Kuželosečky jako algebraické křivky 2. stupně

Rozměr: px
Začít zobrazení ze stránky:

Download "Kuželosečky jako algebraické křivky 2. stupně"

Transkript

1 Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké lieárí soustvě souřdic rovici: (Pech, s. 76) GeoGer-kuzeloseck.gg

2 Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké lieárí soustvě souřdic rovici: Mticové vjádřeí A,,,, A T 3 3, () (Pech, s. 76) Kuželosečk je regulárí právě tehd, kdž A. < hperol > hperol = prol GeoGer-kuzeloseck.gg Asptotický sěr () Je-li >, kuželosečk () eá žádý sptotický sěr elips Je-li =, kuželosečk () á jede sptotický sěr prol Je-li <, kuželosečk () á dv sptotické sěr - hperol

3 Střed kuželosečk, teč kuželosečk () Rovice teč kuželosečk, procházející dotkový ode M = (, ) Převedeí rovice kuželosečk osový tvr Zěíe-li soustvu souřdic, zěí se i rovice kuželosečk. Zvolíe tkovou soustvu souřdic, ve které ude rovice kuželosečk co ejjedodušší. Vhodou soustvu souřdic lezee poocí otočeí posuutí A,,,, = B pro sloupcové vektor T,, B ', ', (,,) ( ', ',) B T T ( ', ',) B A B ', ', T T T 3

4 4 S r k S[;] X[;] r k X Středová rovice kružice S[;] r k X Oecá rovice kružice r r p

5 Středová rovice kružice S[;] X k r Oecá rovice kružice p Kždou kružici lze vjádřit jk středovou, tk oecou rovicí. POZOR! Ne kždá rovice tohoto tpu je oecou rovicí kružice! příkld: Pretrické rovice kružice 5

6 Pretrické rovice kružice r cos t r si t; t, r r cos t r si t r Rotce R cos R si si cos Noveer, 6 6

7 Trjektorie odu A = (r, ) při rotci R cos R si si cos A R A cos si r si cos rcos rsi A A Rovoěrý poh po kružici GeoGer- kruzice.gg 7

8 Elips α β A E e C S D F B S střed elips E, F ohisk elips A, B hlví vrchol C, D vedlejší vrchol = AS = SB hlví poloos (její délk se zároveň rová EC = FC = ED = FD ) = CS = SD vedlejší poloos e = ES = SF ecetricit Z orázku je ptrá pltost Pthgorov vět pro,, e: = + e Součtová defiice elips GeoGer-elips_soucet.gg 8

9 9 E F S Středová (osová) rovice elips S, X FX EX X je od elips, právě kdž pltí: e e po úprvě: e e Středová (osová) rovice elips S, S X Pozák : Pokud = = r, je elips kružicí (e =, E = F = S)

10 Oecá rovice elips po úprvě přezčeí: t s r q p q p POZOR! Ne kždá rovice tohoto tpu je oecou rovicí elips! Noveer, 6 Oecá zě ěřítk s s s M s M

11 Oecá zě ěřítk orz kružice M M M M Pretrické vjádřeí elips t S[;] X[;] Souřdice kždého odu X elipse lze vjádřit tkto: = cos t + = si t + kde t je pretr vjdřující úhel (viz orázek). Může ývt hodot z itervlu <;π)..cos t.si t. cos t. si t

12 GeoGer-trojuhelikov_kostr.gg. Keplerův záko Ploch opsé průvodiče plet z stejý čs jsou stejé Zeě: uerická ecetricit: e = e/ =,67 d di AU 49,6 6 k 3. Keplerův záko 3 T Kepler s first two lws ds d d d d r ds dt d dt d kost. plošá rchlost vzdáleost od ohisk úhlová rchlost oěhu

13 Prol Vrcholová rovice prol V[,] p F[, ] q: = p F V X X je od prol, právě kdž pltí: XF Xq q p p p p p 4 p 4 p 3

14 Oecá rovice prol p 4p 4p p 4p 4p po úprvě přezčeí: r s t r s t F V Šiký vrh 4

15 Prol zdá pretrick t t ( ) GeoGer- tec_prol.gg Hperol β α X E S F Hperol je oži všech odů, které jí od dých dvou odů (ohisek) stejý rozdíl vzdáleostí (v solutí hodotě). Pro liovolý od X hperole ted pltí EX FX =, kde je kldé reálé číslo. 5

16 Rovice hperol Pokud je střed hperol S[;] io počátek souřdic, středová rovice hperol je ve tvru ( ) ( ) resp. Rozásoeí odstrěí zloků vzike oecá rovice: Ze středového tvru je ptré, že zék u čleů jsou opčá, pltí ted erovost A B <. Asptot jí sěrici A, q, B ( ) C D E k ( ), jejich rovice je ted, čle q se spočítá doszeí středu hperol. Pretrické vjádřeí hperol = / cos t = tg t, kde t <;π); t π/+kπ (k Z). GeoGer-hperol_rozdil.gg 6

17 Rovoosá hperol sustituce: u v u v u vu v u v Mticový zápis sustituce u v Ortoorálí tice: u v GeoGer-epri_uerost.gg Pretrické vjádřeí hperol GeoGer-hperol.gg 7

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitálí učeí mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitěí výuk prostředictvím ICT Číslo ázev šlo klíčové ktivit III/ Iovce zkvlitěí výuk prostředictvím ICT Příjemce podpor Gmázium,

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků: ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

14 Kuželosečky v základní poloze

14 Kuželosečky v základní poloze 4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Sbírka maturitních příkladů z matematiky. Mgr. Marie Kubíčková Mgr. Radek Nowak

Sbírka maturitních příkladů z matematiky. Mgr. Marie Kubíčková Mgr. Radek Nowak Sírk mturitích příkldů z mtemtik Mgr Mrie Kuíčková Mgr Rdek Nowk Úprv výrzů Uprvte udejte podmík eistece výrzů ( ) ( ) ( ) : ( ) ( ) 7 : 8 m m m m 9 ( ) 7 : si cos cos si cos si si cos Fukce Určete defiičí

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 09 D : 30. břez 09 M. možé skóre: 30 Počet řešitelů testu: 85 M. dosžeé skóre: 30 Počet úloh: 30 Mi. možé skóre: -7,5 Průměrá vyechost: 9, % Mi. dosžeé skóre: -,8 Správé

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut

Více

8. Elementární funkce

8. Elementární funkce Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test

Více

Středová rovnice hyperboly

Středová rovnice hyperboly 757 Středová rovnice hperol Předpokld: 7508, 75, 756 Př : Nkresli orázek, vpočti souřdnice vrcholů, ecentricitu urči rovnice smptot hperol se středem v počátku soustv souřdnic, pokud je její hlvní os totožná

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

LINEÁRNÍ TRANSFORMACE V ROVINĚ

LINEÁRNÍ TRANSFORMACE V ROVINĚ LINEÁRNÍ TRANSFORMACE V ROVINĚ Kil Mleček Dgr Szrková FSv ČVUT Prh Thákurov 7 66 9 Prh 6 ČR e-il: kil@tfsvvutz SjF STU Brtislv Ná Slood 7 8 3 Brtislv SR e-il: szrkov@sjfstusk Astrkt V řísěvku je osý geoetriký

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b. KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 9 D : 8. břez 9 Mx. možé skóre: Počet řešitelů testu: Mx. dosžeé skóre: Počet úloh: Mi. možé skóre: -7,5 Průměrá vyechost:, %Správé Mi. dosžeé skóre: -, odpovědi jsou

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Funkční řady. 3. Kovové pásmo, napínané na obou koncích, se prověsí do řetězovky x Určete funkci s(x), x D

Funkční řady. 3. Kovové pásmo, napínané na obou koncích, se prověsí do řetězovky x Určete funkci s(x), x D Fukčí řdy. Těžké dokole ohebé epružé pásmo jehož průřez se měí tk že proti přetržeí klde stálý odpor po zvěšeí zujme tvr řetězovky stálé pevosti. Řetězovk je vyjádře rovicí ( ) = l cos >. Určete deiičí

Více

6 Stabilita lineárních diskrétních regulačních obvodů

6 Stabilita lineárních diskrétních regulačních obvodů 6 Stbilit lieárích diskrétích regulčích obvodů Pro diskrétí systémy pltí stejá defiice stbility jko pro systémy spojité. Systém je stbilí, když se po odezěí vstupího sigálu vrátí zpět do rovovážého stvu.

Více

Analytická geometrie

Analytická geometrie 7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

a) 1 b) 0 c) 1 d) 2 x e) 2x

a) 1 b) 0 c) 1 d) 2 x e) 2x FSI VUT v Brě zdáí č.. str. Příjmeí jméo: Z uvedeých odpovědí je vžd právě jed správá. Zkroužkujte ji! ) Je-li 0, pk 0 c) e) ) Výrz lze uprvit tvr c) e) ) Nerovice má řešeí c) e) ) Rovice 0 má právě jedo

Více

3. DIFERENCIÁLNÍ ROVNICE

3. DIFERENCIÁLNÍ ROVNICE 3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly FSI VUT v Brě zdáí č.. str. MATEMATIKA 009 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk : 6 6 c) 6 e) ) Nerovice < má řešeí < > c)

Více

právě jedna správná. Zakroužkujte ji! a) a b) a c)

právě jedna správná. Zakroužkujte ji! a) a b) a c) FSI VUT v Brě zdáí č. str. MATEMATIKA 06 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk 6 c) 6 9 e) 9 ) Rovice má řešeí v itervlu ; )

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení FSI VUT v Brě zdáí č.. str. MATEMATIKA 0 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Pro všechy přípusté hodoty pltí: + y y b) y + y c) + b b + y b by y b + by d) b +

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o SOUSTAVY LINEÁRNÍCH ROVNIC Zákldí pojmy Defiice Soustv rovic m m m b b b m kde ij bi (i m; j jsou reálá čísl j jsou ezámé se zývá soustv m lieárích rovic o ezámých stručě soustv lieárích rovic Čísl ij

Více

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic. Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

ZPG Křivky. Hermitova interpolace. Fergusonovy křivky (3) Cíl Po prostudování této kapitoly budete umět

ZPG Křivky. Hermitova interpolace. Fergusonovy křivky (3) Cíl Po prostudování této kapitoly budete umět ZPG Křivk. Hermitov iterpolce. Fergusoov křivk (). KŘIVKY A PLOCHY Cíl Po prostudováí této kpitol budete umět defiovt iterpolčí proximčí křivk pro dé bod defiovt ploch z dých prvků plikovt křivk ploch

Více

2 Základní poznatky o číselných oborech

2 Základní poznatky o číselných oborech Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY KVĚTNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY KVĚTNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T KVĚTNA 09 Dtum koáí koušky:. květ 09 M. možé skóre: 0 Počet řešitelů testu: 80 M. dosžeé skóre: 0 Počet úloh: 0 Mi. možé skóre: -7,5 Průměrá vyechost:, % Mi. dosžeé skóre:

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečky

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečky MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečk 1 Rozhodněte, jká kuželosečk je popsán rovnií Npište prmetriký popis této křivk. + 6++6=0. Npište oené rovnie tečen křivk v jejíh průsečííh s osou. Provedemeúprvurovnienúplnýčtverevproměnné

Více

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33 . Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Lineární zobrazení. 90 ve směru od z k x a symbolem h otočení kolem osy z o. 2 n

Lineární zobrazení. 90 ve směru od z k x a symbolem h otočení kolem osy z o. 2 n ieárí zbrzeí V prstru je dá krtézský systém suřdic Oyz Ozčme symblem f tčeí klem sy 9 ve směru d y k z symblem g tčeí klem sy y 9 ve směru d z k symblem h tčeí klem sy z ) Určete suřdice bdů f ( M ) (

Více

Řídicí technika. Obsah. Laplaceova transformace. Akademický rok 2019/2020. Připravil: Radim Farana

Řídicí technika. Obsah. Laplaceova transformace. Akademický rok 2019/2020. Připravil: Radim Farana kdemický rok 9/ Připrvil: Rdim Fr Řídicí techik Oh (L-trformce) předtvuje velmi účiý átroj při popiu, lýze ytéze pojitých lieárích ytémů řízeí. Účelem trformce je převét ložitý prolém z protoru origiálů

Více

( ) ( ) Úpravy algebraických výrazů. Mocniny a odmocniny. a a. b b. b a 1 = 1, ( 1) = 1, ( 1) = 1

( ) ( ) Úpravy algebraických výrazů. Mocniny a odmocniny. a a. b b. b a 1 = 1, ( 1) = 1, ( 1) = 1 Úrvy lgebrických výrzů Mociy odmociy Pro kždé reálé r, s kždé > 0, b > 0 (res ro kždé celé r, s kždé 0, b 0 ltí: r 0 s rs, r r ( b b r r r r s r+ s b b r s rs b : b Dále ltí +, (, ( Je-li N, 0, eistuje

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Obsah na dnes Derivácia funkcie

Obsah na dnes Derivácia funkcie Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze

Popis polohy tělesa. Robotika. Vladimír Smutný. Centrum strojového vnímání. České vysoké učení technické v Praze Popis poloh těles 1 2 Robotik Popis poloh těles 3 4 5 6 7 8 9 10 11 12 Vldimír Smutný Centrum strojového vnímání České vsoké učení technické v Prze 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

1 - Integrální počet, výpočet obsahu plochy, objemu rotačního tělesa 1) Vypočítejte (integrace pomocí substituce): 1 a) c) x. + 4x

1 - Integrální počet, výpočet obsahu plochy, objemu rotačního tělesa 1) Vypočítejte (integrace pomocí substituce): 1 a) c) x. + 4x - Itegrálí počet, výpočet oshu plochy, ojemu rotčího těles ) Vypočítejte (itegrce pomocí sustituce): ) 9 d si( l ) ) d c) e d d) e d ) Vypočítejte (itegrce metodou per - prtes): l ) ( ) e d ) d c) ( )

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

16. Kombinatorika ( 125;250;125 )

16. Kombinatorika ( 125;250;125 ) 6. Kombitorik Dlší dovedosti: - permutce s opkováím - kombice s opkováím (při mi.4-ti hod.dotci) - zákldí pojmy prvděpodobosti - důkzové úlohy zákldě biomické věty Možé mturití otázky: Vrice permutce Kombice

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

FYZIKA I. Newtonovy pohybové zákony

FYZIKA I. Newtonovy pohybové zákony VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová

Více

Analytická geometrie v rovině

Analytická geometrie v rovině nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

8.3.1 Pojem limita posloupnosti

8.3.1 Pojem limita posloupnosti .3. Pojem limit poslouposti Předpokldy: 30, 0 Pedgogická pozámk: Limit poslouposti eí pro studety sdo strvitelým pojmem. Hlvím problémem je podle mých zkušeostí edorozuměí s tím, zd mezi posloupostí její

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců Iterpolce promce Iterpolce lgebrckým polomem p g ý p promce metodou ejmeších čtverců Iterpolce lgebrckým polomem Apromce metodou ejmeších čtverců Úloh. Dá tbulk hodot,, j pro j. Hodot jsou přesé. Hledáme

Více

1. ZÁKLADY VÝROKOVÉ LOGIKY.

1. ZÁKLADY VÝROKOVÉ LOGIKY. . ZÁKLADY VÝROKOVÉ LOGIKY. Mturití opkováí.doc ) Mmik řekl Petrovi: Jestliže budeš hodý, dosteš dort. Jsou čtyři možosti: ) Petr byl hodý, dostl dort. b) Petr byl hodý, edostl dort. c) Petr ebyl hodý,

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více