z finanční matematiky Michal Veselý 1
Sbírka příkladů z finanční matematiky Michal Veselý 1 Jednoduché úročení Příklad 1.1. Do banky jste na běžný účet uložil(a) vklad ve výši 95 000 Kč dne 15. 8. 2013 a i s úroky jej vybral(a) dne 31. 12.
VíceEkonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Ekonomika podniku Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Krátkodobé
VíceKAPITOLA 11: AKTIVNÍ BANKOVNÍ OBCHODY
KAPITOLA 11: AKTIVNÍ BANKOVNÍ OBCHODY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
VíceCVIČENÍ ZE ZÁKLADŮ FINANCÍ
CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 3. 11. 2013 1 Veronika Kajurová Katedra financí kancelář č. 510 vkajurova@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva tutoriály: 3. 11.
Více1. stupeň = CENTRÁLNÍ BANKA (jinak také ústřední, emisní, cedulová 2. stupeň = KOMERČNÍ (OBCHODNÍ) BANKY
Otázka: Bankovní soustava a úvěrové služby bank Předmět: Ekonomie Přidal(a): Penny ve většině států je dvoustupňový bankovní systém v ČR od r. 1990 1. stupeň = CENTRÁLNÍ BANKA (jinak také ústřední, emisní,
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
VíceDigitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0061 Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno VY_61_INOVACE_FG.1.06 Integrovaná střední
VícePasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
VíceNové trendy v investování
AC Innovation s.r.o. Projekt: Praktický průvodce ekonomikou aneb My se trhu nebojíme! Registrační číslo: CZ.1.07/1.1.34/02.0039 Vzdělávací oblast: Nové trendy v investování Ing. Yveta Tomášková, Ph. D.
VíceÚrok a diskont. Úroková míra závisí především na úrokové míře, kterou vyhlašuje ČNB. ČNB vyhlašuje 3 sazby
Úrok a diskont Obsah: Jednoduché a složené úrokování. Úroková a diskontní míra, jednoduchá a složená. Vícenásobné úročení během období, nominální úroková míra, roční efektivní úroková míra, reálná úroková
VíceBankovnictví a pojišťovnictví 5
Bankovnictví a pojišťovnictví 5 JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí VŠFS a externí odborný asistent katedry bankovnictví a pojišťovnictví VŠE Vkladové bankovní produkty Obsah:
VíceKrátkodobé cenné papíry a Skonto obsah přednášky
Krátkodobé cenné papíry a Skonto obsah přednášky 1) Vybrané krátkodobé cenné papíry 2) Skonto není cenný papír, ale použito obdobných principů jako u krátkodobých cenných papírů Vybrané krátkodobé cenné
VíceStřední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo
VíceStavební spoření. Datum uzavření /14 PRG 04/14 V20. Spoření ukončeno dne Splacení úvěru
Základní informace Meziúvěr Naspořená částka Výnos ve fázi spoření Finanční náklady Celkové náklady Celkové náklady meziúvěru / úvěru Efektivita Datum uzavření 20.06.2014 Cílová částka 150 000,00 Kč VOP
Vícemajetkové CP (akcie, podílové listy) úvěrové (dluhové) směnky, dluhopisy, státní pokladniční poukázky atd. (+ úrok, ten není na směnce)
Otázka: Bankovnictví a cenné papíry Předmět: Účetnictví (Finance) Přidal(a): didisceramo Cenné papíry dlouhodobé skupina 06 a 473 (dluhopisy) krátkodobé 25. skupina vyjadřuje pohledávku majitele za tím,
VícePracovní list. Workshop: Finanční trh, finanční produkty
Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda
VícePasivní bankovní operace, vkladové bankovní produkty.
5. Pasivní bankovní operace, vkladové bankovní produkty. PASIVNÍ BANKOVNÍ OBCHODY veškeré bankovní produkty, při kterých BANKA od svých klientů přijímá VKLAD DEPOZITUM v bankovní bilanci na straně PASIV
VíceČasová hodnota peněz (2015-01-18)
Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky
Více- historie: výměna zboží za zboží drahé kovy ražení mincí bankovky počátek 19. století
Otázka: Bankovnictví Předmět: Ekonomie a bankovnictví Přidal(a): mikik Peníze - historie: výměna zboží za zboží drahé kovy ražení mincí bankovky počátek 19. století - formy: mince; bankovky; depozita (vklady
Více(Zá)půjčka, nebo úvěr?
(Zá)půjčka, nebo úvěr? Přestože v hovorové češtině běžně zaměňujeme slova půjčka a úvěr, nejedná se o pojmy totožné. Smlouvou o půjčce, resp. zápůjčce (jak ji nazývá nový občanský zákoník-zákon č. 89/2012
VíceBudoucí hodnota anuity Spoření
Finanční matematika Budoucí hodnota anuity Spoření Doposud vypočítáme konečné (budoucí) hodnoty či počáteční (současné) hodnoty, za předpokladu konstantní (jednorázové) současné hodnoty (jednorázového
VíceSubjekty finančního trhu = ti, kteří jsou účastníky FT ( banky, obyvatelé, firmy, penzijní fondy ) = KDO
Otázka: Finanční trh Předmět: Ekonomie Přidal(a): Káťa Finanční trh jedná se o obchodování s finančními prostředky = trh se všemi formami peněz na finančním trhu se vytváří cena peněz (např. výše úroků,
Více- o udělení povolení působit jako banka rozhoduje ČNB v dohodě s ministerstvem financí ČR
Otázka: Komerční banky Předmět: Ekonomie Přidal(a): AMME - o udělení povolení působit jako banka rozhoduje ČNB v dohodě s ministerstvem financí ČR - hlavním cílem obchodních bank je dosažení zisku - zisk
VíceInflace- všeobecný růst cenové hladiny (cen) v čase, inflace pokud je ekonomika v poklesu
Otázka: Finanční strategie Předmět: Ekonomie Přidal(a): Minninka Inflace- všeobecný růst cenové hladiny (cen) v čase, inflace pokud je ekonomika v poklesu Deflace- je opakem, všeobecný pokles cen v čase
VíceInvestičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic
Investičníčinnost Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie Podnikové pojetí investic Klasifikace investic v podniku 1) Hmotné (věcné, fyzické, kapitálové) investice 2) Nehmotné
VíceZÁKLADY FINANČNÍ MATEMATIKY
ZÁKLADY FINANČNÍ MATEMATIKY Na přípravě skript se podíleli: Ing. Petr Borkovec - kap. 3, 4, 6 Ing. Roman Ptáček - kap. 1, 2, 5, 9 Ing. Petr Toman - kap. 7, 8 Technická úprava: Ing. Petr Borkovec Ing. Petr
VíceFinanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
VíceIng. Barbora Chmelíková 1
Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ
VíceCZ.1.07/1.5.00/34.0499
Číslo projektu Název školy Název materiálu Autor Tematický okruh Ročník CZ.1.07/1.5.00/34.0499 Soukromá střední odborná škola Frýdek-Místek,s.r.o. VY_32_INOVACE_251_ESP_06 Marcela Kovářová Datum tvorby
VíceBKF_CZAF PRVNÍ TUTORIÁL Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro)
BKF_CZAF CVIČENÍ ZE ZÁKLADŮ FINANCÍ PRVNÍ TUTORIÁL 13. 11. 2015 1 Tomáš Urbanovský Katedra financí kancelář č. 402 (4. patro) 322829@mail.muni.cz INFORMACE O PŘEDMĚTU 4 kredity Typ ukončení zápočet Dva
VíceFINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz
FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem
VíceAlena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz
FINANCOVÁNÍ OBCHODNÍCH SPOLEČNOSTÍ Alena Kopfová Katedra finančního práva a národního hospodářství, kanc. 122 Alena.Kopfova@law.muni.cz Majetková struktura (aktiva) 1. Pohledávky za upsaný základní kapitál
VíceProjekt. Globální parametry. Požadovaná výnosnost vlastního kapitálu PPP
RK-19-2014-23, př. 2 počet stran: 11 Projekt Globální parametry Inflace Kumulovaná inflace Koeficient aplikace inflace Reálná diskontní sazba Nominální diskontní sazba Sazba daně z příjmu u PO Sazba daně
Více5.1. PENÍZE A FINANČNÍ TRH
5.1. PENÍZE A FINANČNÍ TRH 5.1.1. Peníze Vysvětlení pojmu peníze: speciální druh zboží, který je možné vyměnit za ostatní druhy zboží, prostředek směny. Dřívější formy peněz: např. plátno. Současné formy
VíceTéma: Analýza zdrojů financování
ZS 2018/2019 Zadání éma: Analýza zdrojů financování Finanční řízení a rozhodování (K) Firma zvažuje pořízení vrtacího stroje. Rozhoduje se mezi financováním z vlastních zdrojů, úvěrovým a leasingovým financováním.
VíceDodavatelsko odběratelské vztahy a platební styk
Dodavatelsko odběratelské vztahy a platební styk Didaktické zpracování učiva pro střední školy Zařazení 1. ročník Podnikové činnosti, podnik a okolí 3-4. ročník Finanční trh, bankovnictví Zahraniční obchod
VíceŘídí jí bankovní rada, tvořená 7 členy(guvernér, 2viceguvernéři a 4 další), jsou jmenování prezidentem
Otázka: Bankovní soustava ČR Předmět: Ekonomie/Bankovnictví a pojišťovnictví Přidal(a): odbojar Bankovní soustava ČR je 2 stupňová 1. Česká národní banka 2. Obchodní a komerční banky 1) Česká národní banka
VíceFRP cvičení Leasing
FRP 3. 4. cvičení Leasing Slovo "leasing" bylo převzato do české terminologie z anglického slova, které v překladu znamená "pronájem". Jedná se o obchodní operaci leasingového pronajímatele (leasingová
VíceObligace obsah přednášky
Obligace obsah přednášky 1) Úvod do cenných papírů 2) Úvod do obligací (vymezení, dělení) 3) Cena obligace (teoretická, tržní, kotace) 4) Výnosnost obligace 5) Cena kupónové obligace mezi kupónovými platbami
VícePoplatek musíte zaplatit jenom, když Vás vyzveme k prokázání, že bankovní účet je opravdu Váš a Vy se rozhodnete, že to uděláte tímto způsobem.
1. Základní poplatky Ověřovací poplatek 1 Kč Ověřovací poplatek nám slouží k tomu, abychom si ověřili, že bankovní účet, na který chcete poslat peníze, je opravdu Váš. Tento poplatek musíte poslat z bankovního
VíceCVIČNÉ PŘÍKLADY z finanční matematiky
CVIČNÉ PŘÍKLADY z finanční matematiky ÚROKOVÝ A RENTNÍ POČET 1. pracovní verze OBSAH 1. PŘÍKLADY ÚROKOVÉHO POČTU... 2 1.1 Jednoduché úročení... 2 1.2 Složené úročení... 3 2. PŘÍKLADY RENTNÍHO POČTU...
VíceDVOUSTUPŇOVÁ BANKOVNÍ SOUSTAVA 1. STUPEŇ ČNB Působí jako ústřední banka 2. STUPEŇ Všechny komerční banky Vykonávají obchodní činnosti
Otázka: Bankovní soustava Předmět: Ekonomie Přidal(a): Rennyy Ústřední banka a její úkoly Základní činnosti obchodních bank Devizové a směnárenské obchody Ústředí bank a jejich úkoly DVOUSTUPŇOVÁ BANKOVNÍ
VíceSada 1 Matematika. 06. Finanční matematika - úvod
S třední škola stavební Jihlava Sada 1 Matematika 06. Finanční matematika - úvod Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu Název školy Jméno autora Tématická oblast Předmět Ročník VY_32_INOVACE_EKO142
VíceKomerční bankovnictví 4
JUDr. Ing. Otakar Schlossberger, Ph.D., vedoucí katedry financí a externí spolupracovník katedry bankovnictví a pojišťovnictví VŠE Praha Obsah: Téma: Úvěrové produkty 1) Struktura úvěrových produktů 2)
VíceStřední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 1 Číslo
VíceRPSN (Roční Procentní Sazba Nákladů) (2015-01-18)
RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) Zkratkou RPSN se označuje takzvaná roční procentní sazba nákladů. Udává, kolik procent z původní dlužné částky musí spotřebitel za jeden rok zaplatit v
VíceFinanční matematika pro každého
Novinky nakladatelství GRADA Publishing Investice do akcií běh na dlouhou trat JEME AVU PŘIPR Jeremy Siegel výnosy finančních aktiv za posledních 2 let úspěšnost finančních strategií faktory ovlivňující
Víceje zvýšení průměrné cenové hladiny všech statků a služeb za delší časové období (1 rok)
Otázka: Bankovní soustava v ČR, centrální banka a obchodní banky Předmět: Ekonomie Přidal(a): Ivka Inflace je zvýšení průměrné cenové hladiny všech statků a služeb za delší časové období (1 rok) Čistou
VíceFinanční řízení podniku 1. cvičení. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.
Finanční řízení podniku 1. cvičení I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto
VíceFinanční matematika I.
Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická
VíceFinanční řízení podniku cvičení 1. I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla.
Finanční řízení podniku cvičení 1 I) Vývoj vztahů mezi celkovým majetkem a kapitálem má svá ustálená pravidla. Některé vztahy mezi majetkem a kapitálem 1) Majetek je ve stejné výši jako kapitál, proto
VíceVýukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu CZ. 1.07/1.5.00/34.0996 Číslo materiálu VY_32_INOVACE_EKO160 Název školy Obchodní akademie, Střední pedagogická škola
VíceÚkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku
Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v
VíceStejně velké platby - anuita
Stejně velké platby - anuita Anuitní platby Existuje vzorec, pomocí kterého lze uspořádat splátky jistiny a platby úroků tak, že jejich součet v každém období (např. každý měsíc) je stejný. Běžný příklad:
Více6. Přednáška Vkladové (depozitní) bankovní produkty
6. Přednáška Vkladové (depozitní) bankovní produkty VKLADOVÉ BANKOVNÍ PRODUKTY bankovní obchody, při kterých banka získává cizí peněžní prostředky formou vkladů nebo emisí dluhových cenných papírů. Mezi
VíceSMĚNKY. Účel směnky. krátkodobý obchodovatelný cenný papír dlužnický papír. Její funkce
SMĚNKY - vznik 12. století, severní Itálie - velký rozmach v 18.století vznik celosvětového obchodního trhu - její právní úprava nebyla jednotná - 1930- v Ženevě mezinárodní konference o právu směnečném
VícePŘÍLOHA D: Výše úrokových sazeb od období finanční krize z roku 2008 do března Úvěry na nákup nemovitostí fixace sazby do 1 roku [%]
PŘÍLOHA D: Výše úrokových sazeb od období finanční krize z roku 2008 do března 2015 Období Úvěry na nákup nemovitostí průměr [%] nemovitostí fixace sazby do 1 roku [%] nemovitostí fixace do 5 let [%] 135
VíceDůchody. Současná hodnota anuity. Důchody rozdělení. Důchody univerzální vztah. a) Bezprostřední b) Odložený. a) Dočasný b) Věčný
Důchody Současná hodnota anuity Důchody rozdělení a) Bezprostřední b) Odložený a) Dočasný b) Věčný a) Předlhůtní b) Polhůtní Existence jednoho univerzálního vzorečku! Ostatní vztahy jsou pouze odvozené
Více