Vektory a matice. P r. P x
|
|
- Břetislav Tichý
- před 8 lety
- Počet zobrazení:
Transkript
1 Vektoy tie Vektoy Vekto je lieáí oslouost vků V, kteá oshuje vků. Kždý vek vektou V je řístuý ostředitví idexu k v ozshu [, ]. Vekto řioíá dtový ty ole, le eí to ole. P P P P P Oee s vektoe Pvek ozii oee ví vek P vektou V ozii. P P P P P Záě vku, P x oee zěí vek P vektou V ozii vke P x. P P P P P P x Vložeí vku, P x oee vloží vek P x ozii vektou V. Nejve je otře vytvořit ísto o ový vek řesue vků oziíh ž o jedu ozii vvo. Rozsh vektou se zvýší o jedičku. P P P P P Poté se vloží vek P x uvolěou ozii. P P P P P - P x - -
2 Odstěí vku oee odstí vek P vektou V ozii. Nejve se odstí vek P ozii. Poté se osuou všehy vky oziíh ž o jedu ozii vlevo. Rozsh vektou se síží o jedičku. P P P P P Odstěí vektou oee odstí elý vekto V. Okujee oei odstěí vku ž do sížeí ozshu vektou ulu Ileete vektou Ileete vektou se ovádí ovykle ooí ole evé eo oěé délky. Ileeti je ožé ovést i ooí sojového sezu viz sojové sezy. Dekle vektou: tye v Pvek ty vku; {itege, el, eod, } Vekto: y [..X] of Pvek; : itege; Pvke ůže ýt jkákoliv hodot, tj. elé číslo itege, eálé číslo el, záz eod eo jiá. Hodot X udává xiálí ozsh vektou. Použití této hodoty je uté ři dekli ole s evou délkou. Hodot udává skutečou velikost vektou v ozshu <, X > Ileete oeí s vektoe Pvek ozii futio Pvek ozii:itege:pvek; egi Pvek ozii:vekto[] ed; Záě vku, P x oedue Ze_vku:itege;Px:Pvek; egi Vekto[]:Px ed; - -
3 Vložeí vku, P x oedue Vlozei_vku:itege;Px:Pvek; v i:itege; egi fo i: dowto do Vekto[i]:Vekto[i]; :; Vekto[]:Px ed; Odstěí vku oedue Odstei_vku:itege; v i:itege; egi {zušeí vku, říkld: Vekto[]:} fo i: to do Vekto[i]:Vekto[i]; :- ed; Istuke o zušeí vku uvolěí íst v ěti eí utá u sttiky lokovýh vků, tj. u vků, kteý je ěťové ísto řiřzeo již ři dekli. U dyiky lokovýh vků ěť řiděle ž z ěhu ogu je istuke zušeí vku utá. Odstěí vektou oedue Odstei_vektou; v i:itege; egi fo i: to do Odstei_vkui ed; V řídě sttiky lokovýh vků stčí o zušeí elého vektou istuke: : - -
4 - 4 - tie tií tyu zýváe odélíkové ole vků tie, usořádýh do řádků slouů. tie ozčujee velkýi ísey, vky tie odovídjííi lýi ísey se dvě idexy, řičež ví idex udává číslo řádku, duhý číslo sloue, ve kteé se vek hází. Je-li ty tie záý, lze oužívt stučý záis i j. N zákldě vlstostí ozěy tie, ty vků tie je ožé zvést ásledujíí ojy záé z lieáí lgey: tii tyu udee zývt řádkový vektoe o složkáh tii tyu udee zývt slouový vektoe o složkáh. Pvky tie se stejýi idexy ii tvoří hlví digoálu tie. s ř ii á-li tie všehy vky od esektive d hlví digoálou ovy ule, zýváe tii hoí esektive dolí tojúhelíkovou tií. D H tii, kteá á stejý očet řádků, jko slouů, zýváe čtveovou tií.
5 - 5 - tii, jejíž všehy vky jsou ovy ule zýváe ulovou tií. Čtveovou tii, kteá á všehy vky io hlví digoálu ovy ule zýváe digoálí tií. Digoálí tii, kteá á hlví digoále všehy vky ovy jedé zýváe jedotkovou tií ozčujee ji E. Tsoovou tií k tii i j tyu ozuíe tii T ij tyu, o jejíž vky ltí ij ji. Čtveovou tii zvee syetikou, jestliže o i ltí T. Sčítáí ásoeí ti Součie elého čísl tie ij tyu zýváe tii Α i j tyu. E T Součte ti ij B ij stejého tyu zýváe tii B i j i j tyu. B
6 - 6 - Rozdíle ti B stejého tyu zýváe tii B tyu. Ozčujee ji B. B Součie ti ij tyu B ij tyu zýváe tii C i j tyu, o jejíž vky ltí: Ozčujee C B. k kj ik ij j i,..., ;,..., Pvek i j je skláí součie i-tého řádku tie j-tého sloue tie B. Násoeí ti eí kouttiví, tj. oeě B B. B B C
7 Ileete tie Ileete tie se ovádí ovykle ooí dvojozěého ole. Ileeti je ožé ovést i ooí sojového sezu. Dekle tie: tye v Pvek ty vku; {itege, el, eod, } tie y [..x_,..x_n] of Pvek;, : itege Pvke ůže ýt jkákoliv hodot, tj. elé číslo itege, eálé číslo el, záz eod eo jiá. Hodoty x_ x_n udávjí xiálí velikost tie očet řádků slouů. Použití těhto hodot je uté již ři dekli tie. Hodoty udávjí skutečou velikost tie v ozezí <, x_>, <, x_n> Ileete vyýh oeí s tiei Stoveí tsoové tie T k tii futio Tsoov:tie;,:itege:tie; v i,j:itege; egi fo i: to do fo j: to do Tsoov[j,i]:[i,j] ed; Souči elého čísl tie futio Souilf:itege; :tie;,:itege:tie; v i,j:itege; egi fo i: to do fo j: to do Soui[i,j]:[i,j]*lf ed; Součet ozdíl ti B futio Souet,B:tie;,:itege:tie; v i,j:itege; egi fo i: to do fo j: to do Souet[i,j]:[i,j]B[i,j] ed; Po ozdíl ti stčí ozěit tělo yklu: Rozdil[i,j]:[i,j]-B[i,j] - 7 -
8 Násoeí ti B futio Nsoei,B:tie;,,:itege:tie; v i,j,k:itege; Po: Pvek; egi fo i: to do fo j: to do egi Po:; fo k: to do Po:Po[i,k]*B[k,j]; Nsoei[i,j]:Po ed; ed; Při ávhu lgoitu yl ultě otilizčí etod odstěí okovýh výočtů oužití oěé Po ísto okového oužití vku ole Nsoei[I,J], řesto á lgoitus o ásoeí ti ovykle kuikou sytotikou oečí složitost, tj. oečí složitost oste stejě yhle jko fuke x
Univerzita Karlova v Praze Pedagogická fakulta
Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje
nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).
ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí
LINEÁRNÍ TRANSFORMACE V ROVINĚ
LINEÁRNÍ TRANSFORMACE V ROVINĚ Kil Mleček Dgr Szrková FSv ČVUT Prh Thákurov 7 66 9 Prh 6 ČR e-il: kil@tfsvvutz SjF STU Brtislv Ná Slood 7 8 3 Brtislv SR e-il: szrkov@sjfstusk Astrkt V řísěvku je osý geoetriký
Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
Ř Í Ě ŘÍ Í Ě É Ř Ť ž é ě ž ě Í é ě ž ú ě ě ě é é é ž é ě é é Ú ě é ú ě ž ě ě é ú ě ú ž é ž Ž é Ž Ž ť ž ú é ě Ž ě ž Ť ž ě ž ž ě ě é ě é Ž é ě é é ě é é
ž Í ž š Š š Ř Ř Í š ě ě ě é Ž Í Í ě é Ž é ú ě ú ž é Ž Ú ě ě ě Š ě Í é ž š š Í é ě é ě é ě Ž ě ž ě Í š ě ě é Ř Ž ž ě ě é Ž Ř Í Ě ŘÍ Í Ě É Ř Ť ž é ě ž ě Í é ě ž ú ě ě ě é é é ž é ě é é Ú ě é ú ě ž ě ě é
a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.
Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace
POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.
ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz
í č ž ě ý č ě ží ě ý ý í ě ž í í í í ě ě ž ý í í í ř í í č é é ý ě ž ý ů í é é ří í č ě Ž ě í ě í í í Ž í é ě ř Ž í ů é ří í í ů ě é ů ě é í č í ů é í
í č í ží í ů Ú í é ž í í ř Č č í ý ý í ř ý í í ý ž é č í ěž é é é é íř ě í ů í í č ř Ž ě é ž ě é í ě ž ý Ž ě ř í ž í ě ý Ž ý ý ě ó í ř ě ž í ě é ý ý ý í ů ý ž ý í ů í ů ý č ý í ě ý č é ě ý ý í ž ý í í
Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.
temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme
( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.
.. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f
VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ
VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček
11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel
KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:
é é ž í Ž ě ší ě é ší é š ě í í č é ě í í í Ž é Ť é š ě í č í í š č í íť íť ší Ť č í č é ú š ě í í ě Í í Ž š Ť í ě ě č í č ě í Ťí é í Ž ě ší ší ě é Ťí
Í Ž í ě é č í í í č é ě Ž ě ě ě ě í í ž ž Ťí š í ť Ť í ší ě í í š Ťí í Ť í ě ší ě é é ť íč é í é í é š ě Í ě ě Ť Ť Ó Íí š Ťí Š Š Š Ť Ť ň í ž š í Š ě Ť í é í í šíč í í ě í Íí ě ě ě č é š Ťí ě Š í í č í
Kuželosečky jako algebraické křivky 2. stupně
Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké
u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,
Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou
Opakovací test. Posloupnosti A, B
VY INOVACE_MAT_189 Opkovcí test Poslouposti A, B Mgr. Rdk Mlázovská Období vytvořeí: prosiec 01 Ročík: čtvrtý Temtická oblst: mtemtické vzděláváí Předmět: mtemtik, příprv k mturitě, příprv VŠ, opkováí,
9. Racionální lomená funkce
@ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro
ě ě ě ě š Ť ě š Ť š ň ě ě ž ě ě Ť ě ě ě ě ě Ť š ž ě ě ě Ť Ť š Í ěž ž ě ěž Á Ě Ě Á Ě É ě ě ě š Ž Ú ž ě ě š ě Ť š Ť ě Š Ť š Š Í ě š Ť ž ě š ě Ť
Á Á ŘÍ ě ě Í Ž š Ť Ť Ý ě ě š Ť ž ě ž ě ě ž ě Ť š ě ž Ó Ť š Ť ě ž ě Š ě ď Ť š Š ě Ť ě š ž ě š ě ě ě š ě ě ě ě š ě Ž Ť š ň Ž Ť ě ž ě šť ě ě ě ě ě ě ě ě š Ť ě š Ť š ň ě ě ž ě ě Ť ě ě ě ě ě Ť š ž ě ě ě Ť Ť
Žú é ú é é ů é Ž Ž ř Č é Ž ř é Ž ž ř é ú é é é Ž é ú ř ó é Č ú ú ř ú úř ř Ž ú ř ř ř Ú é é ú ú ů é ú Č ř ř ř ů
ř é é ů ú Ú Č ů ú Í ř Č ů ú Í Ž ž ž ž ř é ž Žú é ú é é ů é Ž Ž ř Č é Ž ř é Ž ž ř é ú é é é Ž é ú ř ó é Č ú ú ř ú úř ř Ž ú ř ř ř Ú é é ú ú ů é ú Č ř ř ř ů é ů Ě Í ř ů ú ř é Ž ž ř é ř ř úř ř é é é ž ř ž
p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:
ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá
ň á č é á í á é č á í á í č Ť č Ž í í č é ě í í Í á í í Ó á á Ť č á áť í é é í č Ž é ě á Ž í ť á Š Ť áž ě í á č Ť á ě á í é é ě ší í š č á é á é Š í č
ň č í č í í č Ť č Ž í í č ě í í Í í í Ó Ť č Ť í í č Ž ě Ž í ť Š Ť Ž ě í č Ť ě í ě ší í š č Š í č í í Ó ě ě ě Ž ě č čí Ť ě í čí čí Ž í í č č í í í Á í í č Ť š ě ě šíí íš ě Ť Š ě ě Ó ť ěš Ť í č ě č í Ťí
Automaty a gramatiky. Trochu motivace. Roman Barták, KTIML. rní jazyky. Regulárn. Kleeneova věta. L = { w w=babau w=uabbv w=ubaa, u,v {a,b}* }
ochu motivce L = { w w=u w=uv w=u, u,v {,}* } Automty gmtiky Romn Bták, KIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk L = L L L, kde L = { w w=u, u {,}* }, L = { w w=uv, u,v {,}* } L = { w w=u,
í ě é ě š ě é Ť ě é ě í é é é š é Ť č ž í Ť í é ě é ě í ě č é Ž éž í č é ě Íí í ě č Ť í ě ší č Ť í Ť č í ě š č í č ž í š ř é í í Í í č č Ž ě Ťí š í í
é Ří é ž Ť í č ž é Ť ě Í Ž ě ž č č í Ž š ě í í í í í ší ň é č é í š í é Ž ňí í ť Ť é í č é Ž ň ší Ť Ž ě ž é í í í é ž ě í í í Ťí é í ž é ěť í é é Ť ě í š ž ě é č ě č é í ž í ší í é š í í í žší ě ě í Íí
Exponenciální výrazy a rovnice
Epoeciálí výzy ovice Epoeciálí výzy ovice - jou ovice výzy ezáou v epoetu = 7 + + + + = 7 = 6 + + 6 Pvidl po počítáí ocii Při úpvě výzů ocii řešeí epoeciálích ovic je tře dodžovt áledující pvidl (jou uvede
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé
Lineární algebra. 1) Vektor, lineární závislost a nezávislost. Def.: Číselným vektorem n-rozměrného prostoru nazýváme uspořádanou množinu n čísel
Lineání lge ) Vekto, lineání záislost nezáislost Def: Číselným ektoem n-ozměného postou nzýáme uspořádnou množinu n čísel,, ) ( n Čísl,, n nzýáme souřdnice ektou, číslo n dimenzí neo ozměem ektou Opece
ř í ň í čí ý Ž ó ř í š č ří í é ě ť ř í í ý ě í Ž í č ó í č é č í í ě í í ě šíší í ř í á Ž í á ó í í á á ó č ě é é Ž é ř í č ó č ů čí č í Ž é é Ž í ý
í ř ó í í ó á ý á á á í č ů íř ó ůžč ůž ů á ž á í é ř í ú í č í ř á á č ň á í ó í ý š ý ú ů í ý ě é Ž ě í ří á é ž ý í á ý č ý ě á ě ý íú Ž Í ý í í ě éý č ě á ě é Ž é ě éíú š ň í í ě í á š í á í č ž ě
Ř Ř č ď Ť š č š č š š ď č ď š š š š š š č ď š č ď š š Ť š ď ď č č š č š š č š č ť š č
Á Í Á ŘÍ Á Ě Í ÁČ Í Ě Í Ú Č Á Í Á Ř Ř č ď Ť š č š č š š ď č ď š š š š š š č ď š č ď š š Ť š ď ď č č š č š š č š č ť š č š š š č Í š Á š ď Ř č ď š č š š ď š č Ž š šť č č š š ď Í š š š šť č š Á ď č č š č
á Č čá á š é í Ž Ž ň á í í ž č á á á ší Ť Ž Ě í í á á Č é á é é é é é í é č á Č á é Ž á á á Č é á í á á ňí á ž í é ž í é ň Í í ňí éť š á í é Í č í ž é
á Č Ťí í é Ó ÍÓ Ó Ť í Ž á í á ň ž é á ď á ší á á é š á č č í í ú é á á á č Ž í é š Ť Ť á íí á íž ží Ž Ť č í Ž é á á é í č é Ž č é á í é Ť š Ž í é í á č Ť á á é ň é Úň š ň á í č ž Ťíčí í é č í í č Ť í í
10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
Základní pojmy. Autorkou následujícího textu je RNDr. Vlasta Krupková, CSc. (UMAT FEKT VUT v Brně), které patří velký dík.
Zákldí ojmy Autokou ásledujícího tetu je RND Vlst Kuková, CSc (UMAT FEKT VUT v Bě), kteé tří velký dík Úvy lgebických výzů Mociy odmociy Po kždé eálé, s kždé 0, b 0 (es o kždé celé, s kždé 0, b 0 ) ltí:
Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť
Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší
Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+
Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu
2. Matice a determinanty
Mtce deterty Defce : Odélíové sche (řádů) (sloupců) čísel zvee tce typu : [ ] M Je-l luvíe o čtvercové tc Prvy ( ) tvoří hlví dgoálu Zčíe ovyle : [ ] O - všechy prvy ulové - ulová tce I - edotová tce (
í č č é č í č ě í É č Č ě ě ě ě é í č í č í ý ě é ý é í í é é ě í í é č ě č Č č í ý í í č
ě ý ú ý ú ú č é č ň ý ě ý í í í ů ý é í č é ú ě ý č ě ú é č ú í ě í í í č ň č ž é ý ú í ů ě í ý í é ů č ý í í č ň ý é ÚŘ í č ů ě í č č é č í č ě í É č Č ě ě ě ě é í č í č í ý ě é ý é í í é é ě í í é č
2.4. Rovnováhy v mezifází
2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze
8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.
KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,
N O T Á Ř S K Ý ) Á P I S
Stra a prv í. NZ 723/2016 S t e j n o p i s N O T Á Ř S K Ý ) Á P I S sepsa ý mnou, Mgr. Lukáše Valigurou, otáře se sídle v Praze, dne 24.10.2016 (slovy: dva átého čtvrtého říj a roku dva tisí e šest á
č Ó š í é í é í ž íč é Í é Ť č ž é Ž ě Š š é é čí í í ě í Óč é í Ó íč č í í ě ší íč í š í í í č ě í í č ě í ň ě í ě í ě ší í š í Š Í í é Í ě Ó Ťí ěě ě
í Š ě čž ť č í í é ž í č í íč í č ě Ž í ě č Ž Ž š é ě ší Ží č íž š ěží é Ží č ě č é Í ňí é č é é Č Í Í Ž Ů Ž í Ť ň í č Ť Ťí Í í ž č í í š Š ň ě í í Ťí č č Ž Ť š š í č ř í íž í Ž í Ó í í í č í í í ě í Ť
2 Základní poznatky o číselných oborech
Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé
Přehled vzorců z matematiky
) Výz: Přehled vzoů z tetik ( + ) + + ( ) + ( + ) ( ) ( + ) + + + ( ) + ( ) ( ) + + + ( ) ( ) + + ) Moi:....... s + s (. ). s ( ) s s.s ) Odoi: ( ).p... p ( ). 4) Kvdtiká ovie: 5) Kopleí čísl: + + 0 kde
ň č ů ý ů ů ů ý ť č č ý č č ý ý ý č ú ý ů ť č č Ú ů Ý ů ů ú ý ů ů úč Ú č ů ů úč ý ů ů č ů úč Í ů Í Í ý č úč ů č ň ú ú ů ú č ů č ň ú ú ů ú ú ý ů ň ý ú
ú ů ď ď Ř Á Á ž č ů č ů ž ý ů ů ž ů ú ň ú ú ť Ú ů ý č č ý ť č č č č ý ů Ú č ů č č ý ň ů úč ý č č ý ý ý ú č č ú Ú ů č ú ň č ů ý ů ů ů ý ť č č ý č č ý ý ý č ú ý ů ť č č Ú ů Ý ů ů ú ý ů ů úč Ú č ů ů úč ý
při obrábění Ing. Petra Cihlářová Odborný garant: Doc. Ing. Miroslav Píška, CSc.
Vysoké učeí tehiké v Brě Fakulta strojího ižeýrství Ústav strojíreské tehologie Odbor obráběí Téa: 5. vičeí - Výočet silové a eergetiké áročosti ři obráběí Okruhy: Výočet řezýh sil ro soustružeí a vrtáí
ř é ř č ů ý ř ý č č ý ý Í ý ří ě é ě č ý š š ě Í ě é ř á ě á Í ř š ž á ý é ě š ř á š á ě š ř á č ř ť ě á č řř é ř ú áé á Í ů ř ě ó á ř ě ý ř Í Ť ú ť ť
é čá ů á Ý řá č ý ý ý ý ů ř ý é ř Ě řč ť é Í ř ř é Í é é ě ě É ř á ý ř ú ř Í ů ů é é ě ť š ý ý č Ť É š ů š ě á ř á á ř á Í Í ů é ř š ý č ř é ř ň ě é é č ť ř ó ů ě ř á é ř ě š ý ě ý ř ě é ř š á žš ž ř ý
š š Í š Ú ž ž Í Ú ů Í š ů ú ů š ú ú ď š ú š ů š ú ď š ú ú Č ú ú ú š ž ň š Č Í š ú ú ú ú ú š š š ž ú ú ú ň ž ú ú ž Ž ú Ž Ž ú ú ú ň ú Ů š ú Í š š ž š Ž Í š ú ž ď š ď ž É Ž ó Ž š Ž ú ú Í ú ů ú Í ú ž ú ú Ú
Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.
Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere
M - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň
Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.
Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že
š í é í í í ě ě ší í ž é Ť ší í ž ď ť ě č ě Ť ě é é í ž ě Í é é é é č é í í ť ť í š č ě í í é í ě Íí íě Ť š č š Ů í ž Ů ž ší žďú š í ě Ů ď š í í í ě Í
Ťí é ěď ě ě č ě ě ě Ť ší ž ě ž š é é é ě í ď ě é é íš ě Íí ž š í Ťí ě í ž ě ě ě ž Í í éž č ď é í ě é é ě é ď í é í ž ě é č ě é é í č ť ť é í ž í ě ě ě í ě š í ěš é é í ž ť ž č í í č ě ú ě é é í Ů ž ě ě
1.2. MOCNINA A ODMOCNINA
.. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit
1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů
.8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících
Metoda datových obalů DEA
Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího
ř é ě ý ú ř ý ř ř ě ý ř ý ó ř ě é ř é é é é ý ú ý ý ň ř ě Ú ěž é ú ě ě ý ěž é ú é ě ě ě Ú ý ěň ť ě ě é ě ú ř ě ě ř ě Ú ě ď ý ě ý ě
Ý úř ř é Č ý ř ř Č ř é ě ě ř ř ú ý ý ř ě ť ř ř ěř ý ř ř ř ú ř ě ř ě ř ř ý ý ř ě ý ř é ř é ě ý ú ř ý ř ř ě ý ř ý ó ř ě é ř é é é é ý ú ý ý ň ř ě Ú ěž é ú ě ě ý ěž é ú é ě ě ě Ú ý ěň ť ě ě é ě ú ř ě ě ř
č íčí ř á í í ř ř á í í č ř č é ř č é á á é á í Ť ů ř č ý í á Č ň Š í á ó éč Č Č á Ň č ú ě ř ť ť ť é ť Č Č Č á á č ú í á ří í á í á č č Ýý ú ř č ů ě ě
íí ř í í ř ř í í ř ř í Ť ů ř ý í Č ň Š í ó Č Č Ň ú ě ř ť ť ť ť Č Č Č ú í ří í í Ýý ú ř ů ě ě ší ř Á í í í ž í ř Ť ě ě ě ě ý ů í í í ě ě š ř ů Á ří ř ř ž ř ě Ď ú í ř í ř ž ž Ýř ú í ř í ž ěž ř ů ř š í ě
Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř
ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň
É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř
Á Č Ě Í Í ů š č ř Í ř ž ů ý ř ř ů č ř ž ř č ř ž ř č ú ř ř ž ř ý ý ů ý č č č ř ů ř š ř ů ř ž č ů ď ý ů ý ř ý ř Í ť č ř Ž č š Š ž č ř úč ř č ž Ť č ú ř ž
ř ď č Á Č Ě Í Í ů š č ř Í ř ž ů ý ř ř ů č ř ž ř č ř ž ř č ú ř ř ž ř ý ý ů ý č č č ř ů ř š ř ů ř ž č ů ď ý ů ý ř ý ř Í ť č ř Ž č š Š ž č ř úč ř č ž Ť č ú ř ž ů ý ř ú ř Ť Ž š ú ř č ů ý č ř č Íč Í ý ř č ý
MATEMATIKA příprav na srovnávací práci 9. ročník, I. pololetí
MATEMATIKA ří oáí ái očí I ololetí l e t t Káeí loeý ýů i g f j loeýýů oíl Sočet g f e t j i t t l Náoeí loeý ýů Př ; ( ( e f g Děleí loeý ýů Káeí ložeý loeý ýů Vočítej to oí řešiteloti ýočet oěř o =
í š ě é é Ž é é ě š é ž íž í č Ť í Ť č Ó š Ť í í Ť í é í Íé í ť ž ěž ěťí í é í č ě í ž čí ž í ě Ů č ě í é ň ě ě ř í Ž í ě ě č ě Ůž í ž é š ž í Ť í č í
Ž Ó Š č ě Ž čí é Č Ť é Í é é Ó í č í č ž í í ě Ž Š ě č ší č í ě é é é í ě ě Ť é š í éť č š š č Ž Č é č í Ťí Ť é é č é í Ť í Ťí í é ŤíŽ Ťí é é č é ě í ě é ťí íž ě ňíč é š š é Ó ž í é Ť é ě í é ě í í í ě
Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:
Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze
řá š á š č ř ř š á ř ě í í á ř ě é á á á ě í ě á á č ě Ú š í ú ý ě í á á ř áš ý á ř ě ě ú é íž Íé é ě ší š é í é é ý ř ř Ú é ř š žíš š ů í š ě é í š ě
ř ý čí ý řá š á š č ř ř š á ř ě í í á ř ě é á á á ě í ě á á č ě Ú š í ú ý ě í á á ř áš ý á ř ě ě ú é íž Íé é ě ší š é í é é ý ř ř Ú é ř š žíš š ů í š ě é í š ě ě ě ř á š Žíš á á í ž č é á é í ž ň š ř ě
úř Š ě ÍČ Ů ž é š ě š ž é ě ž ů é ěř ýž ý ř š ě ů ó š ž ý ý é Ů ý ěř ý ěř ů ý ěř ů ý š é ů é ý ěř ěř éž ý úř š ě ů é ó ú ý ů é é ě ě ý ěř ý ý ý ěř é é
š ř Č Č ě š Ž š ě ý ě Č é ž ě ř Í Ě Á Č Š ž ý é ý ěř ů ý š é ů é Č ý ěř ěř ý ěř éž ý úř Š ě ÍČ Ů ž é š ě š ž é ě ž ů é ěř ýž ý ř š ě ů ó š ž ý ý é Ů ý ěř ý ěř ů ý ěř ů ý š é ů é ý ěř ěř éž ý úř š ě ů é
V H L U B O K É N A D V L T A V O U J A N H E N D R Y C H
S T U D I E P É Č E A K O N Z E R V A C E P A R K U N A P O D S K A L S K É L O U C E V H L U B O K É N A D V L T A V O U S O H L E D E M N A P R O V O Z G O L F O V É H O H Ř I Š T Ě A Z Á J M Y P A M
ŠKOLENÍ ŘIDIČŮ
ŠKOLENÍ ŘIDIČŮ Novi k a z ě k.. v hláška č. / S. a záko č. / S. Co se ě í? Nová v hláška č. / S. provádějí í pravidla a poze í h ko u ika í h s úči ostí od. led a ruší a ahrazuje v hlášku č. / S. upravují
ř ř Í Í Ó ň ř ž ž Í ž žó óř ú ů ú ů š ú ů úř
úř ž ř úř úř ř ř š ň ř š ř Ů Í ř ř ř ř ř ž ř š š ď š ú ů úř ů ž úř š ú ž ř š ř úř ž ú ř ř ř ř úř ů Ý ú ř ř Í Í Ó ň ř ž ž Í ž žó óř ú ů ú ů š ú ů úř úř Á Ú š Á ř Š ř ŘÍ ŘÍ Š ř ř ň ž Á ž ň ř š ř ů ž ň ú
ť ě Ť ř ť ý ů ý ř ř ě ě ř ě ž ů ě ě ě ý ú ň š Č ř ě ř ž ě Ř š ů ž ů ř ž ČÍ š Š ě ž ř ž ř ý ř ě ř ř Ů ě š ž ř Č ů ě ř ř ž ý ř š ý ě ů ě ě š ř ě ř ž ě ý
Ý Á ř ú ú ž š š ě ř ř ě ř ý ý Í Č ě š ě Š ě ř š ě ř ř ý ě ě ě š ě š ě ž ř ě ý ř ř ý ě Č Ů ý ý ř ě ý ú ř ú ýť ž ť ě Ť ř ť ý ů ý ř ř ě ě ř ě ž ů ě ě ě ý ú ň š Č ř ě ř ž ě Ř š ů ž ů ř ž ČÍ š Š ě ž ř ž ř ý
VEŘEJNÁ VYHLÁŠKA. Opatření obecné povahy Stanovení přechodné úpravy provozu na pozemních komunikacích
odbor doprvně-správní oddělení silničního hospodářství Š ZČ: ČÍS JDCÍ: SPOÁ ZČ: OPÁÉÁ DOP/0/08/TO DOP//08/TO Ing. Josef Tomnovič ÚŘDÍ OSOB: FO: 80 8 -I: tomnovic@muotrokovice.cz DTU:.0.08 ŘJÁ YHÁŠ Optření
ř ř ř Ú ž ř ř š ř ř ř ť
É Ť ř ř ř ž š ř ř Ť ř ú ř ž ř š š ř ř ž š ř š š ř ř ř š š ř ř Ú ř ř ř Ú ž ř ř š ř ř ř ť ň ř úř š ří š É ŘÍÍ Ť ň Ř š É ŘÍÍ Ě Í š ř ú ř ň ř š ř řťť š ř ř ú ň š ř š ř ř š ž ó š ú š ň ž ú ú úř úř š ř ž ř š
n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR
PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy
Ě Í Č ŘÍ Ů Ý Ů Ú ů ů ú ů ů Ň É ŘÍ ŘÍ Ř É ÝĎ Í Á Ú Ě Ů Ž Á Í ú ů ú ů ú ž ú ú ú Č Č ž ú ú ž
Á Ě ÝÚ Ě ú ů ú ň ů Ú Č Č Ě Í Č ŘÍ Ů Ý Ů Ú ů ů ú ů ů Ň É ŘÍ ŘÍ Ř É ÝĎ Í Á Ú Ě Ů Ž Á Í ú ů ú ů ú ž ú ú ú Č Č ž ú ú ž ů ů ů ú ů Ž Ť ú ů ů ú Ž ú ú ů ď ů ň ň ň ů ň Ť ň ň Ž ů ú ů ž ů ů Ú ů ň ž ů Ž ů ň ž ů ů
rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová
Téma 6 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická
Ř Ů č č č ň ř ň ř ř ř ř Ú ž ř Í č č č č ň ř č Ž ň ř č ň ř Ů ů ř ů ň ří ů ň ř ř ů ří ú ů ň ř ž ž ž ž ž ž ů Ž ř ú ň č ž ř ř č ž ž č Ž č ž ň ň ří č ř ř ž
č č Í č č č Č ó č Č š č ř ů č ů ú ů úč ž úč č ů č ů ů ř ř úč č ů č Í ů ř ř č ř ř ř ň Ú Ř Ů č č č ň ř ň ř ř ř ř Ú ž ř Í č č č č ň ř č Ž ň ř č ň ř Ů ů ř ů ň ří ů ň ř ř ů ří ú ů ň ř ž ž ž ž ž ž ů Ž ř ú ň
Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š
ý š Ú ž š ž š ý ž ř Ť šť Č ý ň ř ž ú š ý ž ý ř ů ž ž ř ř ý ů š ň ý ú ř šť š ý ú ž ý ú ó ú š š ů ř Č š ř ř ř ř š ř Č Ř ň ž ř ř ý ř ř ž š ž š ř ň ý ř ú ý ř š ř ů ý ú š ž ž ř ř ř ž Ž š ř š Ž ř ž š š ř Ž ý
Či ost katastrál í h úřadů po digitaliza i katastrál í h ap
Či ost katastrál í h úřadů po digitaliza i katastrál í h ap Konference ISSS 2016. du a Základ í íl ) ě it aktuál í stav, kd katastr e ovitostí si e do ře slouží k o hra ě práv vlast íků a ezpeč osti realit
š Ž ř Ž Ž Ž ý ů ř ý úř ř ý š Ž šž ž úř ř ý š ů ů ř Ž úř ú ů ů úř ř Ž ř š ý úř ř ř ý ří ž ř Ž ř Š ý ýš ý Í ř úř ř ý ú ú ý š Ž ř Í ř ž ř ů Ž ý ý ý ý
ť š Č ó Ž Č ý ř Ó úř ř š Ó ú Ó ř Č ř Ó š ó Ó š ý ř š Í Ó ř Č ý úó Ó ů ýš Ó ó š Ž ř Ž Ž Ž ý ů ř ý úř ř ý š Ž šž ž úř ř ý š ů ů ř Ž úř ú ů ů úř ř Ž ř š ý úř ř ř ý ří ž ř Ž ř Š ý ýš ý Í ř úř ř ý ú ú ý š Ž
Vytápění BT01 TZB II - cvičení
CZ..07/2.2.00/28.030 Středoevropské cetrum pro vytvářeí a realizaci iovovaých techicko-ekoomických studijích programů Vytápěí BT0 TZB II - cvičeí Zadáí Pro vytápěé místosti vašeho objektu avrhěte otopá
Kapitola 5 - Matice (nad tělesem)
Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic
ř
ř é í Ž č ů ů ř Í š é í ě ší ř í Ž ě ů Ž ě ší í ř ů ří í ě ě ří í šť ě Ž í í Ž č ů ě í ě š í í Ž ě ř é ě ě ě Ž í í ů ě í í Ž ě ř čí čí í Č é í Ú í é ú ě í č ř í ří ř Ší ě í čí š ří í č í čí ř ší ř ě ř
Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.
Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste
ř ř ř ř ď ú ř ď ů ř ř ř ú ů ř ů ú ř ř ř ř ř ř ř ů šť ů ř ů ů š Á ř š ř ů ř ř úř ř ř ú ů š ř
Č ř ř ř ř ř ú ů ů ř úř ř ř ří ř ř ř ď ř ď ř úř ř ř ř ů ú ů ř Č Č ř ř ř ř ď ú ř ď ů ř ř ř ú ů ř ů ú ř ř ř ř ř ř ř ů šť ů ř ů ů š Á ř š ř ů ř ř úř ř ř ú ů š ř ú ř ů ů ř ř ď ř ř ř ř ř ř ř ř ú ú ř ď ř ř š
Í Í ÍÚ Í ŘÍ Í Í Ě Í Í Ř É Ú Í Í ě ž ě š á á á Í ě č ě é á é á ě á ů č Í é ě é ž ě á š ě ě é ě é á á á č á ů á č ůí ě ě é á Í ž á ů á á ě á č á ž Úč á
ě Ť Í ď ž Ě Í Í ÚŘ š é á ě á á Č Í Í Í É Ú Í Í Í Í Ě Í Í ŘÍ Í Í Ř É Ú Í Í á á š á žá á ě ů ě ů é š ě ě é áž č ě š é č š é č č č é č á ů á ů č ě žá á ů ě ů é š ě ě é áž ě ž ě š Š á ó Í á á á ě é š ů á á
ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř
Í Ř Á Ý Š Á Ý ě ě ě ě Ř ě ě Í Í ů ň ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř ě ě ž ě ň Š ě ň Š ů ž ž Š ž ů ž ů ž ž ó Ř Ř ž ě ž ě ě Č ě ž ž ž ž ě ó ú ě Š Č ě ň óž ó ě ě ž
š ž ž ň ž ž ž ší Ťš í Ž Ž Ž ě š ě í Ž š é é ě Ť é ě Ž ě ť Ť šíť ť é í Ž ě š ť í Ž é Ť ě Č ň é í é í í é í Ť ě Ú ě ě ě Ž í Ž ě í Ž ě Ť Ž š é í Ž ší í š
š É é ě é í ň í ě ě í é ěž í í é í ě Ů ňí é í é é í é í é í í ě é í š Ď ě Ť é ň ě é Ž í é é é í í é ě ě ě í ť Ď é í í šč é é é ňí ě í Ž š ě é é š Ů é é í í é ě é ě é é ň Ť ě í é í š é í ěňí Ž š ť Ť Ž éž
Geometrická optika. Optická soustava
Optcká outv Geometcká optk oubo optckýc pvků (čoček, olů, zcdel, plplelíc deek, dělčů vzku, dkčíc jýc pvků), kteé jou vzájem upořádáy učtým způobem tk, by optcká outv plňovl dé yzkálí geometcké poždvky
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice
Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké
8.3.1 Vklady, jednoduché a složené úrokování
8..1 Vklady, jedoduché a složeé úrokováí Předoklady: 81 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží
IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...
IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického
ě č ě ě é é é á á í ří ě ó ě ý Ó ř čá š á Í ó ž í ěš é íď á ž ý š š Š é ř áž í í í ř é á á é Í ď ý ď ž ř óř Í Č ý Ú ě á Ž í í Ž Ó ó ě ě Í ě ž ýď Ž ý č
č é é é í ří ó ý Ó ř č š Í ó ž í š é íď ž ý š š Š é ř Ž í í í ř é é Í ď ý ď ž ř óř Í Č ý Ú Ž í í Ž Ó ó Í ž ýď Ž ý č í ří Ú č é ř Á Í É ď é ý š Í ý Ž ž Ď Í é ý Í ý ť Ž ř ů č ř Á ž í é Š č š í Ú š š Í ř
á ý é í č ří Ť á íč é í ž č ř Í é Ť č í ž á ý ý á é č í ý ř ří í ž ř é ř á á í ý ý ů í Í ř ů Ž á á á ž ří š ě Í ž č é ří ř í ř í Ť ý š ý ř í ý ů ří ř
á ý č ř Ť á č ž č ř Í Ť č ž á ý ý á č ý ř ř ž ř ř á á ý ý ů Í ř ů Ž á á á ž ř š ě Í ž č ř ř ř Ť ý š ý ř ý ů ř ř á š á Í ř ý ý ř ř č ř ř Í š ý Í Ť č ř á Í ó č ř ý ž ý Í ř č ž á ř ž ý ž ří ř š Í É Í ř Í
Í Ř Ě Š Í Í ú ě Š ň Ž ě ó ě ž ó ř ž ě ž Ó řž ÓóóŠ ň ú ř ň Ó óš Š Á ě ř ř ó ň Šř ěě Š Á Á Ň ňá Ú Š ě ť ž ň ú ž ě ě ě ó ňú Ň ž ň ř ó ř ú ó ť ř ř ě ě Ó ř
ř ž ř ň ě ě Č ř ř ř ř Ž ů Ý ř ž ě Ě Č ě Ě Č ď ť Ý É ě ě Í Ř Ě Š Í Í ú ě Š ň Ž ě ó ě ž ó ř ž ě ž Ó řž ÓóóŠ ň ú ř ň Ó óš Š Á ě ř ř ó ň Šř ěě Š Á Á Ň ňá Ú Š ě ť ž ň ú ž ě ě ě ó ňú Ň ž ň ř ó ř ú ó ť ř ř ě
Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í
ú ÉČ Ě Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í Ý ÍÝ ÍÝ Ý Ý Ý Ý ť ó ó Ě Ě Ť ť É Ě Ě ť ť Ť Ě ÉÉ ĚĚÉŤ É ň ó Ť É É Ž ó Ě Ě Ť Ě Ě É Ě Ě Ě Ě Í Ě Ě ĚĚĚ Ě Ě Ě Ě É É Ě É Ě Ě ť Ý Č ů ó ů ů ú Ž ů ů ů Č ů ů Č
Posouze í de ího osvětle í
Posouze í de ího osvětle í Distri uč í a skladova í e tru - ka elář Místo realiza e: Zadavatel: )pra ovatel posouze í: Stupeň dokumentace: DSP -1- . ÚVOD Před ěte tohoto posudku je vyhod o e í úrov ě de