VÝVOJ STATISTIKY DEFINICE STATISTIKY POJETÍ STATISTIKY VYMEZENÍ ZÁKLADNÍCH STATISTICKÝCH POJMŮ GRAFICKÉ ZNÁZORNĚNÍ JEVŮ, STATISTICKÁ MAPA ČETNOSTI
|
|
- Žaneta Bártová
- před 8 lety
- Počet zobrazení:
Transkript
1 STATISTICKÉ METODY V GEOGRAFII
2 Kdybych měl poslední den života, chtěl bych ho strávit na přednášce ze statistiky - je tak nekonečně dlouhá.
3 OSNOVA PŘEDNÁŠKY VÝVOJ STATISTIKY DEFINICE STATISTIKY POJETÍ STATISTIKY VYMEZENÍ ZÁKLADNÍCH STATISTICKÝCH POJMŮ GRAFICKÉ ZNÁZORNĚNÍ JEVŮ, STATISTICKÁ MAPA ČETNOSTI ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY (STŘ.ÚROVNĚ,VARIABILITY,ŠPIČATOSTI) TEORETICKÁ ROZDĚLENÍ ODHADY PARAMETRŮ, INTERVALY SPOLEHLIVOSTI ČASOVÉ ŘADY,ŘETĚZOVÉ A BAZICKÉ INDEXY
4 Statistika úvod Vývojová období Definice statistiky Dílčí obory Základní pojmy šetření
5 Statistika - vývoj Starověk: 1. Historické zmínky o statistických zkoumáních Městské státy (3 2 tis. let př. K.) potřeba správy států daně údaje o počtu ob., obchodu, zemědělství, řemeslu soupisy obyvatelstva 1. Sčítání lidu Mojžíš po odchodu izraelského národa z Egypta
6 Středověk řada písemných zmínek o sčítání lidu či majetku první sčítání v zemích Koruny české
7 Novověk Tvorba pojetí statistiky v dnešním chápání Slovo statistika z latiny status stát a stav 2 směry : 1. státověda - 2. politická aritmetika
8 1.státověda: od 16. st. Itálie : Sansovino: popisy 22 států nauka o státu ( geogr., politické, ekonom. údaje), státověda, popisná věda o státě - pol. 18. stol. Gottfried Achenwall ( , profesor statistiky na univerzitě v GÖttingenu): statistika popis státu, učebnice statistiky - i na UK v Praze Johan Peter Ancherson Dán Josef Antonín Rieger, Jiří Schnabel, Eberhardt Jonák české země
9 2. politická aritmetika 17. století Anglie směr pozorování hromadných jevů kromě popisu jevů hledá pravidelnosti, obecné zákonitosti, vývoj velký přínos pro moderní statistiku představitelé anglické statistické školy: William Petty ( ) John Graunt ( )
10 Petty: předchůdce moderní statistiky a politické ekonomie politické a ekonomické argumenty musí vycházet z empirických dat Graunt původní povolání - obchodník se suknem demografie spolupráce Graunt a Petty: údaje z matrik v Londýně: rodí se více chlapců než dívek větší úmrtnost ve městě než na venkově úbytek obyv. ve městě kompenzován imigrací z venkova
11 politická aritmetika z Anglie postupně i na kontinent Německo a dále ostré střety se státovědou počátky moderní statistiky Lambert Quételet ( ), Švýcar žijící v Belgii, astronom, antropolog, sociolog, moderní statistika QI=hmotnost /výška v m 2 koncept normálního rozdělení střední hodnoty rozptyl založil první statistický úřad a pořádal první statistickou konferenci
12 19. století tvorba velkých souborů údajů o zkoumaných jevech organizace při soupisech obyvatel apod.
13 od 16. století Počátky teorie pravděpodobnosti nezávisle na statistice nová matematická disciplína významní matematici 17. století Galileo Galilei ( ) zkoumání chyb při fyzikálních měřeních měření náhodný pokus Blaise Pascal ( ) teorie hazardních her tři Bernouliové ( Johann, Jacob, Daniel) ucelená práce o teorii pravděpodobnosti Carl Friedrich Gauss ( ) normální rozložení pravděpodobnosti Denis Poisson ( ) - rozdělení
14 statistika definice pojetí
15 statistika - definice Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika je v určitém smyslu jazykem pro shromažďování, zpracování, rozbor, hodnocení a interpretaci hromadných jevů
16 statistika - pojetí pojem statistika běžně ve dvou významech: 1. praktická činnost ( zaznamenání, třídění, shrnování číselných údajů o skutečnostech) 2. teoretická disciplína, předmět zkoumání : stav a vývoj číselně vyjádřených hromadných jevů statistika se zabývá hromadnými jevy tj. jevy, které se vyskytují u souboru lidí, věcí, událostí buď v kvantitativní formě nebo i kvalitativní formě převoditelné na číselnou hromadné jevy příklady: věk osob, studenti dopíší další příklady.
17 Co je typické pro statistiku Zkoumá hromadné jevy. Zabývá se proměnlivými - variabilními - vlastnostmi. Pracuje s čísly a vyjadřuje se pomocí čísel - zajímá se především o kvantitativní stránku reality. Používá výpočetní techniku k vytváření a správě statistických databází, k provádění hromadného zpracování a analýzy dat a ke komunikaci.
18 II.STATISTIKA jako vědní disciplína statistika popisná popisuje jev statistickými charakteristikami takto zpřehledňuje velké množství dat shrnují je do kategorií (průměr, nejčetnější hodnota, grafické znázornění dat) využívá numerické a grafické metody statistika dynamická hledá pravidelnosti, souvislosti, vývoj, usuzuje z části na celek matematická statistika usuzování na závěry o sledovaném jevu z malého vzorku ( zkoumání veřejného mínění, namátkový test), tj. z chování části usuzujeme na chování celku zobecňuje výsledky (odhad a testování hypotéz) - používá počtu pravděpodobnosti
19 Významy pojmu STATISTIKA I. Statistika jako praktická činnost Statistická evidence ( např. sběr údajů, třídění, sumarizace apod.), Instituce, která tuto evidenci provádí (např. ČSÚ, ministerstva aj.) Souhrn údajů o nějaké skutečnosti (statistika nezaměstnanosti, ročenka meteorologických pozorování atd.)
20 Základní etapy statistického zpracování dat 1. Zjišťování/ Sběr údajů - shromáždění a zaznamenání údajů, jejich kontrola aj., periodicita sběru: a) periodické (např. 1* ročně) b) běžné krátké, pravidelné lhůty c) jednorázové
21 Základní etapy statistického zpracování dat 2. Zpracování - uspořádání, seskupení, shrnování, sumarizace, 3. Analýza - výpočet charakteristik, měření závislostí, srovnávání, měření dynamiky 4. Prezentace výsledků - tabulkové či grafické vyjádření a slovní zhodnocení výsledků předcházejících etap.
22 Druhy statistického zjišťování: výkaznictví - nejběžnější soupisy rozsáhlá zjišťování na rozsáhlých souborech k určitému okamžiku např.sčítání obyvatelstva statistický odhad - subjektivní hodnocení anketa šetření určité vrstvy lidí na urč. problematiku
23 Základní dělení statistických údajů podle zdroje primární a sekundární, podle reálnosti situace skutečné a simulované, podle periodicity zjišťování průběžné, periodické a jednorázové, podle časového hlediska okamžikové a intervalové.
24 Co statistika umí Zjišťovat (počet domácností ČR, počet pracovníků v odvětví XY) Popisovat struktury (věková struktura obyvatel ČR, roční chod hodnot meteorologických prvků) Shrnovat dílčí ukazatele v čase a prostoru (průměrná nezaměstnanost v regionu) Srovnávat agregované ukazatele v čase nebo prostoru (trend vývoje počtu obyvatelstva, teploty vzduchu dvou lokalit) Měřit závislosti nadmořské výšce). (závislost mezd na HDP, závislost met. prvku na
25 a co statistika neumí : Statistika selhává, pokud: Nemá k dispozici adekvátní číselné údaje Nemá-li k dispozici dostatečně rozsáhlý soubor případů Není-li v datech přítomna proměnlivost (variabilita).
26 Statistika a výpočetní technika Výpočetní technika zasahuje do všech etap statistického zpracování dat. Exploze výpočetní techniky umožňuje provádět výpočty, které byly dříve nerealizovatelné (z důvodů velkého objemu dat, pracnosti, ). Na druhou stranu však roste nebezpečí výběru nesprávného postupu.
27 Výhody počítačového zpracování I. Přesnost a rychlost Dobré počítačové programy (software) nám dají velmi rychle správné výsledky. Dřívější ruční zpracování dat bylo často zatíženo aritmetickými chybami a bylo časově velmi náročné. Univerzálnost Počítače zpřístupňují širokou škálu statistických metod a umožňují provést velmi rychle i rozsáhlé komplexní statistické analýzy. Grafika Počítače umožňují snadné grafické zobrazení pozorovaných dat a výsledků statistického zpracování. Flexibilita Velkou výhodou počítačů je, že umožňují rychle provést nové zpracování při změnách v datech či transformaci některých veličin.
28 Výhody počítačového zpracování II. Nové veličiny: Snadno lze vytvářet nové veličiny pomocí požadovaných transformací. Velikost datových souborů: Počítače umožňují zpracování velmi rozsáhlých souborů dat pomocí vhodného softwaru, což bylo ještě před deseti lety velmi obtížné. Snadný přenos dat: Jakmile se jednou data dostala do počítače, lze je snadno přenést elektronicky (například pomocí Internetu) na jiné místo. ale
29 Nevýhody počítačového zpracování I. Chyby v softwaru. Ne všechny statistické programy jsou spolehlivé. Je dobré používat programy, které mají dobrou pověst a jsou používány již dostatečně dlouho, takže byla postupně odstraněna většina jejich chyb. K takovým programům patří například BMDP, SAS, SPSS, STATISTICA, S PLUS, STATGRAPHICS a další. Univerzálnost. Může vést k výběru nevhodné metody zpracování. Je velmi důležité, aby každý, kdo používá statistický software, si byl vědom úrovně svých statistických znalostí a užíval pouze ty metody, kterým rozumí. Pozor na používání neznámých statistických metod.
30 Nevýhody počítačového zpracování II Černá skříňka. Počítač vzdaluje uživatele od dat i metody zpracování. Statistická analýza se provádí automaticky, nová data se zpracovávají a výsledky se ukládají, aniž by byly posouzeny člověkem. Protože většinou výsledky zachycují jen průměrné efekty, může se zcela ztrácet citlivost k individuálním pozorováním. Špatná data plodí špatné závěry. Jestliže data jsou nasbírána či naměřena špatně (například jsou špatně kladené otázky v dotazníku), nelze očekávat, že závěry z takových dat budou správné. Sem náleží i nesprávné zpracování datových souborů, chybějící či ovlivněné (tzv. nehomogenní) údaje.
31 Vymezení základních statistických pojmů
32 statistika - definice Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
33 Hromadné jevy: jevy, které jsou výsledkem působení velkého množství příčin, Příklady: kvalita vody chem. složení, emise, produkce odpadů, zaměstnanost, novorozenecká úmrtnost, zatížení osob hlukem..
34 Statistická jednotka: je to určitý jev či prvek, který je předmětem statistického šetření a pro který se zjišťují údaje Statistická jednotka musí být přesně vymezena na počátku vlastního šetření a to z hlediska věcného, časového, prostorového. (CO, KDY, KDE) Příklady: stat. jednotka novorozenec, rodina, dům, občan, měsíc Co: Kde: Kdy:
35 Statistický znak: je to určitá vlastnost statistické jednotky, kterou se snažíme postihnut. Tzv. shodné (společné) znaky vymezují příslušnost statistické jednotky k určitému statistickému souboru. Ostatní jsou znaky proměnlivé (variabilní). Příklady: shodný znak novorozenost proměnlivé znaky váha, délka, jméno, národnost
36 stat. jednotka novorozenec Statistické znaky lze dělit na znaky A) prostorové B) časové C) věcné: 1. kvalitativní: alternativní možné 2.kvantitativní: spojité diskrétní/nespojité místo narození: Brno datum: pohlaví:muž národnost:česká délka v cm: 55. Doplňte další příklady
37 Statistické znaky můžeme získat : přímo (např. měřením, zvážením) primární data nepřímo (výpočtem). (znaky odvozené) sekundární data
38 Statistický soubor: skupina statistických jednotek stejného druhu (věcně, prostorově a časově vymezených) Je to množina všech prvků, které jsou předmětem daného statistického zkoumání. Každý z prvků je statistickou jednotkou..
39 Prvky tvořící statistický soubor mají: určité společné vlastnosti - tzv. shodné - identifikační znaky - sledované znaky tyto znaky statisticky šetříme Příklad: statistický soubor Novorozenci v ČR Shodný - identifikační znak: novorozenost sledovaný znak: váha, živý, pohlaví Statistický soubor:občané v produktivním věku Shodný - identifikační znak: Sledovaný znak:
40 Statistický soubor můžeme podle různých hledisek dále dělit: Statistický soubor jednorozměrný vícerozměrný Příklady (váha dítěte), 1 rozm.:3650, 2100, 1200, 3500, 4100, 2800 dvourozm. (váha; délka),! jako dvojice! 3650, 55; 2100, 47; 1200, 36, 3500, 50
41 Statistický soubor základní a výběrový Výběrový soubor je podmnožinou základního souboru. Je vytvořen ze statistických jednotek, vybraných podle určitého hlediska. Př. Novorozenci v Jihomoravském kraji Reprezentativní výběr: Pokud zkoumaný výběr dobře odráží strukturu celého zkoumaného souboru, nazýváme jej reprezentativním výběrem. Př. šetření průzkum volebních výsledků, peoplemetry
42 Rozsah statistického souboru: počet statistických jednotek v souboru: N rozsah základního souboru n rozsah výběrového souboru
43 Grafické znázornění jevů Graf definice kresba podle pravidel znázorňující kvalitativní a kvantitativní informace Základní prvky grafického znázornění: 1.Název, příp. podnázev 2.vlastní kresba 3.stupnice a její popis (rovnoměrná, nerovnoměrná) 4.legenda/klíč 5.zdroj údajů vysvětlivky, poznámky,
44 Graf ukázka Český statistický úřad, 2003
45 Typy grafů schéma znázorňuje strukturu a vztahy jevu či procesu Příklad diagram znázorňuje kvantitativní údaje o souboru sloupcový, bodový, plošný atd. příklad statistická mapa prostorové rozložení prvku v podkladové mapě
46 schéma
47 Diagram Český statistický úřad, 1994
48 Diagram_ - věkové složení obyv., tzv.pyramida života Český statistický úřad, 2003
49 Odchylka od průměrné teploty na Zemi
50
51
52 Statistická mapa okresní úřad Karviná, 2003
53 Použití grafických papírů při studiu geografických jevů Grafický papír usnadňuje vynášení prvků do grafu. Milimetrový papír rovnoměrné stupnice, čáry se jeví v původní, nezkreslené podobě Polologaritmický papír kombinace dvou sítí rovnoměrné a logaritmické Pravděpodobnostní papír kombinace rovnoměrné a pravděpodobnostní stupnice
54 Sítě Trojúhelníková síť znázorňování jevů o třech prvcích, které mají vždy konstantní součet např. půdní druhy půda A:: 50 % jílu, 25% hlíny, 25%, písku písek A hlína 0 % 100% jíl
55 Sítě Kruhová (radiální) síť kombinace soustředných kružnic a přímek procházejících středem kružnice pro grafické znázorňování opakujících se jevů, struktury jevů Příklad roční chod teploty směry větru
56 statistická mapa: kartogram kartodiagram
57 kartogram Kartogram je obrysová kartografická kresba územních celků, ve kterých jsou grafickým způsobem (barevný odstín, rast) plošně znázorněna statistická data týkající se různých geografických jevů (lidnatost, využívání ploch apod.)
58 Kartogramy lze rozdělit podle územního dělení na: kartogramy s geografickými hranicemi kartogramy s geometrickými hranicemi
59 Kartodiagram Kartodiagramy jsou diagramy vložené do mapové kostry, kterou tvoří dílčí územní celky. Jejich údaje se vztahují na celé území jednotky, kde leží ( rozdíl od metody lokalizovaných diagramu údaj vztahující se k urč. bodu např. chod roční srážek na meteorolog. stanici)
60 Kartodiagramy Vkládanými diagramy mohou být: Spojnicové diagramy pro vyjadřování časových řad sloupcové diagramy (sloupce, věkové pyramidy apod.) různě dělené geometrické značky
61 Grafické metody analýzy geografických jevů 1.znázornění intenzity jevu v prostoru a) absolutními metodami *značková metoda (velikost značky odpovídá velikosti jevu) * bodová metoda (počet prvků.velikost jevů) b) relativními metodami (např. šrafováníhustota obyv.)
62 2.znázornění struktury využití výsečových grafů jevu v prostoru *pouze strukturu vyjádříme výsečovými grafy se stejným poloměrem *strukturu a velikost celku ( výsečový graf + velikost poloměru odp. velikosti jevu)
63 Náležitosti statistické mapy Obsah mapy tvoří všechny objekty, jevy a jejich vztahy, které jsou v mapě kartograficky znázorněny Základní údaje tvoří Název mapy - stručně a výstižně charakterizuje zobrazené území, druh mapy lze i název hlavní a vedlejší) Mapový rámec vlastní mapa Měřítko v číselné, grafické nebo slovní formě Legenda (vysvětlivky) podávají výklad použitých mapových značek a ostatních kartografických vyjadřovacích prostředků včetně barevných a velikostních stupnic, legenda musí být: Úplná, logicky uspořádaná, přehledná a zapamatovatelná, POZOR na intervaly, na barevnou škálu Autoři Dalšími údaji mohou být : vyznačení severu nebo směrová růžice, souřadnicový systém, přehled použitých mapových podkladů, datum, ke kterému se obsah mapy vztahuje obrázky, grafy, tabulky, text
64 Hledejme chyby
65 Hledejme chyby
66
67 Hledejme chyby
68 Hledejme chyby
69
70
71
72
73
74
75
76
77
78
79 Izolinie konstrukce a vlastnosti Izolinie čáry, které v grafu spojují body se stejnou intenzitou (velikostí, hodnotou) jevu získávají se metodou prostorové interpolace hodnot vynesených do grafu plynulé čáry izobary, izotermy, vrstevnice atd. Konstrukce izolinie - příklad
80 Izolinie konstrukce a vlastnosti Izolinie čáry, které v grafu spojují body se stejnou intenzitou (velikostí, hodnotou) jevu získávají se metodou prostorové interpolace hodnot vynesených do grafu plynulé čáry izobary, izotermy, vrstevnice atd. Konstrukce izolinie - příklad
81 Náležitosti statistické mapy Obsah mapy tvoří všechny objekty, jevy a jejich vztahy, které jsou v mapě kartograficky znázorněny Základní údaje tvoří Název mapy - stručně a výstižně charakterizuje zobrazené území, druh mapy lze i název hlavní a vedlejší) Mapový rámec vlastní mapa Měřítko v číselné, grafické nebo slovní formě Legenda (vysvětlivky) podávají výklad použitých mapových značek a ostatních kartografických vyjadřovacích prostředků včetně barevných a velikostních stupnic, legenda musí být: Úplná, logicky uspořádaná, přehledná a zapamatovatelná, POZOR na intervaly, na barevnou škálu Autoři Dalšími údaji mohou být : vyznačení severu nebo směrová růžice, souřadnicový systém, přehled použitých mapových podkladů, datum, ke kterému se obsah mapy vztahuje obrázky, grafy, tabulky, text
82 Izolinie konstrukce a vlastnosti Izolinie čáry, které v grafu spojují body se stejnou intenzitou (velikostí, hodnotou) jevu získávají se metodou prostorové interpolace hodnot vynesených do grafu plynulé čáry izobary, izotermy, vrstevnice atd. Konstrukce izolinie - příklad
83 Rozdělení četností
84 Absolutní, relativní kumulované četnosti četnost počet výskytu určité hodnoty v souboru, frekvence hodnoty rozdělení četností počty prvků s určitými hodnotami statistického znaku, obvykle pro nespojité hodnoty skupinové rozdělení četností - počty prvků s hodnotami statistického znaku, které patří do určitého intervalu, obvykle pro spojité hodnoty
85 skupinové rozdělení četností roztřídíme statistické jednotky podle velikosti jejich statistického znaku do intervalů interval hranice, dolní a horní mez, šířka (délka) zásady: vymezené hranice pro jednoznačné zařazení prvků obvykle stejná šířka přiměřený počet intervalů
86 Četnosti absolutní četnost počet jednotek v intervalu relativní četnost podíl četností na rozsahu souboru kumulovaná četnost počet jednotek s hodnotami menšími nebo rovny horní hranici intervalu příklad
87 Tab.S Skupinové rozdělení četností, ukázka příklad váha 100 novorozenců v JMK Interval střed abs. č. relativ. č. kumul. abs. kumul. relat atd % 1 1% % 6 6% % 21 21% %
88 Grafické znázornění rozdělení histogram polygon četností čára kumulovaných četností čára kumulovaných četností součtová čára, graf kumulované četnosti, vždy k horní hranici intervalu
89 Histogram Histogram sloupcový diagram, šířka sloupce šířka intervalu, výška sloupce - četnost
90 Polygon Polygon spojnicový diagram, hodnoty četnosti se vynáší ke středům intervalu
91 Čára kumulovaných četností čára kumulovaných četností součtová čára, graf kumulované četnosti, vždy k horní hranici intervalu
92
93 Základní statistické charakteristiky
94 Základní statistické charakteristiky základní statistické charakteristiky popisují statistický soubor a) charakteristiky úrovně tzv. střední hodnoty b) charakteristiky variability c) charakteristiky asymetrie a špičatosti
95 Střední hodnoty Místo jednotlivých hodnot u jednorozměrného statistického souboru používáme často střední hodnoty Střední hodnoty umožňují porovnávání souborů
96 Střední hodnoty aritmetický průměr (+ vážený aritm. průměr, geometrický průměr, harmonický průměr) modus aritmetický střed medián a kvantily geografický medián
97 Aritmetický průměr nejčastěji používaná st. charakteristika typický a netypický průměr (jedno a více vrcholová rozdělení četností) typický aritm. průměr jednovrcholové rozdělení četností + blízký nejčetnější hodnotě Obr.
98 Vážený aritmetický průměr při výpočtu množství srážek v povodí váha plocha území v klimatologii výpočet denního průměru teplot ze tří měření Př. výpočtu
99 Modus modus - nejčetnější hodnota kvantitativního znaku ve studovaném souboru významný především u souboru nespojitých veličin modální interval interval zahrnující největší počet jednotek, závisí však na stanovení hranic intervalů rozdělení s více mody polymodální rozdělení příklad
100 Aritmetický střed Aritm. střed je polovina součtu min. a max. hodnoty znaku v souboru pokud soubor obsahuje extrémní hodnoty, je aritmetický střed značně zkreslující charakteristika příklad
101 Medián Medián tzv. prostřední hodnota, je to prvek řady uspořádané v neklesajícím pořadí ( od nejm. po největší), který ji dělí na dvě poloviny, které mají menší a větší hodnotu znaku POZOR: soubor je třeba vždy uspořádat pořadí prvku (kolikátý prvek to je, hodnota prvku je medián!) určují vzorce : pro řadu s lichým počtem prvků (n+1)/2, pro řadu o sudém počtu je medián průměr z hodnot mezi prvkem na (n/2) a (n/2+1) místě Příklad
102 Kvantily Medián je kvantil dělící soubor na dvě poloviny dle předch. pravidel obdobně kvartily na čtvrtiny, x 25, x 50, x 75, decily percentily kvantily obecně široké použití ve statistice a v geografii příklad
103 Geografický medián Geografický medián je čára dělící plochu, kde se jev vyskytuje tak, aby hodnota jevu byla v obou plochách stejná
104 Charakteristiky variability variační rozpětí kvantilové odchylky průměrné odchylky rozptyl směrodatná odchylka variační koeficient
105 Variační rozpětí rozdíl největší a nejmenší hodnoty sledovaného statist. znaku R= x max x min jednoduchá charakteristika podléhá extrémním hodnotám, které mohou být i chybami příklad
106 Průměrné odchylky průměrná odchylka je definována jako aritmetický průměr jednotlivých hodnot znaku od vybrané střední hodnoty (tj. od aritmetického průměru, mediánu, modu apod.)
107 Kvantilové odchylky Založeny na kladných odchylkách jednotlivých sousedních kvantilů např. kvartilová odchylka decilová odchylka percentilová odchylka
108 Střední diference je def. jako aritmetický průměr absolutních hodnot všech možných rozdílů jednotlivých hodnot sledovaného znaku v praxi vhodná pouze pro malé soubory Příklad
109 Rozptyl a směrodatná odchylka nejdůležitější charakteristiky variability Rozptyl s 2 z n hodnot znaku x je průměr druhých mocnin odchylek jednotlivých hodnot znaku od aritmetického průměru směrodatná odchylka s je mírou měnlivosti hodnot souboru kolem aritmetického průměru je druhou odmocnina rozptylu
110 Variační koeficient je častou používanou relativní mírou variability je definován jako poměr směrodatné odchylky k aritmetickému průměru
111 Charakteristiky asymetrie Charakteristiky asymetrie ( míry šikmosti) jsou čísla dávající představu o souměrnosti tvaru rozdělení četností míra šikmosti pro souměrné rozdělení je nula pro nesouměrné je kladná nebo záporná
112 Charakteristiky asymetrie Symetrické Záporně sešikmené Kladně sešikmené ar. průměr, medián, modus
113 charakteristiky špičatosti Charakteristiky špičatosti( míry špičatosti) jsou čísla charakterizující koncentraci prvků souboru v blízkosti určité hodnoty znaku Obr. Špičaté, normální a ploché rozdělení
114 charakteristiky špičatosti 1 špičaté 2 normální 3 ploché rozdělení
115 STATISTICKÉ METODY V GEOGRAFII Karl Friedrich Gauss
116 Teoretická rozdělení náhodná veličina spojitá Základní pojmy Může teoreticky nabývat nekonečného množství hodnot z určitého intervalu např.teplota) náhodná veličina nespojitá Nabývá jen konečného množství hodnot urč. Intervalu. Např. počet měsíců s teplotou nad ) Každé hodnotě je možno přiřadit pravděpodobnost jejího výskytu, součet všech dílčích pravděpodobností je 1
117 Teoretická rozdělení histogram grafické znázornění četností rozsah souboru se blíží k nekonečnu + náhodná veličina je spojitá frekvenční funkce / hustota pravděpodobnosti
118 kumulativní relativní četnost tj. součtová čára - distribuční funkce obr.
119 Normální rozdělení / Gaussovo, Laplaceovo- Gaussovo Normální rozdělení se univerzálně používá k aproximaci (k přibližnému vyjádření) rozdělení pravděpodobnosti velkého množství náhodných veličin (v biologii, technice, ekonomii atd.) Hustota pravděpodobnosti normálního rozdělení je symetrická zvonovitá Gaussova křivka.
120 Zvonovitý tvar Souměrný Šikmost 0, špičatost 0 Asymptoticky se blíží 0 Normální rozdělení
121 Normální rozdělení s parametry: stejný průměr, různé směrodatné odchylky čím větší odchylka, tím plošší tvar rozdělení
122 Normální rozdělení různé průměry, stejná směrodatná odchylka
123 Normální rozdělení / Gaussovo pokračování Normální křivka a osa x vymezují plochu 100%, tj. lze stanovit pravděpodobnosti, s nimiž leží hodnoty v určitém intervalu, hranice intervalu tvoří průměr a násobky směrodatné odchylky obr.
124 V normálním rozdělení: 68, 27% leží v intervalu: (průměr + - směr. odchylka) 95% leží v intervalu: (ar. průměr +- 1,96 směr. odchylky) 99% leží v intervalu: (ar. průměr +- 2,576 směr. odchylky)
125 Normální rozdělení pro IQ imbecilita debilita Lehká d. průměr vynikající idiocie genialita
126 IQ (v bodech) stupeň inteligence procento zkoumaných případů (v %) méně než 20 idiocie 0, imbecilita 0, debilita 1, tzv. lehká debilita 5, podprůměrná průměrná nadprůměrná vynikající a více genialita 1,5
127 Příklady
128 Př.1 Populace má v daném testu průměr 100, směrodatnou odchylku 15. Vypočítejte hranice intervalů, v kterém se nachází 68 % populace.
129 Příklad Výška v populaci chlapců ve věku 3,5-4 roky má normální rozdělení s průměrem 102 cm a směrodatnou odchylkou 4,5 cm. Vypočítejte hranice intervalu hodnot výšky, ve kterých se nachází A)70% B) 95% C)99% příslušné populace
130 zadání: Příklad 3 Výška v populaci chlapců ve věku 3,5-4 roky má normální rozdělení s průměrem 102 cm a směrodatnou odchylkou 4,5 cm. Spočtěte, jaké procento chlapců v uvedeném věku má výšku menší nebo rovnou 93 cm.
131 Řešení 3 Pravděpodobnost, že výška nabude hodnoty menší nebo rovné 93 cm, je vyjádřena hodnotou distribuční funkce F (93) pro parametry normálního rozdělení 102;4,5 Odpověď: 2,27 % chlapců ve věku 3,5 4 roky je menších než 93 cm
132 Příklad 4 Psychologickými testy bylo zjištěno, že hodnota IQ populace je náhodnou veličinou s normálním rozdělením, jehož střední hodnota je 104 a směrodatná odchylka 8. Určete hodnotu IQ, kterou podle uvedených pravděpodobnostních předpokladů: meze, ve kterých bude 50% populace,
133 Řešení 4 a) meze pro 50 % mužské populace % Hledáme dolní a horní meze intervalu ( hodnot IQ), ve které se bude nacházet 50% mužské populace, tj 1. a 3. kvartil
134 Řešení 2a) Excel, statistická funkce inverzní k e Gauss. - NORMINV Podle parametrů daného normálního rozdělení 50 populace má IQ v intervalu 98,6 a 109,4.
135 Pro normované normální rozdělení zavedeme označení N (0, 1). Normování hodnoty: od hodnoty se odečte aritmetický průměr, výsledek (tj. odchylka) se dělí směr. odchylkou Hustota pravděpodobnosti normovaného normálního rozdělení: f(u) φ ( Tabulkové vyjádření vybraných hodnot hustoty pravděpodobnosti u 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 f(u) 0,399 0,352 0,242 0,130 0,054 0,018 0,004 0,001 u Tabulkové vyjádření vybraných hodnot distribuční funkce u 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 F(u) 0,500 0,691 0,841 0,933 0,977 0,994 0,999 0,999
136 Binomické rozdělení
137 Binomické rozdělení pro diskrétní náhodné proměnné, které mohou nabývat pouze dvou hodnot ( např. ano, ne) pravděpodobnost, že nastane alternativa ANO označme π pravděpodobnost, že nastane NE q = 1 π), protože platí π +q = 1 (100 %) k výpočtu se používá binomický rozvoj
138 Příklad 1 binomické rozdělení Předpokládejme, že pravděpodobnost narození dívky je 0,49. Jaká je pravděpodobnost toho, že mezi třemi dětmi v rodině je právě jedna dívka?
139 Řešení 1 Tabulka3: Parametry binomického rozdělení v příkladu Pokus Úspěch Neúspěch Pravděpodobnost úspěchu Počet pokusů n Počet úspěchů k narození dítěte dívka chlapec 0,49 počet dětí počet dívek
140 Řešení 1 Jak je vidět z tabulky, počet narozených dívek v rodině je náhodná veličina s binomickým rozdělením. Pravděpodobnost, že mezi třemi dětmi je právě jedna dívka tedy vypočteme jako Pravděpodobnost, že ze tří dětí bude jedna dívka, je 38%.
141 Příklad 2 Jaká je pravděpodobnost, že v rodině s 8 dětmi jsou právě 3 dívky? Pravděpodobnost narození dívky je 0,49. Řešení binomický rozvoj: Pravděpodobnost, že v rodině s 8 dětmi jsou tři dívky, je 0,23, tj. 23 %.
142 Příklad 2, binomické rozdělení Vypočítejte pravděpodobnost, se kterou se vyskytne určitý počet měsíců v roce hodnocených jako suché. Konkretizace: oblast Oxford, období , tj měsíců Suchý měsíc - tj. méně srážek v měsíci než je dlouhodobý průměr tohoto měsíce. 617 měsíců hodnocených jako suché 499 vlhké měsíce
143 Řešení 2 úspěch neúspěch Pravděpodobnost suchého měsíce Pravděpodobnost vlhkého měsíce Počet měsíců Počet suchých měsíců suchý vlhký π = 617/1116 q = 499/1116 π = 0,553 q = 0,447 (q = 1 π) n =12 k=0 až 12 Řešení a) Ručně pomocí binomického rozvoje b) s podporou např. Excel Řešíme dílčí příklady, tj. jaká je pravděpodobnost, že v roce se vyskytne a) žádny suchý měsíc, tj- k = 0 b) Jeden suchý měsíc, tj. k = 1 c) Atd. d) všechny měsíce suché, k= 12
144 Řešení 2 k f(x) 0 0, , , , , , ,21 7 0, , , , , ,0008
145 f(x) Pravděpodobnost počtu suchých měsíců v roce, Oxford, ,25 0,2 0,15 0,1 pravděpodobnos 0, počet měsíců
146 pravděpodobnost Jak bude vypadat situace pro vlhké měsíce? Binomické rozdělení Pravděpodobnost výskytu vlhkého měsíce v oblasti Oxfordu v letech ,25 0,2 0,15 0,1 0, počet vlhkých měsíců v roce
147 Poisson - příklad
148 Poissonovo rozdělení pro rozdělení vzácných případů (zimní bouřka, výskyt mutace apod.). Je-li pravděpodobnost nějaké výjimečné události (např. určité mutace genu) relativně malá a rozsah výběru poměrně velký, pak Poissonovo rozdělení v podstatě splývá s binomickým, ale je mnohem výhodnější pro počítání.
149 Poisson - příklad Předpokládejme, že v určité populaci krys se vyskytuje albín s pravděpodobností p = 0,001, ostatní krysy jsou normálně pigmentované. Ve vzorku 100 krys náhodně vybraných z této populace určete pravděpodobnost, že vzorek a) neobsahuje albína, b) obsahuje právě jednoho albína.
150 Řešení určete pravděpodobnost, že vzorek neobsahuje albína, Pravděpodobnost, že neobsahuje albína, je 90,47 %
151 Řešení 3 Pravděpodobnost, že 100 členná populace krys bude obsahovat albína, je 9 %.
152 Další rozdělení
153 Pearsonova křivka III. typu Na empirické rozdělení mnoha statistických souborů s nimiž v geografii pracujeme, nelze aplikovat normální rozdělení. Platí to například v těch případech, kdy studovaná náhodná veličina nemá teoreticky zdůvodněnou možnost nabývat nekonečných hodnot nebo je-li omezena konečnými čísly V takovýchto případech lze aplikovat na studovaný soubor některou ze dvanácti křivek Pearsonova systému.
154 Pearsonova křivka III. typu Pearsonova křivka III. typu - obvykle pro veličiny s omezeným množstvím hodnot, které může nabývat - z křivky lze např. vyčíst pravděpodobnost se kterou bude hodnota sledovaného statistického znaku dosažena v hydrologii se počítá Pearsonova křivka ve variantě součtová čára četností jako tzv. čára překročení
155 příklad Konstrukce čáry překročení z průměrných ročních průtoků vodního toku Lažánka za říjen 2002.
156 den 1 průtok Qd průtok Qd den (m3/s) 2,99 16 (m3/s) 2,98 2 2, ,64 3 2, ,2 4 3, ,73 5 3, , ,2 21 3,41 7 9, ,85 8 3, ,47 9 3, , , , , ,2 12 3, ,3 13 3, ,2 14 3, , , , ,1
157 [m3/s] Křivka překročení průměrných ročních průtoků vodního toku Lažánka za říjen [%]
158 rozdělení χ2 rozdělení χ2 náhodný výběr n prvků ze základního souboru (počet vybíraných prvků = počet stupňů volnosti) dostaneme n hodnot, součtu druhých mocnin daného počtu vybraných prvků odpovídá určitá křivka,
159 Studentovo/t/ rozdělení Studentovo/t/ rozdělení hodnocení odchylek aritmetického průměru základního souboru a výběrových souborů, odchylkám přísluší Studentovo rozdělení
160 Odhady parametrů intervaly spolehlivosti
161 Základní pojmy základní soubor, statistický soubor výběrový soubor náhodný výběr k základnímu jednomu souboru lze získat více výběrových, různé charakteristiky U dobré výběrové metody - dílčí směrodatné odchylky se kompenzují
162 Základní pojmy reprezentativnost výběru kvalita výběru prostý náhodný výběr ( s opakováním a bez opakování) oblastní náhodný výběr ( výběr z každé dílčí části) systematický náhodný výběr ( podle pravidla, které nesouvisí se sledovaným znakem, např. sledovaný znak - počet obyvatel obce, seřadit obce podle abecedy a vybrat vždy každou pátou obec)
163 Intervaly spolehlivosti normální rozdělení, interval spolehlivosti hranice (μ + - 2σ), hodnoty, které leží mimo interval, v tzv. kritickém oboru se považují za nepřípustné, jejich odchylky od průměru za významné lze použít i jiné intervaly spolehlivosti např. pro 95 % (μ + - 1,960σ), pro 99 % (μ + - 2,576σ),
164 Testování statistických hypotéz jak ověřit předpoklady o charakteristikách statistických souborů? Je soubor A výběrem ze souboru B? Do jaké míry se soubory shodují v rozdělení četností, podle aritm. Průměru, podle směrodatné odchylky apod.
165 Příklad Soubor A Soubor a měsíc % dětí narozených v ČR % dětí narozených v okrese Brno - venkov 1 8,39 8,52 2 7,91 8,81 3 9,02 9,01 4 9,03 8,72 5 9,15 9,12 6 8,64 7,94 7 8,45 7,84 8 8,04 7,93 9 8,28 7, ,93 8, ,41 7, ,75 8,81
166 % % % dětí narozených v ČR měsíce % dětí narozených v ČR Rozdělení četností souborů A, a % dětí narozených v okrese Brno - venkov % dětí narozených v okrese Brno - venkov průměr měsíce průměr 8, , směrodatná odchylka směrodatná odchylka 0, , rozptyl rozptyl 0, ,
167 STATISTICKÁ HYPOTÉZA: předpoklad: průměrná výška studentek PdF MU je shodná s průměrnou výškou žen ve věku let v ČR NULOVÁ HYPOTÉZA Průměry obou souborů jsou shodné zvolíme hladinu významnosti např. 5%, tj. p= 0,05, tj. shoda je s pravděpodobností 95 % aplikace testovacího kritéria je výsledek testování významný? podle výsledku přijmeme nebo odmítneme nulovou hypotézu
168 Závislost náhodných veličin
169 Závislost náhodných veličin Do jaké míry závisí změna prvku jednoho statistického souboru změnu prvku druhého statistického souboru? Jak podmiňuje změna prvku x změnu prvku y? Jak těsně na sobě závisí prvky dvourozměrného statistického souboru? Např. vztahy teplota a nadm. výška, srážky a odtok v povodí váha a výška člověka,
170 Vztahy náhodných veličin Jednostranné ( nezávislá hodnota x jednoho stat. souboru podmiňuje hodnotu y druhého stat. Souboru Vzájemné (nelze rozlišit závislou a nezávislou proměnou)
171 Vztahy náhodných veličin Podle stupně závislosti Funkční ( pevnou) ( určité hodnotě x odpovídá jediná hodnota y, vztah x a y lze tedy vyjádřit mat. funkcí), např. Konkrétní teplotě odpovídá jedna hodnota stupně nasycení vodní párou
172 Vztahy náhodných veličin Statistická ( jedné hodnotě x odpovídá více hodnot y, hodnoty y mají své rozdělení s průměrem, tento průměr hodnot y je i pro různá x shodný)
173 Vztahy náhodných veličin Korelační Se změnou hodnot x se mění soubory hodnot y, které mají své rozdělení a různých průměrech např. pro určitou těl výšku existuje více hodnot hmotnosti, které budou mít normální rozdělení, různým výškám odpovídají hmotnosti s normálním rozdělením, ale s různým průměrem Př. Pro 170 cm existuje norm. rozdělení hmotností o průměru 68 kg, pro 180 cm opět normální rozdělení hmotností s průměrem 76 kg
174 Korelační závislost Určení těsnosti korelační závislosti (jak těsný je vztah mezi výškou a hmotností člověka) Korelační počet snaha vyjádřit tendenci změny hodnoty závislé proměnné na nezávislé proměnné pomocí matematické funkce Tuto regresní funkci lze graficky znázornit regresní čárou
175 Korelace je druh závislosti mezi prvky dvou souborů Regresní čára znázorňuje graficky tuto korelační závislost
176 Určení korelační závislosti 1. Korelační závislost vyjádřená lineární regresní přímkou ( lineární regrese) Jedna nezávislá proměnná x a jedna závislá proměnná y ( ta je průměrem možných hodnot viz. definice korelace) X = 170 cm a y = 68 kg ( 68 kg zastupuje možné hodnoty hmotnosti pro 170cm) Regresní přímku lze analyticky vyjádřit jako y = bx + a, kde b je koeficient regrese a a dopočítáme po pomocném výpočtu průměrů souborů a dosazením jedné dvojice hodnot do rovnice y - y = b(x x) + a
177 Intervaly a pásy spolehlivosti pro lineární regresní závislost Kolem regresní přímky lze sestrojit interval spolehlivosti, který určuje pro vybrané x interval, ve kterém se budou s určitou pravděpodobností nacházet hodnoty y
178 Př. lineární regrese Vypočítejte parametry lineární regrese pro vztah délky slunečního svitu a teploty na datech meteorol. stanice Tuřany, 2002 Délka slun. svitu (h) 55,6 82,7 183,4 169,5 238, 3 291,4 288,0 22 1, 2 174, 5 89,4 44, 7 40,3 Teplota ( C ) -1,2 3,6 5,8 9,4 17,1 19,1 20, 9 20,4 14,0 7, 6 6,0-3,1
179 teplota ( C, měsíční průměry) Závislost teploty na délce slunečního svitu, Brno, ,0 20,0 15,0 10,0 5,0 0,0-5,0 0,0 50,0 100,0 150,0 200,0 250,0 300,0 350,0 délka slun. svitu (h)
180 Výpočet koeficientu regrese b : Excel, funkce CORREL, POLE1 - Pole2 - hodnoty teploty hodnoty délka slun. Svitu,
181 teplota ( C, měsíční průměry) Závislost teploty na délce slunečního svitu, Brno, ,0 20,0 15,0 10,0 5,0 0,0-5,0 0,0 50,0 100,0 150,0 200,0 250,0 300,0 350,0 délka slun. svitu (h) 60
182 Časové řady Bazické a řetězové Z - diagram
183 časová řady základní statistická řada pojmy posloupnost hodnot znaku uspořádaných podle určitého hlediska časová řada statistická řada upořádaná podle času časová řada=dynamická=chronologická = vývojová
184 Sestavování časových řad Cíl získat porovnatelná čísla dodržovat zásady: stejně dlouhá časová období ( přepočet na standardizovaný měsíc se 30 dny, přepočet na počet shodný počet pracovních dní v měsíci p stejně velká území, příp. stejná úroveň (shodná rozloha, povodí řádu toku, administrativní jednotka) stejné jednotky
185 časová řada OKAMŽIKOVÁ sleduje se hodnoty znaku k určitému okamžiku např. počet obyvatel ČR k , 2001, časová řada INTERVALOVÁ sleduje se hodnota znaku v intervalu, období denní úhrn srážek, průměrná denní teplota, měsíční těžba pouze k této řadě se vztahuje požadavek stejného intervalu zvláště u sledování ekonomických ukazatelů
186 Klouzavé úhrny zvláštní typ součtové čáry vhodné pro porovnávání dvou či více řad hodnot za po sobě následující období např. kolísání ročního chodu srážek postup viz. např. skripta Brázdil. a kol. str. 147
187 měsíc prům úhrn srážek;2002; mm 8,1 21, ,8 81, ,2 39,2 71,9 48,2 46 prům úhrn srážek;2003, mm 26,6 4,3 4, ,8 59,8 66, ,3 58,5 32,4 54, 3 KLOUZAVÝ ÚHRN 482, 6 454, , LEDNOVÁ HODNOTA SOUČET NOVÝ LEDEN + STARÉ OSTATNÍ M ÚNOROVÁ HODNOTA SOUČET NOVÝ LEDEN + ÚNOR +STARÉ OSTATNÍ MĚSÍCE
188 Z - diagramy GRAFICKÉ ZNÁZORNĚNÍ řada běžných hodnot, součtová čára, řada klouzavých úhrnů společné body Z - diagramu( tj. spol. hodnoty) výchozí bod součtové č. a řady běžných hodnot poslední hodnota součtové čáry a poslední hodnota klouzavého úhrnu
189
190 úhrn srážek mm) Z - diagramy Z - diagram průměrných úhrnů srážek (mm), Brno, MĚSÍČNÍ PRŮMĚRY KUMULOVANÝ SOUČET KLOUZAVÝ ÚHRN měsíc
191 Analýza časových řad cíle analýzy: zjistit hlavní rysy průběhu časových řad a analyzovat je podle průběhu časové řady: stacionární nebo s trendem s periodickým opakováním výkyvů nebo bez výkyvů všechny možné kombinace
192 Charakteristiky časových řad přírůstky a indexy přírůstky: absolutní přírůstek rozdíl hodnot po sobě následujících ( druhá první ) x i x i-1 relativní přírůstek podíl x i x i-1 / x i-1
193 Řetězové a bazické indexy bazický index podíl x i / x z * 100, x z - první základní hodnota časové řady změny k jedné základní ( bazické) hodnotě řetězový index (koeficient růstu ) podíl x i / x i-1 * 100 podíl v procentech po sobě následujících hodnot ( změny např. z měsíce na měsíc řetězení)
194 Témata přednášek k samostudiu Geografická metodologie Definice geografie Geografičnost studia Formy geogr. studia Obecný přístup k VŠ studiu Literatura: skripta MEČIAR, J. Úvod do studia geografie, od. str. 107 do konce
STATISTICKÉ METODY V GEOGRAFII. Kdybych měl poslední den života, chtěl bych ho strávit na přednášce ze statistiky - je tak nekonečně dlouhá.
STATISTICKÉ METODY V GEOGRAFII Kdybych měl poslední den života, chtěl bych ho strávit na přednášce ze statistiky - je tak nekonečně dlouhá. statistika definice pojetí statistika - definice Statistika je
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
7. Tematická kartografie
7. Tematická kartografie Zabývá se tvorbou tematických map, které na topografickém podkladě přebíraném z vhodné podkladové mapy podrobně zobrazují zájmové přírodní, socioekonomické a technické objekty
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Obsah přednášky. Statistické metody a zpracování dat. I. Úvod, základní pojmy. STATISTIKA - definice. Základní literatura. Významy pojmu STATISTIKA
Obsah přednášky Statistické metody a zpracování dat I. Úvod, základní pojmy Petr Dobrovolný. Úvod, základní pojmy. Základní vyjadřovací prostředky ve statistice 3. Základní popisné statistické charakteristiky
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka
2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
Obsah přednášky. Statistické metody a zpracování dat. I. Úvod, základní pojmy. Základní literatura. STATISTIKA - definice. Významy pojmu STATISTIKA
Obsah přednášky Statistické metody a zpracování dat I. Úvod, základní pojmy Petr Dobrovolný. Úvod, základní pojmy. Základní vyjadřovací prostředky ve statistice 3. Základní popisné statistické charakteristiky
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.
Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.
Vybrané statistické metody Analýza časových řad Statistická řada je posloupnost hodnot znaku, které jsou určitým způsobem uspořádány. Je-li toto uspořádání realizováno na základě časového sledu hodnot
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Kartogramy. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita
Kartogramy Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 17. 10. 2011 Definice Kartogram je
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl?
1.1 Základní statistické pojmy a metody Sázíte-li v loterii, je to hazard. Hrajete-li poker, je to zábava. Obchodujete-li na burze, je to ekonomie. Vidíte ten rozdíl? 1 Co se dozvíte Co je to statistika
Úvod do studia statistiky. 1. Významy pojmu statistika
Přednáška 1/ 1 Úvod do studia statistiky 1. Významy pojmu statistika Co o ní asi všichni víme Statistika je přesný součet nepřesných čísel Statistika nuda je, má však cenné údaje Věřím jen těm statistikám,
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1
3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice