Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11



Podobné dokumenty
ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

Funkce pružiny se posuzuje podle průběhu a velikosti její deformace v závislosti na působícím zatížení.

Pružné spoje Projekt realizovaný na SPŠ Nové Město nad Metují

ČSN EN ISO OPRAVA 2

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

Šroubovitá pružina válcová tlačná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí

POŽADAVKY KE ZKOUŠCE Z PP I

Kapitola vstupních parametrů

Pera, klíny, čepy, kolíky, pružiny. Tvorba technické dokumentace

Namáhání na tah, tlak

Šroubovitá pružina válcová tažná z drátů a tyčí kruhového průřezu [in]

C Transportní a upínací přípravky

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

Části a mechanismy strojů 1 KKS/CMS1

Pera, klíny, čepy, kolíky, pružiny.

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové

Šroubovitá pružina válcová zkrutná z drátů a tyčí kruhového průřezu [in] 1.3 Provozní teplota T 200,0 1.4 Provozní prostředí

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Přednáška č.12 Čepy, kolíky, zděře, pružiny

VY_32_INOVACE_C 07 13

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Přetváření a porušování materiálů

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Navrhování konstrukcí z korozivzdorných ocelí

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Části a mechanismy strojů 1 KKS/CMS1

VY_32_INOVACE_C 07 03

Požadavky na technické materiály

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Prvky betonových konstrukcí BL01 3. přednáška

Pružnost a pevnost. 6. přednáška 7. a 14. listopadu 2017

Šroubovaný přípoj konzoly na sloup

Číslo. Relaxace předpínací výztuže. úbytek napětí v oceli při časově neměnné deformaci (protažení) Soudržnost předpínací výztuže s betonem

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

Otázky pro Státní závěrečné zkoušky

Prvky betonových konstrukcí BL01 3. přednáška

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Zkoušky vlastností technických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Ing. Jan BRANDA PRUŽNOST A PEVNOST

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

Ing. Michal Lattner Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

Je-li poměr střední Ø pružiny k Ø drátu roven 5 10% od kroutícího momentu. Šroub zvedáku je při zvedání namáhán kombinací tlak, krut, případně vzpěr

Obchodní akademie, Hotelová škola a Střední odborná škola, Turnov, Zborovská 519, příspěvková organizace,

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Namáhání v tahu a ohybu Příklad č. 2

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost I

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

ŠPIČKOVÉ TECHNICKÉ PRUŽINY

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

PRUŽNOST A PLASTICITA I

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů.

Jednoosá tahová zkouška betonářské oceli

Sylabus přednášek OCELOVÉ KONSTRUKCE. Princip spolehlivosti v mezních stavech. Obsah přednášky. Návrhová únosnost R d (design resistance)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Učební osnova vyučovacího předmětu mechanika. Pojetí vyučovacího předmětu M/01 Strojírenství

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

STROJNICKÉ TABULKY II. POHONY

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 12

Projekt realizovaný na SPŠ Nové Město nad Metují

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 3

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nelineární problémy a MKP

Operační program Vzdělávání pro konkurenceschopnost (OPVK)

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.

Sylabus přednášek OCELOVÉ KONSTRUKCE. Zkoušky oceli. Obsah přednášky. Koutové svary. Značení oceli. Opakování. Tahová zkouška

Téma: Dynamiky - Základní vztahy kmitání

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

PROBLÉMY STABILITY. 9. cvičení

1 Použité značky a symboly

BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

SPOJE OCELOVÝCH KONSTRUKCÍ

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

12. Prostý krut Definice

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

Transkript:

Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 11

Mechanické pružiny http://www.victorpest.com/ I am never content until I have constructed a mechanical model of the subject I am studying. If I succeed in making one, I understand; otherwise I do not. WILLIAM THOMSON (LORD KELVIN)

Obsah Mechanické pružiny Princip činnosti. Rozdělení pružin podle konstrukce. Materiál pružin. Výroba, zkoušení a aplikace pružin. Staticky namáhaná šroubovitá válcová tlačná pružina. Stanovení napětí v průřezu pružiny. Vliv zakřivení drátu. Deformace a tuhost pružiny. Ukončení závěrných závitů. Změna délky pružiny se zatížením. Vzpěrná stabilita. Cyklické namáhání. Namáhání šroubovité válcové tažné pružiny. Kritická frekvence pružiny.

Princip činnosti Pružiny (spring) jsou pružné strojní součásti, které slouží k vyvození síly nebo momentu a k akumulaci mechanické energie. Charakteristickou vlastností pružin je značná schopnost elastické deformace, která je dána použitím materiálu o vysoké poddajnosti nebo vhodným tvarem pružiny. Pružiny zpravidla pracují při proměnlivém zatížení a značných napětích.

Rozdělení pružin podle konstrukce Šroubovité pružiny tlačné válcová válcová s proměnným stoupáním konvexní konkávní kuželová Šroubovité pružina tažná Pružina tažného háku Šroubovitá pružina zkrutná

Rozdělení pružin podle konstrukce Pružné podložky talířová wave ozubená pojistná vydutá Nárazníková pružina Listová pružina Spirálová pružina Svitková pružina

Materiál pružin Ideální materiál pro výrobu pružin by měl mít vysokou mez pevnosti v tahu R m, vysokou mez kluzu R e a nízký modul pružnosti E. U dynamicky zatížených pružin hraje významnou roli také únavová pevnost materiálu. Nejčastěji používaným materiálem jsou uhlíkové a legované oceli. Méně častěji se pružiny vyrábějí z fosforového nebo beryliového bronzu. Materiál pružin se obvykle zpevňuje válcováním za studena (malé průřezy) nebo se tepelně zpracovává kalením a popuštěním. Mez pevnosti pružinového drátu v tahu R S Ad m ut b v krutu R S 0,67R sm us m

Závislost pevnosti drátu na jeho průměru průměr drátu (in) mez pevnosti v tahu (MPa) mez pevnosti v tahu (kpsi) průměr drátu (mm)

Závislost pevnosti drátu na jeho průměru průměr drátu (mm) mez pevnosti v tahu (kpsi) mez pevnosti v tahu (MPa) průměr drátu (in)

Výroba pružin Příprava drátu Svinování drátu Broušení závěrných závitů Kalibrování Povrchová úprava Zkoušení http://www.turnermotorsport.com/

Zkoušení pružin http://www.wagnerspringtest.com/ http://www.instron.com/

Aplikace pružin

Namáhání šroubovité válcové tlačné pružiny Závity šroubových pružin jsou obecně namáhány složeným namáháním, které je kombinací tlaku (tahu), ohybu, krutu a smyku. Pokud má pružina malý úhel stoupání a malý poměr D/d, pak je výsledné napětí dáno superpozicí smykových napětí od kroutícího momentu T a od síly P. Drát před svinutím do pružiny Zatížená pružina Síly v průřezu pružiny

Stanovení napětí v průřezu pružiny Smykové napětí od kroutícího momentu Smykové napětí od posouvající síly t,max Tr J 3Td 4 πd 8PD 3 πd P A d, max 4P πd Výsledné smykové napětí max 8PD 4P 8PD d 8 + + + PD 0, 1 1 5 t,max d, max 3 3 3 + πd πd πd D πd C max 8PD K 0,5 S 3 K + πd S 1 C C D/d, obvykle 3 1 K S smykový korekční faktor, obvykle 1,04 1,17

Vliv zakřivení drátu Rovnice pro maximální smykové napětí v průřezu pružiny max je odvozená pro předpoklad přímého prutu. Zakřivení drátu pružiny vede ke zvýšení napětí na vnitřní straně vinutí a k jeho poklesu na vnější straně. Vliv zakřivení drátu společně s vlivem posouvající síly je vyjádřen Wahlovým nebo Bergsträsserovým faktorem. Protože hodnota obou faktorů se liší o méně než 1%, užití Bergsträsserova faktoru je preferováno. Wahlův faktor Bergsträsserův faktor Korekční faktor zakřivení 4C 1 0,615 K w + 4C 4 C K B 4C + 4 C 3 K C K K B S C ( 4C + ) ( 4C 3)( C + 1) Maximální smykové napětí v průřezu pružiny max 8PD K B 3 πd K C K S 8PD 3 πd

Dovolené napětí a bezpečnost vůči MSP Maximální smykové napětí v průřezu pružiny Bezpečnost vůči MSP K 8PD π d max B 3 nebo K 8PD π d max W 3 n allow max Dovolené napětí v krutu pro šroubovité tlačné pružiny

Deformace a tuhost pružiny Závislost mezi stlačením pružiny a zátěžnou silou lze získat užitím Castiglianovy věty. Podle této věty je posuv působiště osamělé síly roven derivaci deformační energie podle této síly. Deformační energie pružiny T l P l U U + U + t d GJ AG 4 D πd T P, ll ππd DN, J, A 3 3 4FP D N 4 d G P DN + d G U Stlačení pružiny πd 4 Tuhost pružiny P y 4 d G 8 D N k 3 Závislost síla vs. stlačení pružiny síla P 3 U 8 PD N 4 PDN y +, C 4 P d G d G D d 3 8 PD N 4 d G 1 + 1 C 3 8 PD N d G y 4 stlačení pružiny y

Ukončení závěrných závitů Závity šroubovité tlačné pružiny se dělí na činné a závěrné. Závity činné mají rozteč p stanovenou pro požadované stlačení. Provedení závěrných závitů ovlivňuje přenos síly do pružiny a délku pružiny. Celkový počet závitů N N + t a N e N a N e počet činných závitů počet závěrných závitů Type of spring end Term otevřený Plain konec neobrobený otevřený Plain and konec ground obrobený uzavřený Squared konec or neobrobený closed Squared uzavřený konec and obrobený ground Number of end coils, N e 0 1 Total number of coils, N t N a N a +1 N a + N a + Free length, l f pn a +d p(n a +1) pn a +3d pn a +d Solid length, l s d(n t +1) dn t d(n t +1) dn t pitch, p (l f -d)/n a l f /(N a +1) (l f -3d)/N a (l f -d)/n a

Změna délky pružiny se zatížením V závislosti na zatížení se rozlišují čtyři základní stavy pružiny: volný (bez zatížení), předpružený (nejmenší pracovní zatížení), plně zatížený (největší pracovní zatížení) a mezní (pružina je stlačena na dosed závitů). volný (free) předpružený (initial) plně zatížený (operating) mezní (solid) délka síla stlačení pružiny

Vzpěrná stabilita v závislosti na vazbách konců pružin

Cyklické namáhání Pružiny jsou téměř vždy vystaveny cyklickému namáhání, které může vést k únavovému poškození. Únavová pevnost pružinového drátu se zvyšuje kuličkováním (velikost kuliček kolem 0,4 mm). Zimmerli zjistil, že velikost, chemické složení materiálu a mez pevnosti v tahu nemají žádný vliv na mez únavy v krutu, pokud má pružinový drát průměr menší jak 10 mm. Mez únavy v krutu pro pulzující cyklus a neomezenou životnost podle Zimmerliho pro nekuličkovaný drát A 41 MPa M 379 MPa pro kuličkovaný drát A 398 MPa M 534 MPa Podle Gerberova kritéria je mez únavy v krutu: A C M + 1 Rsm C A 1 M R sm Mez pevnosti v krutu R sm R sm 0,67R m

Cyklické namáhání Šroubovité pružiny jsou namáhány buďto tlakovou silou (tlačné pružiny) nebo tahovou silou (tažné pružiny). Navíc jsou pružiny montovány s předpětím, které odpovídá minimálnímu zatížení. V pružině tedy vzniká pulzující zátěžný cyklus v tlaku nebo tahu. Amplituda síly P a P max P min Střední síla Amplituda napětí P m a P K max + P 8 a B 3 P D π d min Střední napětí m K B 8 m 3 P D π d

Cyklické namáhání - Haighův diagram Pro míjivý cyklus R min / max 0 C A M R sm

Namáhání šroubovité válcové tažné pružiny Bezpečnost vzhledem k MSP koncové oko místo A: σ A 16D 4 P + A πd πd ( K) 3 σ 0,75R allowa m n A σ σ allowa A

Namáhání šroubovité válcové tažné pružiny Bezpečnost vzhledem k MSP koncové oko místo B: B 8PD π d ( K ) 3 B 0,4R allowb m n B allowb B

Kritická frekvence pružiny Hmotnost aktivní části pružiny: π d m SLρ. πdna. ρ 4 Kritická úhlová rychlost: k ω nπ, n 1,,3... m ω π f Kritická (vlastní) frekvence např. pro n 1: f 1 k m Oboustranně uložená pružina nebo na jednom konci uložená a na druhém konci harmonicky buzená Porušení pružiny při rezonanci f 1 4 k m Jednostranně uložená pružina (v kontaktu s rovinnou plochou), na druhém konci volná