2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

Podobné dokumenty
Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].

Test Zkušební přijímací zkoušky

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

DOVEDNOSTI V MATEMATICE

Přípravný kurz - Matematika

MATEMATIKA jak naučit žáky požadovaným znalostem

DOVEDNOSTI V MATEMATICE

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Pracovní listy MONGEOVO PROMÍTÁNÍ

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Jak by mohl vypadat test z matematiky

Rozpis výstupů zima 2008 Geometrie

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

2. Která z trojice úseček může a která nemůže být stranami trojúhelníku. a) b)

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Užití stejnolehlosti v konstrukčních úlohách

Shodná zobrazení v rovině

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

MATEMATICKÉ DOVEDNOSTI

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

1. Přímka a její části

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Digitální učební materiál

Opakování ZŠ - Matematika - část geometrie - konstrukce

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Základní geometrické tvary

Analytická geometrie lineárních útvarů

MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

KLÍČ SPRÁVNÝCH ŘEŠENÍ Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY DO 4LETÉHO SŠ STUDIA VE STŘEDNÍCH ŠKOLÁCH ZŘIZOVANÝCH MORAVSKOSLEZSKÝM KRAJEM

SHODNÁ ZOBRAZENÍ V ROVINĚ

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

Vzdělávací obsah vyučovacího předmětu

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

SOUŘADNICE BODU, VZDÁLENOST BODŮ

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

MATEMATICKÉ DOVEDNOSTI

} Vyzkoušej všechny povolené možnosti.

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Úlohy domácí části I. kola kategorie C

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

Opakování k maturitě matematika 4. roč. TAD 2 <

MATEMATICKÉ DOVEDNOSTI

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

Seznam pomůcek na hodinu technického kreslení

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

MATEMATIKA základní úroveň obtížnosti

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.

9. Planimetrie 1 bod

Shodná zobrazení v rovině osová a středová souměrnost Mgr. Martin Mach

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Přípravný kurz - Matematika

5. P L A N I M E T R I E

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

U každé úlohy je uveden maximální počet bodů.

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

5.2. Funkce, definiční obor funkce a množina hodnot funkce

PLANIMETRIE úvodní pojmy

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

Rovina, polorovina 1. Určete, které věci mají, nebo nemají rovný povrch. Doplňte ano, ne.

Předpokládané znalosti žáka 1. stupeň:

VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV (u žáků se specifickými poruchami učení) Růžena Blažková

16. žákcharakterizujeatřídízákladnírovinnéútvary

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

Transkript:

Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka nestihl. (5 minut) 3) Kolikrát je menší je úhel 0 45 než úhel 6? (8 krát) 4) Kolik cm 2 je jedna šestnáctina z jednoho m 2? a) 6,25 cm 2 b) 16 cm 2 c) 625 cm 2 d) 1 600 cm 2 e) jiný výsledek 5) Rozhodněte o každém z následujících tvrzení, zda je pravdivé (A), či nikoli (N). 6) Rozhodněte o každém z následujících tvrzení, zda je pravdivé (A), či nikoli (N). 7) Kolik cm 3 vznikne sečtením: 5 dm 3 32 cm 3 20 mm 3 + 3,2 l + 0,78 hl + 0,02 m 3 = (106 232,02 cm 3 ) 8) Vypočtěte, kolik procent je 75 cm 2 z 1,5 m 2. a) 50 % b) 0,05 % c) c) 5 % d) 0,5 % 9) 1 hodina a 40 minut je a) 5/72 dne b) 3/52 dne c) 5/48 dne d) 2/45 dne e) 5/42 10) Kolik metrů je: 5 km 12m 2 cm = m 11) Převeďte 56,002 m na metry, decimetry, centimetry a milimetry: 56,002 m = m dm cm mm 12) Rozhodněte o každém z následujících tvrzení, zda je pravdivé: a) Všechnu vodu z plného válce o objemu 27,5 l je možné přelít do krychle o hraně 0,3 m A N b) Pole o celkové výměře 150 ha je menší než vesnice o rozloze 1 500 000 m 2. A N c) Petr hodil míčem 0,023 km, což bylo méně než Pavel, který hodil 20 300 mm. A N 1

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3]. 2) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-1;3];L[6;4]; M[3;0]. -3 3) Dušan si přivydělává v reklamní agentuře přepisováním údajů z dotazníků do počítače. Počet zpracovaných dotazníků (d) je přímo úměrný počtu minut (m) strávených u počítače. Dušan změřil, že za 20 minut přepíše 8 dotazníků. V tabulce doplňte chybějící hodnoty. 4) Zásoby jídla v základním horolezeckém táboře vystačí čtyřem osobám na 6 dnů. Počet dnů (d), které mohou horolezci strávit v táboře, je nepřímo úměrný počtu osob (o) přebývajících v táboře. V tabulce doplňte chybějící hodnoty. 5) Renata si přivydělává v reklamní agentuře přepisováním údajů z dotazníků do počítače. Počet zpracovaných dotazníků (d) je přímo úměrný počtu minut (m) strávených u počítače. Renata změřila, že za 21 minut přepíše 6 dotazníků. V tabulce doplňte chybějící hodnoty. 6) Zásoba krmiva dovezena na ranč vystačí šesti poníkům na 8 dnů. Počet dnů (d), během nichž se zásoba krmiva spotřebuje, je nepřímo úměrný počtu poníků (p) žijících na ranči. V tabulce doplňte chybějící hodnoty. 2

7) Na obrázku je graf nepřímé úměrnosti pro x > 0. Jaký je zápis této funkce? a) f: y = 4 x b) f: y = 2 x c) f: y = x 4 d) f: y = 4 x 8) Pro kterou z uvedených hodnot proměnné x nabývá funkce f: y = 7 největší funkční hodnoty? x a) x = -1/7 b) x = 1 c) x = 7 d) x = 1/7 9) Určete, která lineární funkce prochází body A[2;2] a B[5;14] a) f: y = 2x 2 b) f: y = 2x + 4 c) f: y = 3x 1 d) f: y = 4x 6 10) Tabulka určuje vztah mezi proměnnými x a y. Který z následujících funkčních předpisů platí pro takový vztah? a) y = 2x + 2 b) y = x + 6 c) y = 3x 2 d) y = 3x + 1 x 4 8 10 12 y 10 22 28 34 11) Tabulka určuje vztah mezi proměnnými x a y. Která z následujících rovnic vyjadřuje tento vztah? a) y = 2(x 5) b) y = 3(x + 1) c) y = 3(x 4) d) y = 2(x 4) x 2 3 4 5 y -6-3 0 3 12) Je dána lineární funkce f: y = 2x 1. Pro které x je f(x) = 0? (1/2) 6 13) Přímá úměrnost je dána rovnicí y = 4x a nepřímá úměrnost je dána rovnicí y = 4. Který z následujících bodů je x průsečíkem grafů těchto funkcí? a) A[1;4] b) B[0;1] c) C[1;-4] d) D[4;1] 14) Lineární funkce prochází doby A 2; 1; B 3;5 a. Nalezněte předpis této lineární funkce b. Načrtněte její graf c. Určete f(-4) d. Pro které x je f(x) = - 2 e. Určete souřadnice průsečíku této funkce s osou y 3

Konstrukční úlohy 1) V trojúhelníku ABC jsou dány souřadnice vrcholů A[0;1]; B[5;-2]; C[0;5]. Narýsujte výšku z vrcholu C. Určete vzdálenost bodu B od přímky AC. 2) V souřadnicovém systému Oxy umístěte úsečku PQ, P[-2;4] a Q[4;0]. Najděte střed S úsečky PQ a zapište jeho souřadnice. 3) V souřadnicovém systému Oxy jsou umístěny vrcholy B[1;2], C[-2;5] trojúhelníku ABC. Výška spuštěná na stranu BC z vrcholu A je v a = AP. Pata výšky P leží na souřadnicové osy y a vrchol A na souřadnicové ose x. V obrázku sestrojte body P, A a trojúhelník ABC. 4

4) Trojúhelníku ABC je opsána kružnice k. a) Sestrojte obraz B 1 C 1 úsečky BC ve středové souměrnosti podle středu S. b) Sestrojte obraz bodu A 2 bodu A v osové souměrnosti podle přímky BS. 5) Trojúhelníku ABC je opsána kružnice k. a) sestrojte obraz B 1 bodu B v osové souměrnosti podle přímky CS. B) Sestrojte odbraz A 2 C 2 úsečky AC ve středové souměrnosti podle středu S. 6) Je dán trojúhelník ABC. A) Sestrojte obraz trojúhelníku A 1 B 1 C 1 v osové souměrnosti podle osy úhlu BAC. b) Sestrojte obraz trojúhelníku A 2 B 2 C 2 ve středové souměrnosti podle středu T, které je těžištěm trojúhelníku ABC. C A B 5

7) A) Proveďte náčrtek obecného trojúhelníku ABC, vyznačte v něm výšku v c z vrcholu C a kružnici k trojúhelníku opsanou. Výšku v c protáhněte a průsečík s kružnicí k označte písmenem X. B) V přiloženém obrázku je zobrazena kružnice opsaná trojúhelníku ABC, dva vrcholy trojúhelníku (A,C) a polopřímka CX, na níž leží výška v c. V obrázku sestrojte vrchol B a doplňte trojúhelník ABC. C) V nalezeném trojúhelníku ABC sestrojte výšku v a a vyznačte její patu P. 8) V rovině je umístěn trojúhelník ABC. Sestrojte bod D tak, aby obrazec ABCD tvořil lichoběžník se shodnými úhlopříčkami. Základny lichoběžníku jsou AB a CD. Lichoběžník narýsujte. 9) Na kružnici k leží krajní body úsečky AC. Sestrojte lichoběžník ABCD, jehož všechny vrcholy leží na kružnici k a úhlopříčka AC má stejnou délku jako základna AB. 6

10) Jaký je celkový počet os souměrnosti čtverce a rovnostranného trojúhelníku? a) 5 b) 10 c) 8 d) 7 11) Jaký je celkový počet os souměrnosti následujících rovinných obrazců? a) 12 b) 14 c) 10 12) Jaký počet os souměrnosti má pravidelný osmiúhelník? 13) Rozhodněte o každém z následujících tvrzení, zda je pravdivé, či nikoli: a) všechny tři obrazce A, B, C jsou osově souměrné A N b) oba dva obrazce A, D jsou osově souměrné A N c) přesně tři ze šesti obrazců jsou osově souměrné A N 14) Na přímce o leží bod C a mimo ni leží bod B. a) Narýsujte přímku p, která prochází bodem B a je kolmá k přímce o. Průsečík přímek o, p oznečte S. b) Přímka o rozděluje rovnoramenný trojúhelník ABC na dvě shodné části. Sestrojte chybějící vrchol A trojúhelníku ABC a trojúhelník narýsujte. c) Trojúhelník ABC leží uvnitř čtverce BCDE. Sestrojte dva chybějící vrcholy D, E čtverce BCDE a čtverec narýsujte. d) Sestrojte přímku m, která prochází bodem B a je rovnoběžná s přímkoi AC. 7

15) Ve zvolené polorovině s hraniční přímkou AB sestrojte bod C tak, aby trojúhelník ABC byl pravoúhlý s pravým úhlem při vrcholu C a aby velikost úsečky BC byla 6 cm. 8