Automaty a gramatiky. Trochu motivace. Roman Barták, KTIML. rní jazyky. Regulárn. Kleeneova věta. L = { w w=babau w=uabbv w=ubaa, u,v {a,b}* }

Rozměr: px
Začít zobrazení ze stránky:

Download "Automaty a gramatiky. Trochu motivace. Roman Barták, KTIML. rní jazyky. Regulárn. Kleeneova věta. L = { w w=babau w=uabbv w=ubaa, u,v {a,b}* }"

Transkript

1 ochu motivce L = { w w=u w=uv w=u, u,v {,}* } Automty gmtiky Romn Bták, KIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk L = L L L, kde L = { w w=u, u {,}* }, L = { w w=uv, u,v {,}* } L = { w w=u, u {,}* } Můžeme jít ještě dál! L = {}. {,}* L = {,}*. {}. {,}* L = {,}*. {} Pojďme ještě dál L = ({} {})*. {}.{}.{} Nešlo y všechny egulání jzyky oskládt z nějkých tiviálních jzyků Regulán ní jzyky říd eguláních jzyků RJ(X) nd konečnou neázdnou ecedou X je nejmenší tříd jzyků, kteá: oshuje ázdný jzyk o kždé ísmeno x X oshuje jzyk {x} A,B RJ(X) A B RJ(X) uzvřená n sjednocení A,B RJ(X) A.B RJ(X) uzvřená n zřetězení A RJ(X) A* RJ(X) uzvřená n iteci Vlstně lgeický ois jzyků! Seciálně: {} RJ(X) otože {} = * X RJ(X) otože X = x X {x} (ozo! je to konečné sjednocení) {x i,,x ik } RJ(X) X* RJ(X) Kleeneov vět Liovolný jzyk je egulání ávě když je ozozntelný konečným utomtem. Konečnými utomty lze ozoznávt jen tiviální jzyky (ázdný jednoísmenné) jzyky, kteé z nich lze složit oecemi sjednocení, zřetězení itece. Důkz RJ F egulání jzyky jsou ozozntelné konečnými utomty tiviální jzyky jsou ozozntelné konečným utomtem oece sjednocení, zřetězení iteci dávjí oět jzyk ozozntelný konečným utomtem

2 Důkz Kleeneovy věty jzyky ozozntelné konečnými utomty jsou egulání máme utomt A=(Q,X,δ,,F), kteý definuje jzyk L(A) chceme ukázt, že L(A) dostneme z elementáních jzyků oecí definujme R ij = {w X* δ*( i,w)= j } slov řevádějící stv i n j otom L(A) = i F R i slov řevádějící očáteční stv n nějký koncový stv i jsou jzyky R ij egulání okud no, otom L(A) je tké egulání, otože zchovává egulánost definujme R k ij =slov řevádějící stv i n j ez meziůchodu stvy m m>k zřejmě R ij = R n ij (n je očet stvů utomtu) jsou jzyky R k ij egulání R 0 ij je egulání (žádné mezistvy, tj. mximálně jednoísmenná slov) R k+ ij = Rk ij Rk i,k+.(rk k+,k+ )*. Rk k+,j je egulání (sjednocení itece eguláních jzyků) Altentivní důkz Kleeneovy věty jzyky ozozntelné konečnými utomty jsou egulání Indukcí odle očtu hn v nedeteministickém utomtu A = (Q,X,δ,S,F) o dný jzyk L(A) žádná hn ouze jzyky neo {} (n+) hn vyeeme si jednu hnu: tj. δ(,) sestojíme čtyři utomty ez této hny (δ ) A = (Q,X,δ,S,F) A = (Q,X,δ,S,{}) A = (Q,X,δ,{},{}) A = (Q,X,δ,{},F) Potom L(A) = L(A ) (L(A ).).(L(A ).)*L(A ) Jzyky L(A ), L(A ), L(A ), L(A ) jsou egulání (n hn) i k+ j Regulán ní výzy Množin eguláních výzů RV(X) nd konečnou neázdnou ecedou X={x,,x n } je nejmenší množin slov v ecedě {x,,x n,,, +,.,*, (,)}, kteá: oshuje výz výz RV(X), RV(X) o kždé ísmeno x X oshuje výz x x RV(X) α,β RV(X) (α+β) RV(X) α,β RV(X) (α.β) RV(X) α RV(X) α* RV(X) Příkld: ((+((.c)+d)*)+e) Konvence: vnější závoky lze vynecht (+((.c)+d)*)+e závoky lze vynecht u. + díky socitivitě +((.c)+d)*+e tečku lze vynecht +((c)+d)*+e ioit oecí (nejvyšší) *,., + (nejnižší) +(c+d)*+e Hodnot egulán ního výzu Hodnotou eguláního výzu α RV(X) je množin slov [α] (jzyk) definovná následovně: [] =, [] ={}, [x] = {x} [(α+β)] =[α] [β] [(α.β)] = [α]. [β] [α*] = [α]* Regulání výzy odovídjí eguláním jzykům hodnotou eguláního výzu je egulání jzyk kždý egulání jzyk lze eezentovt omocí eguláního výzu (jzyk je hodnotou tohoto výzu) Příkldy: [(+)* + (+)*(+)* + (+)*] = = { w w=u w=uv w=u, u,v {,}* } [(0*0*0*)*0*] = = {w w {0,}*, w =k }

3 Použit ití egulán ních výzů Pktický řehledný záis jzyk eoetický zjednodušení někteých důkzů Vět: L F, x X σ(x) F σ (L) F L σ(x) jsou egulání jzyky, lze je tedy eezentovt eguláními výzy kždý výskyt x ve výzu o L stčí nhdit výzem o σ(x) Rozšířené egulání výzy máme i dlší egulání oece, nř. ůnik (α & β) Ekvivlence eguláních výzů α β jestliže [α] = [β] (tj. výzy eezentují stejné jzyky) Příkld: (0*)* + (0+)* Jk to zjistíme Převod egulán ního výzu n konečný ný utomt Metod (inkementální): řeveď elementání jzyky (ázdný, jednoísmenné) soj oužitím eguláních oecí odle výzu Metod (římá) +(c+d)*+ očísluj symoly ve výzu (zlev do dov) +( c +d )*+ 5 zjisti všechny možné áy symolů, kteé se c, c d, c, mohou vyskytovt z seou d d, d zjisti symoly, kteé mohou ýt vní ve slově,, d, 5 zjisti symoly, kteé mohou ýt oslední ve slově, c, d, 5 zjisti, zd jzyk oshuje ázdné slovo ANO vytvoř nedeteministický utomt s stvy: s + očíslovné symoly d očátek = s konec = oslední symoly (+s o ) d d 5 c řechody: s vní symol x i x j, okud je á x i x j c d Od utomtu k egulán nímu výzu, Pomocí Kleeneovy věty: R 0 ij R k+ ij = R k ij R k i,k+.(r k k+,k+)*. R k k+,j Pozn.: uzel můžeme ignoovt (nevedou řes něj žádné cesty do osttních uzlů) Od utomtu k egulán nímu výzu (říkld ) Pomocí Kleeneovy věty: R 0 ij R k+ ij = R k ij R k i,k+.(r k k+,k+)*. R k k+,j R 0 R R R * + * + * R + R ( ) * ( ) * ( ) * ( ) * ( ) * ( ) * R * + * + * * + * + * * + R (+)* (+)*

4 Od utomtu k egulán nímu výzu jink Ohodnocení hn eguláním výzem Nejve vytvoříme utomt s jedním vstuem jedním výstuem F 0 A α Od utomtu k egulán nímu výzu v říkld kldě, Stčí řidt ouze nový koncový stv. Eliminujeme smyčku. Eliminujeme uzel. Eliminujeme uzel. sojení hn α α+β elimince smyček α β β α * β ( ) * Eliminujeme smyčku. elimince vcholů α β α m β α * α β α ( ) * Eliminujeme uzel. α m α m Můžeme konečné utomty ještě zoecnit Konečný utomt ovádí následující činnosti: řečte ísmeno změní stv vnitřní jednotky osune čtecí hlvu dov Čtecí hlv se nesmí vcet! Co když utomtu ovolíme ovládání hlvy Dvousměn né (dvoucestné) ) konečné utomty Dvousměným (dvoucestným) konečným utomtem nzýváme ětici A = (Q,X,δ,,F), kde: Q - konečná neázdná množin stvů (stvový osto) X - konečná neázdná množin symolů (vstuní eced) δ -zozeníq X Q {-,0,+} (řechodová funkce) řechodová funkce učuje i ohy čtecí hlvy Q (očáteční stv) F Q (množin koncových stvů) Pozo! Automt n ásku nic neíše! Reezentce: stvový digm, tulk, stvový stom

5 Počítání s dvousměnými utomty Kdy dvousměný utomt řijímá slovo Co se děje, je-li hlv mimo čtené slovo Slovo w je řijto dvousměným konečným utomtem, okud: výočet zčl n vním ísmenu slov w vlevo v očátečním stvu čtecí hlv ové oustil slovo w vvo v někteém koncovém stvu mimo čtené slovo není výočet definován (výočet zde končí slovo není řijto) w F Příkld dvousměn ného utomtu Nejve oznámk: ke slovům si můžeme řidt seciální koncové znky # X je-li L(A)= {#w# w L X*} egulání, otom i L je egulání L = # R # (L(A) #X*#) Příkld: L(B) = {#u# uu L(A)} Pozo! oto není levý ni vý kvocient! Nechť A= (Q,X,δ,,F), definujme dvousměný konečný utomt B=(Q Q Q {,, F }), X, δ,, { F }) tkto: δ x # oznámk,-,+,+,- = δ(,x),-,+,+ F,+ F, = δ(,x),+,+ F, = δ(,x),+,+ F,+,+ # u # F Vět o dvousměných utomtech Jzyky řijímné dvousměnými konečnými utomty jsou ávě jzyky řijímné konečnými utomty. Možnost ohyovt čtecí hlvou o ásce nezvětšil sílu konečného utomtu! Pozo, n ásku nic neíšeme! Pokud můžeme n ásku sát, dostneme uingův stoj. Zřejmé: konečný utomt dvousměný konečný utomt dvousměný utomt vždy osouvá hlvu dov KA A=(Q,X,δ,,F) KA B=(Q,X,δ,,F), δ (,x)=(δ(,x),+) Zývá: dvousměný konečný utomt konečný utomt Důkz věty v o dvousměných utomtech () u v ) Fomální ois vlivu slov u n výočet nd slovem v (i) kdy ové oustíme slovo u vvo (v jkém stvu ové vstouíme nd v) f( 0 ) = ové řejdeme n v ve stvu f( 0 ) = 0 nikdy neoustíme u vvo (ii) okud oustíme slovo v vlevo, kdy se nd v oět vátíme f() = vátíme se nd v ve stvu f() = 0 nikdy už se nevátíme ) Výočet nd u máme osný funkcí f u f u : Q { 0 } Q {0} f u ( 0 ) oisuje situci (i): v jkém stvu ové odejdeme vvo, okud zčneme výočet vlevo v očátečním stvu f u () ( Q) oisuje situci (ii): v jkém stvu oět odejdeme vvo, okud zčneme výočet vvo v symol 0 znčí, že dná situce nenstne (odejdeme vlevo neo cyklus) u u v v

6 Důkz věty v o dvousměných utomtech () Po kždé slovo u máme funkci f u oisující výočet dvousměného utomtu A nd u Definujme ekvivlenci slov tkto: u~w def f u =f w tj. slov jsou ekvivlentní, okud mjí stejné výočtové funkce Vlstnosti ~: je to ekvivlence (zřejmé, definováno omocí =) má konečný index (mximální očet ůzných funkcí je (n+) n+ o n-stvový dvousměný utomt) je to vá konguence (zřejmě u~w uv~wv, otože ozhní u v w v je stejné nd v se utomt chová stejně) L(A) je sjednocením jistých tříd ozkldu X*/~ stčí si uvědomit, že w L(A) f w ( 0 ) F u~w f u ( 0 )=f w ( 0 ) (u L(A) w L(A)) Podle Neodovy věty je L(A) egulání jzyk. Převod KA n KA Konstuktivní důkz věty o dvousměných utomtech. Jk výočet s návty řevést n lineání výočet zjímjí nás jen řijímcí výočty díváme se n řechody mezi symoly (v jkém stvu se řechází n dlší olíčko). Njdeme všechny možné řezy - oslounosti stvů (je jich konečně mnoho).. Mezi řezy definujeme (nedeteministické) řechody odle čteného symolu.. Rekonstuujeme výočet skládáním řezů (jko uzzle). Pozoování: stvy se v řechodu (řezu) střídjí (dov/dolev) vní stv jde dov, oslední tké dov v deteministických řijímjících výočtech nejsou cykly vní oslední řez oshují jediný stv Fomáln lní řevod KA n KA Nechť A=(Q,X,δ,,F) je dvousměný konečný utomt. Příkld řevodu KA n KA Mějme následující dvousměný konečný utomt: Definujme ekvivlentní nedeteministický konečný utomt B=(Q,X,δ,( ),F ), kde: Q = všechny koektní řechodové oslounosti oslounosti stvů (,, k ) z Q tkové, že délk oslounosti je lichá (k=m+) žádný stv se neokuje n liché ni n sudé ozici ( i j i j ) & ( i j i+ j+ ) F = {() F} řechodové oslounosti délky oshující koncový stv δ (c,x) = { d d Q & c d je lokálně konzistentní řechod o x} x L(A)=L(B) tjektoie KA A odovídá řezům KA B c d,+,+,+,-,+,- Ukázk výočtu:.. Možné řezy jejich konzistentní řechody: Výsledný nedeteministický KA:,,,,,,

Automaty a gramatiky. Pro připomenutí. Roman Barták, KTIML. Důkaz věty o dvousměrných automatech (1)

Automaty a gramatiky. Pro připomenutí. Roman Barták, KTIML. Důkaz věty o dvousměrných automatech (1) 4 Automty gmtiky omn Bták, KTIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk Po řiomenutí Automt může tké ovládt čtecí hlvu dvousměný (dvoucestný) utomt řechodová funkce: Q X Q {-,,+} Slovo w je řijto

Více

Automaty a gramatiky

Automaty a gramatiky 5 Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et

Více

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí

Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí 3 Automty grmtiky Romn Brták, KTIML rtk@ktimlmffcunicz http://ktimlmffcunicz/~rtk Pro připomenutí 2 Njít ekvivlentní stvy w X* δ*(p,w) F δ*(q,w) F Vyřdit nedosžitelné stvy 3 Sestrojit podílový utomt Automty

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik

Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

Automaty a gramatiky

Automaty a gramatiky Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Úvod do formálních grmtik Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí

Více

písemná a ústní část porozumění látce + schopnost formalizace

písemná a ústní část porozumění látce + schopnost formalizace Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Orgnizční záležitosti Přednášk: n weu (http://ktiml.mff.cuni.cz/~rtk/utomty) Proč chodit n přednášku? Cvičení: dozvíte

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111. Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární

Více

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46

Formální jazyky. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 7. března / 46 Formální jzyky Z. Sw (VŠB-TUO) Úvod do teoretické informtiky 7. řezn 2012 1/ 46 Teorie formálních jzyků motivce Příkldy typů prolémů, při jejichž řešení se využívá pozntků z teorie formálních jzyků: Tvor

Více

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31

Minimalizace automatů. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 28. března / 31 Minimlizce utomtů M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 28. řezn 2007 1/ 31 Ekvivlence utomtů 1 2 3 1 2 3 1 2 Všechny 3 utomty přijímjí jzyk všech slov se sudým počtem -ček Nejvýhodnějšíjepronásposledníznich-mánejméněstvů

Více

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35 Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi

Více

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku?

Automaty a gramatiky. Organizační záležitosti. Přednáška: na webu (http://ktiml.mff.cuni.cz/~bartak/automaty) Proč chodit na přednášku? Orgnizční záležitosti Atomty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cni.cz http://ktiml.mff.cni.cz/~rtk Přednášk: n we (http://ktiml.mff.cni.cz/~rtk/tomty) Proč chodit n přednášk? dozvíte se více než

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n, Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

PLANIMETRIE ZÁKLADNÍ POJMY PŘÍMKA A JEJÍ ČÁSTI

PLANIMETRIE ZÁKLADNÍ POJMY PŘÍMKA A JEJÍ ČÁSTI Předmět: Ročník: ytvořil: Dtum: MTEMTIK DRUHÝ Mg. Tomáš MŇÁK 17. květn 2012 Název zcovného celku: PLNIMETRIE ZÁKLDNÍ POJMY Plnimetie = geometie v ovině. Zákldními útvy eukleidovské geometie jsou: bod římk

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. 9 očník - lomený lgeický vý, lineání ovnice nenámo ve jmenovteli Lomený lgeický vý Lineání ovnice nenámo ve jmenovteli Doočjeme žákům okovt voce t ( ) od úv vý n očin Lomený vý Číelné vý jo vý v nichž

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

1.3.3 Přímky a polopřímky

1.3.3 Přímky a polopřímky 1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím

Více

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem.

2.5.4 Věta. Každý jazyk reprezentovaný regulárním výrazem je regulárním jazykem. 2.5. Regulární výrzy [181012-1111 ] 21 2.5 Regulární výrzy 2.5.1 Regulární jzyky jsme definovli jko ty jzyky, které jsou přijímány konečnými utomty; ukázli, že je jedno, zd jsou deterministické neo nedeterministické.

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

Úvod 1. 3 Regulární jazyky Konečné jazyky Pumping Lemma pro regulární jazyky a nekonečné jazyky Sjednocení...

Úvod 1. 3 Regulární jazyky Konečné jazyky Pumping Lemma pro regulární jazyky a nekonečné jazyky Sjednocení... Osh Úvod 1 1 Teoretická informtik 2 1.1 Vznik vývoj teoretické informtiky................... 2 1.1.1 Mtemtik............................. 2 1.1.2 Jzykověd............................. 5 1.1.3 Biologie...............................

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Slezská univerzit v Opvě Filozoficko-přírodovědecká fkult v Opvě Šárk Vvrečková Teorie jzyků utomtů Skript do předmětů II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Teorie jazyků a automatů I

Teorie jazyků a automatů I Šárk Vvrečková Teorie jzyků utomtů I Sírk úloh pro cvičení Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv, poslední ktulizce 5. květn 205 Anotce: Tto skript jsou určen

Více

Model tenisového utkání

Model tenisového utkání Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

MULTIDIMENSIONÁLNÍ JAZYKY A JEJICH AUTOMATY MULTI-DIMENSIONAL LANGUAGES AND THEIR AUTOMATA

MULTIDIMENSIONÁLNÍ JAZYKY A JEJICH AUTOMATY MULTI-DIMENSIONAL LANGUAGES AND THEIR AUTOMATA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS MULTIDIMENSIONÁLNÍ

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Integrál a jeho aplikace Tomáš Matoušek

Integrál a jeho aplikace Tomáš Matoušek Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Šárk Vvrečková Teorie jzyků utomtů Sírk příkldů pro cvičení II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv 24. listopdu 2016 Anotce:

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

10. Suffixové stromy 1 2014-01-23

10. Suffixové stromy 1 2014-01-23 10. Suffixové stromy V této kpitole popíšeme jednu pozoruhodnou dtovou strukturu, pomocí níž dokážeme prolémy týkjící se řetězců převádět n grfové prolémy řešit je tk v lineárním čse. Řetězce, trie suffixové

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

jsou všechna reálná čísla x, pro která platí: + x 6

jsou všechna reálná čísla x, pro která platí: + x 6 Příkld 1. Kolik lichých přirozených čísel lze vytvořit z číslic 0, 1, 2,, 8, jestliže se žádná číslice neopkuje? A: 2 B: 6 C: 9 D: 52 E: 55 Příkld 2. Definičním oborem funkce y = A: x ( 5; ) B: x ( 5;

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Řešení diferenciálních rovnic 1. řádu (lineárních, s konstantními koeficienty)

Řešení diferenciálních rovnic 1. řádu (lineárních, s konstantními koeficienty) Exonenciální funkce - jejic "vužití" ři řešení diferenciálníc rovnic (Tto dolňková omůck nemůže v žádném řídě nrdit sstemtickou mtemtickou řírvu.) Vlstností exonenciální funkce lze výodně oužít ři řešení

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro

KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro KONSTRUKTIVNÍ GEOMETRIE Mg. Pet Piklová, Ph.D. kmd.fp.tul.cz Budov G, 4. pto SYLBUS. Mongeovo pomítání.. nltická geometie v E 3. 3. Vektoová funkce jedné eálné poměnné. Křivk. 4. Šoubovice - konstuktivní

Více

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný. 5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchitektur očítčů Logické ovody - kominční Booleov lger, ormy oisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická Ver.. J. Zděnek/M. Chomát Logický kominční ovod Logický kominční

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Odraz na kulové ploše

Odraz na kulové ploše Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků

Více

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48 Formální jzyky M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 6. březn 2007 1/ 48 Motivce 1: Vyhledávání v textu Potřebujeme řešit následující problém: Máme řdu různých textů(npř. soubory n

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

Řešené příklady k MAI III.

Řešené příklady k MAI III. Řešené příkldy k MAI III. Jkub Melk 28. říjn 2007 1 Obsh 1 Metrické prostory 2 1.1 Teoretickéotázky.... 2 1.2 Metriky..... 4 1.3 Anlýzmnožin... 4 1.3.1 Uzávěry... 4 1.3.2 Zkoumejtenásledujícímnožiny....

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Úvod do Teoretické Informatiky (456-511 UTI)

Úvod do Teoretické Informatiky (456-511 UTI) Úvod do Teoretické Informtiky (456-511 UTI) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vs.cz 25. ledn 2006 Verze 1.02. Copyright c 2004 2006 Petr Hliněný. (S využitím části mteriálů c Petr Jnčr.) Osh

Více

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

Vektory a matice. P r. P x

Vektory a matice. P r. P x Vektoy tie Vektoy Vekto je lieáí oslouost vků V, kteá oshuje vků. Kždý vek vektou V je řístuý ostředitví idexu k v ozshu [, ]. Vekto řioíá dtový ty ole, le eí to ole. P P P P P Oee s vektoe Pvek ozii oee

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Jak oslabit PC, aby algoritmus: neměl paměťové nároky PC, povede k vyřazení hodnoty z domény proměnné! e f. e f. a b. a b. byl silnější než AC?

Jak oslabit PC, aby algoritmus: neměl paměťové nároky PC, povede k vyřazení hodnoty z domény proměnné! e f. e f. a b. a b. byl silnější než AC? N půli esty od AC k PC Progrmování s omezujíími podmínkmi Jk oslit PC, y lgoritmus: neměl pměťové nároky PC, neměnil grf podmínek, yl silnější než AC? Testujeme PC jen v přípdě, když je šne, že to povede

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6 Test studijních předpokldů Vrint A1 Příkld 1. Kolik přirozených čísel lze vytvořit z číslic 0, 1,, 4, 8, jestliže se žádná číslice neopkuje? A: 1 B: 3 C: 60 D: 40 E: 48 Příkld. Definičním oborem funkce

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1). A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více