6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů vědy a techniky. Původně bylo odvozeno pro analýzu chyb měření, ale postupně se ukázalo, že normální rozdělení za jistých poměrně obecných podmínek aproximuje jiná rozdělení. Normální rozdělení lze použít všude tam, kde náhodná veličina vznikla jako výsledek působení součtu velkého počtu drobných náhodných vlivů, které jsou vzájemně nezávislé a žádný nemá dominantní vliv. Funkce hustoty normálního rozdělení (Gaussova křivka) má tvar f(x) = 1 σ (x µ) 2 2 π e 2 σ 2, kde parametry µ a σ > 0 jsou parametry rozdělení plně určující tvar Gaussovy křivky. Distribuční funkce normálního rozdělení nelze vyjádřit pomocí jednoduchých matematických funkcí její hodnoty proto určujeme pomocí tabulek (nebo pomocí vhodného SW). To, že náhodná veličina X má charakter normálního rozdělení značíme X N(µ; σ 2 ). Pro střední hodnotu normálního rozdělení platí EX = µ a pro rozptyl DX = σ 2. Obrázek 1: Vliv změny parametru rozptylu σ 2 na tvar Gaussovy křivky a odpovídající distribuční funkci (σ 2 = 1-modrá křivka, σ 2 = 2-červená křivka,σ 2 = 1/2-zelená křivka) Při hledání hodnot distribuční funkce ve statistických tabulkách používáme normované (standardizované) normální rozdělení s parametry µ = 0 a σ 2 = 1. Distribuční funkci normované normální veličiny značíme Φ(x) a funkci hustoty φ(x). Libovolnou veličinu X N(µ; σ 2 ) můžeme transformovat na veličinu Z = X µ, která má normované σ normální rozdělení Z N(0; 1) a pro distribuční funkce platí ( ) X µ F (x) = Φ σ V Excelu použijeme pro určení hodnot distribuční funkce a funkce hustoty normálního rozdělení funkci 1
Obrázek 2: Vliv změny parametru střední hodnoty µ na tvar Gaussovy křivky a odpovídající distribuční funkci (µ = 1-modrá křivka, µ = 2-červená křivka,µ = 1-zelená křivka) Tabulka 1: Ukázka tabulky hodnot distribuční funkce normovaného normálního rozdělení u Φ(u) u Φ(u) u Φ(u) u Φ(u) u Φ(u) u Φ(u) u Φ(u) 0.00 0.5000 0.50 0.6915 1.00 0.8413 1.50 0.9332 2.00 0.9772 2.50 0.9938 3.50 0.99977 0.01 0.5040 0.51 0.6950 1.01 0.8438 1.51 0.9345 2.01 0.9778 2.52 0.9941 3.52 0.99978 0.02 0.5080 0.52 0.6985 1.02 0.8461 1.52 0.9357 2.02 0.9783 2.54 0.9945 3.54 0.99980 0.03 0.5120 0.53 0.7019 1.03 0.8485 1.53 0.9370 2.03 0.9788 2.56 0.9948 3.56 0.99981 0.04 0.5160 0.54 0.7054 1.04 0.8508 1.54 0.9382 2.04 0.9793 2.58 0.9951 3.58 0.99983 0.05 0.5199 0.55 0.7088 1.05 0.8531 1.55 0.9394 2.05 0.9798 2.60 0.9953 3.60 0.99984 0.06 0.5239 0.56 0.7123 1.06 0.8554 1.56 0.9406 2.06 0.9803 2.62 0.9956 3.62 0.99985 0.07 0.5279 0.57 0.7157 1.07 0.8577 1.57 0.9418 2.07 0.9808 2.64 0.9959 3.64 0.99986 0.08 0.5319 0.58 0.7190 1.08 0.8599 1.58 0.9429 2.08 0.9812 2.66 0.9961 3.66 0.99987 0.09 0.5359 0.59 0.7224 1.09 0.8621 1.59 0.9441 2.09 0.9817 2.68 0.9963 3.68 0.99988 NORMDIST(x;µ;σ;L), kde L je logická hodnota, která určuje, zda hledáme funkci hustoty L=NEPRAVDA nebo distribuční funkce L=PRAVDA. Př.NORMDIST(7;5;2;NEPRAVDA) 0.0880 vrací hodnotu funkce hustoty (nejedná se o pravděpodobnost!) pro normální náhodnou veličinu se střední hodnotou µ = 5 a rozptylem σ 2 = 2 2. Př.NORMDIST(7;5;2;PRAVDA) 0.6915 vrací pravděpodobnost, náhodná veličina, která se řídí normálním rozdělením s parametry µ = 5 a σ = 4 nabude hodnoty menší nebo rovno než 7. Pro distribuční funkci normované normální rozdělení používáme funkci NORMSDIST(x) a platí NORMSDIST(x)=NORMDIST(x;0;1;PRAVDA). Pro standardizaci náhodné veličiny X (transformaci na veličinu s nulovou střední hodnotou a jednotkovým rozptylem) používáme funkci STANDARDIZE(x;µ;σ). 2
Př. Výška v populaci chlapců ve věku 3.5-4 roky má normální rozdělení s průměrem µ = 102 cm a směrodatnou odchylkou σ = 4.5 cm. Určete procento chlapců, kteří budou menší než 90 cm; v rozmezí 95 až 105 cm; větší než 110 cm. Řešení: Označme X N(µ = 102; σ 2 = 4.5 2 ) a použijeme výše uvedené vztahy a funkce P (X 90) = F (90) = NORMDIST (90; 102; 4.5; P RAV DA) = 0.0038 = 0.38% P (95 X 105) = F (105) F (95) = = NORMDIST (105; 102; 4.5; P RAV DA) NORMDIST (95; 102; 4.5; P RAV DA) = = 0.7475 0.0599 = 68.76% P (X > 110) = 1 P (X 110) = 1 F (110) = 1 NORMDIST (110; 102; 4.5; P RAV DA) = 1 0.9623 = 3.77% Pravděpodobnost, že chlapec ve sledovaném věku bude menší než 90 cm je 0.38%, pravděpodobnost, že bude v rozmezí 95 105 cm je 68.76% a pravděpodobnost, že chlapec bude větší než 110 cm je 3.77%. Pravidlo 3 SIGMA Pro náhodnou veličinu s normálním rozdělením platí tzv. pravidlo 3 SIGMA, které na základě tvaru hustoty určuje, že pro normální veličinu s parametry µ a σ bude téměř 70% hodnot ležet ve vzdálenosti menší než 1 směrodatná odchylka od průmeru µ, přesněji 68.27% hodnot leží v intervalu (µ σ; µ + σ), 95.45% hodnot leží v intervalu (µ 2σ; µ + 2σ), resp. přesně 95% hodnot leží v intervalu (µ 1.96σ; µ + 1.96σ), 99.73% hodnot leží v intervalu (µ 3σ; µ + 3σ), resp. přesně 99% hodnot leží v intervalu (µ 2.57σ; µ + 2.57σ), Kvantily a kritické hodnoty normálního rozdělení Kritická hodnota normálního rozdělení z α je číslo, které náhodná veličina X N(µ; σ 2 ) překročí s pravděpodobností α, tedy P (X > z α ) = α Kvantil normálního rozdělení je u α pravděpodobností α, tedy je číslo, které náhodná veličina X N(µ; σ 2 ) nepřekročí s P (X < u α ) = α Pro kvantily a kritické hodnoty tedy platí z α = u 1 α, hodnoty kvantilů, případně kritických hodnot pro normované normální rozdělení jsou tabelovány a pro normální rozdělení s parametry µ a σ platí x α = u α σ + µ, kde x α je kvantil obecného normálního rozdělení a u α je kvantil normovaného normálního rozdělení. 3
Obrázek 3: Pravidlo 3 SIGMA Tabulka 2: Tabulka kvantilů normovaného normálního rozdělení α 0.6 0.65 0.7 0.75 0.8 0.85 u α 0.2533 0.3853 0.5244 0.6745 0.8416 1.0364 α 0.9 0.925 0.95 0.975 0.99 0.995 u α 1.2816 1.4395 1.6449 1.9600 2.3263 2.5758 u p = u 1 p 6.1.1 Centrální limitní věta Necht X i, i = 1, 2,..., n jsou vzájemně nezávislé náhodné veličiny se stejným rozdělením, E(X i ) = µ 0, D(X i ) = σ0. 2 Pak platí n X = X i N(nµ 0 ; nσ0) 2 X = 1 n i=1 n X i N(µ 0 ; σ0/n) 2 i=1 V Excelu použijeme pro určení kvantilů normálního rozdělení funkci NORMINV(α;µ;σ). Př.NORMINV(0.95;2;3) 6.93 nám poskytuje informaci, že pro normální náhodnou veličinu s parametry µ = 2 a rozptylem σ 2 = 3 2 bude 95% měření menších než 6.93. Pro distribuční funkci normované normální rozdělení používáme funkci NORMSINV(α) a platí NORMSINV(α)=NORMINV(α;0;1). Př. Výška v populaci chlapců ve věku 3.5-4 roky má normální rozdělení s průměrem µ = 102 cm a směrodatnou odchylkou σ = 4.5 cm. Určete výšku v tak, aby jsme mohli prohlásit, že 95% chlapců je menších než námi nalezená výška. Řešení: Označme X N(µ = 102; σ 2 = 4.5 2 ) a hledáme v tak, aby platilo P (X v) = 95%. Tedy použiji funkci NORMINV(0.95;102;4.5) a dostávám hodnotu v = 109.40 cm. Tedy výška 109.4 cm nám rozdělila chlapce na oddělila skupinu 5% nejvyšších chlapců. 4
Obrázek 4: Kvantil a kritická hodnota normálního rozdělení 6.2 Rovnoměrné rozdělení R (a; b) a, b R, a < b Náhodná veličina X může nabýt libovolné reálné hodnoty x z intervalu (a; b) a její výskyt na celém intervalu (a; b) je stejně možný. Pak X má rovnoměrné rozdělení na intervalu (a; b) a plocha pod křivkou hustoty tvoří obdélník, jehož plocha je rovna 1. To znamená, že X jistě nabude hodnoty 1 z intervalu (a; b). Jelikož šířka tohoto intervalu je (b a), výška hustoty musí být rovna b a (nebot integrál přes hustotu dá 1). { 1 pro x a; b Funkce hustoty f (x) = b a 0 jinde 0 pro x a x a Distribuční funkce F (x) = pro x (a; b) b a 1 pro x b Střední hodnota a rozptyl E(X) = a + b 12 D(X) = (a b)2 12 Použití chyby při zaokrouhlování v numerických výpočtech výchozí rozdělení při simulaci náhodných veličin na počítači, ostatní náhodné veličiny lze získat pomocí různých transformací doba, která uplyne od náhodně zvoleného okamžiku do nastoupení jevu, který se pravidelně opakuje časovém intervalu (a; b) libovolná spojitá veličina z intervalu (a; b), o jejímž chování na tomto intervalu není nic bližšího známo (nouzové řešení v případě neznalosti skutečného rozdělení) 5
Obrázek 5: Funkce hustoty a distribuční funkce rovnoměrného rozdělení 6.3 Exponenciální rozdělení Exp (λ), λ > 0 Exp (δ), δ = 1 λ Náhodná veličina X může nabýt libovolné reálné hodnoty x z intervalu [0, ). { λe Funkce hustoty f (x) = λx = 1 δ e x/δ pro x 0 0 pro x < 0 { 0 pro x < 0 Distribuční funkce F (x) = 1 e λx = 1 e x/δ pro x 0 Střední hodnota a rozptyl E(X) = 1 λ = δ D(X) = 1 λ 2 = δ2 Použití Obrázek 6: Funkce hustoty a distribuční funkce exponenciálního rozdělení doba čekání na určitou náhodnou událost, např. dobu životnosti součástek, které nepodléhají opotřebení λ označuje počet událostí za jednu časovou jednotku δ charakterizuje průměrnou dobu mezi výskytem dvou událostí jestliže se počet výskytů událostí během nějakého časového intervalu řídí Poissonovým rozdělením s parametrem λ, pak doba mezi výskytem dvou událostí se řídí exponenciálním rozdělením s parametrem λ 6
Jak bylo uvedeno, exponenciální rozdělení se spolu s Weibullovým hodí pro modely životnosti a přežití, k dispozici máme pouze funkci distribuční EXPONDIST, inverzní funkci je třeba matematicky odvodit. 6.4 Další spojitá rozdělení Jak již bylo uvedeno dříve, patří normální rozdělená k nejvýznamnějším modelům. V praxi se však můžeme setkat i s daty, která nemají symetrický charakter (jako normální rozdělení) nebo máme jiné závažné důvody nepovažovat data za normální. V takovémto případě můžeme vhodnou transformací dat (pomocí logaritmu, druhé mocniny, převrácené hodnoty, Fisherova transformace z = 1 2 ln 1 + x,... ) převést data na novou veličinu, které již 1 x lépe odpovídá normálnímu rozdělení, provést analýzu na transformované veličině a získané výsledky zpětně modifikovat pro naši původně studovanou náhodnou veličinu. Dále máme možnost pracovat přímo s jinými modely spojité náhodné veličiny nebo použít statistické metody, které nejsou založeny na konkrétním typu rozdělení (tzv. neparametrické metody), případně metody, které nejsou příliš citlivé na porušení předpokladu normality dat (tzv. robusní metody). Excel nám nabízí celou řadu funkcí pro různé typy rozdělení, jedná se vždy o funkce distribuční (resp. funkci hustoty)- výsledkem je pravděpodobnost, že sledovaná veličina bude menší než zadaná hodnota a inverzní funkci k funkci distribuční-výsledkem je číslo tak, aby pravděpodobnost, že sledovaná veličina bude menší než výsledné hodnota je námi zadaná pravděpodobnost. Logaritmicko normální rozdělení se hodí pro modely doby přežití, minimální smrtelné dávky v homogenní skupině a podobně, excelovské funkce jsou LOGNORMDIST a LOGINV. Beta rozdělení je rozdělení, které v závislosti na svých parametrech může nabývat různých tvarů a může být použito v různých situacích, příslušné funkce jsou BETADIST a BETAINV. Gamma rozdělení patří k dalším velice univerzálním rozdělením, funkce jsou GAMMADIST a GAMMAINV. Studentovo t-rozdělení,χ 2 rozdělení a F rozdělení jsou rozdělení velmi používaná pro hodnocení různých statistických testů, příslušné excelovské funkce jsou TDIST a TINV, CHIDIST a CHIINV a FDIST a FINV. U všech funkcí je vždy třeba důkladně prostudovat nápovědu, protože například některé inverzní funkcí vrací místo kvantilů hodnoty kritických hodnot. 7
Obrázek 7: Graf hustoty vybraných rozdělení 6.5 Některá vícerozměrná rozdělení, jejich populační charakteristiky V rámci teoretických modelů rozdělení náhodné veličiny byly vypracovány též modely pro vícerozměrná data. Z nich nejpoužívanější je model vícerozměrného normálního rozdělení. Kromě charakteristik polohy a variability jednotlivých znaků sledujeme při vícerozměrných modelech též vzájemnou souvislost veličin. Nejpoužívanějšími charakteristikami pro sledování souvislosti dvou náhodných veličin je kovariance a korelace. Kovarianci dvou náhodných veličin (dvou teoretických populací) X a Y určíme podle vztahu σ X,Y = cov(x, Y ) = E((X EX) (Y EY )) = E(XY ) E(X)E(Y ), kovariance může nabývat libovolné hodnoty (kladné i záporné a libovolně velké) Výběrová kovariance je odpovídající charakteristika z náhodného výběru a spočteme ji podle vztahu cov(x, y) = 1 n (x i x)(y i y) n 1 Korelace (Pearsonův koeficient) dvou náhodných veličin (dvou teoretických populací) X a Y určíme podle vztahu ρ X,Y = cor(x, Y ) = cov(x, Y ) σ X σ Y, kde σ X a σ Y jsou odmocniny z rozptylů příslušných náhodných veličin. Kovariance může nabývat pouze hodnot z intervalu 1; 1. 8 i=1
Výběrová korelace je odpovídající charakteristika z náhodného výběru a spočteme ji podle vztahu cor(x, y) = cov(x, y) s x s y, kde s X a s Y jsou výběrové směrodatné odchylky příslušných dat. V Excelu použijeme pro výpočet výběrové kovariance funkci COVAR(oblast dat X;oblast dat Y) a pro výpočet výběrové korelace funkci CORREL(oblast dat X;oblast dat Y). Obrázek 8: Graf hustoty dvourozměrného normálního rozdělení a odpovídající vrstevnice veličiny X N(µ 1 = 0; µ 2 = 0; σ 1 = 1; σ 2 = 1; ρ = 0) Obrázek 9: Graf hustoty dvourozměrného normálního rozdělení a odpovídající vrstevnice veličiny X N(µ 1 = 0; µ 2 = 0; σ 1 = 1; σ 2 = 4; ρ = 0) 9
Obrázek 10: Graf hustoty dvourozměrného normálního rozdělení a odpovídající vrstevnice veličiny X N(µ 1 = 0; µ 2 = 0; σ 1 = 1; σ 2 = 1; ρ = 0.5) Obrázek 11: Graf hustoty dvourozměrného normálního rozdělení a odpovídající vrstevnice veličiny X N = (µ 1 = 0; µ 2 = 0; σ 1 = 1; σ 2 = 4; ρ = 0.5) 6.6 Příklady 1. Mějme náhodnou veličinu X R (8; 12.5). Spočtěte (a) P (X = 9.75); (b) P (X > 11.3); (c) P (8.8 < X < 10.1); (d) 50% kvantil x 0.5. (e) Nakreslete graf hustoty náhodné veličiny X a znázorněte v něm P (8.8 < X < 10.1). (f) Nakreslete graf distribuční funkce náhodné veličiny X a znázorněte v něm x 0.5. Řešení: Hustota pravděpodobnosti je konstantní na intervalu (8; 12.5), jinde je nulová. Tedy f (x) = { 1 12.5 8 = 1 = 0.222 pro x (8; 12.5) 4.5 0 jinde. Distribuční funkce pro x (8; 12.5) je pak F (x) = x 8 4.5. 10
(a) P (X = 9.75) = 0 jedná se o spojitou náhodnou veličinu (b) P (X > 11.3) = 1 P (X 11.3) = 1 F (11.3) = 1 11.3 8 = 0.267 4.5 (c) P (8.8 < X < 10.1) = F (10.1) F (8.8) = 0.467 0.178 = 0.289 (d) F (x 0.5 ) = 0.5 x 0.5 = 0.5 (12.5 8) + 8 = 10.25 (e) Hustota rovnoměrného rozdělení R (8; 12.5) Obrázek 12: Funkce hustot rovnoměrného rozdělení (f) Distribuční funkce rovnoměrného rozdělení R (8; 12.5) Obrázek 13: Distribuční funkce rovnoměrného rozdělení 2. Náhodná veličina má rovnoměrné rozdělení na intervalu (0; 5). Určete: (a) pravděpodobnost, že náhodná veličina X nabude hodnoty vyšší než 4, za předpokladu, že náhodná veličina již nabyla hodnoty 2. (b) pravděpodobnost, že náhodná veličina nabude hodnoty nižší než 4, za předpokladu, že náhodná veličina již nabyla hodnoty 2. Řešení: Distribuční funkce této náhodné veličiny je F (x) = x 0 5 0 = x 5. (a) P (X > 4 X > 2) = (b) P (X < 4 X > 2) = P (X > 4) P (X > 2) = 1 F (4) 1 F (2) = 1 4/5 1 2/5 = 1 5 5 3 = 1 3 P (2 < X < 4) P (X > 2) = F (4) F (2) 1 F (2) = 4/5 2/5 1 2/5 = 2 5 5 3 = 2 3 11
3. Předpokládejme, že průměrná doba zpracování zakázky je 30 sekund a řídí se exponenciálním rozdělením pravděpodobnosti. (a) Určete pravděpodobnost, že zakázka se zpracuje do 1 minuty. (b) Určete dobu, do níž se zakázka zpracuje s pravděpodobností 0.95. Řešení: Doba zpracování zakázky (v sekundách) X Exp (δ = 30) = Exp ( λ = 1 ) 30 (a) P (X < 60) = P (X 60) = F (60) = 1 e 60/30 = 0.865 (b) F (t) = 0.95 t = 30 ln 0.05 = 89.87[s] 4. Výrobce udává, že střední doba životnosti určité součástky je 4 roky. Za předpokladu, že životnost součástky se řídí exponenciálním rozdělením pravděpodobnosti a údaj daný výrobcem je pravdivý, spočtěte pravděpodobnost, že životnost náhodně vybrané součástky bude kratší, než půl roku. Řešení: Životnost součástky X Exp (δ = 4). Platí P (X < 0.5) = P (X 0.5) = F (0.5) = 1 e 0.5/4 = 0.118. 5. Mějme náhodnou veličinu X Exp (δ = 11). Spočtěte (a) P (X = 27.5); (b) P (X < 9.9); (c) P (18.5 X 54.7); (d) 10% kvantil x 0.1. (e) Nakreslete graf hustoty náhodné veličiny X a znázorněte v něm P (18.5 X 54.7) a x 0.1. Řešení: Distribuční funkce této náhodné veličiny je F (x) = 1 e x/11 pro x 0. (a) P (X = 27.5) = 0 jedná se o spojitou náhodnou veličinu (b) P (X < 9.9) = F (9.9) = 1 e 9.9/11 = 0.593 (c) P (18.5 X 54.7) = F (54.7) F (18.5) = 0.993 0.814 = 0.179 (d) F (x 0.1 ) = 0.1 x 0.1 = 11 ln (1 0.1) = 1.159 (e) Hustota exponenciálního rozdělení Exp (δ = 11) 6. Čekáme na autobus v horské vesnici. Dlouhodobým pozorováním bylo zjištěno, že zpoždění odjezdu autobusu ze zastávky se přibližně řídí normálním rozdělením se střední hodnotou 10 min. a rozptylem 25 (min 2 ). Spočtěte: (a) ppst, že autobus bude mít zpoždění více než 20 min.; (b) ppst, že autobus odjede dříve; 12
Obrázek 14: Funkce hustoty exponenciálního rozdělení (c) ppst, že autobus odjede o 0 až 2.5 min. dříve; (d) ppst, že autobus bude mít zpoždění více než 20 min., jestliže již má zpoždění 15 min.; (e) čas, ve který bychom měli být na zastávce, aby nám autobus neujel alespoň na 90%. (f) nakreslete graf hustoty pravděpodobnosti a v něm znázorněte ppst, že autobus odjede o 0 až 2.5 min. dříve; Řešení X... zpoždění autobusu X N(10; 25) 0.9772 { ( }} ){ 20 10 (a) P (X > 20) = 1 P (X 20) = 1 φ = 0.0228 5 } {{ } ( ) 0 10 (b) P (X < 0) = P (X 0) = F (0) = φ = φ( 2) = 1 φ(2) = 5 = 0.0228 ( ) 2.5 10 (c) P ( 2.5 < X < 0) = F (0) F ( 2.5) = 0.0228 φ = 5 = 0.0228 φ ( 2.5) = 0.0228 1 + φ(2.5) = 0.0228 1 + 0.9938 = 0.0166 P (X > 20) (d) P (X > 20 X > 15) = P (X > 15) = 1 F (20) 1 F (15) = 1 φ ( 10 ) 5 1 φ ( ) = 1 0.9772 5 1 0.8413 = 0.0228 0.1587 = 5 0.1436 = 14.36% (e) x 0.1 = µ + σu 0.1 = 10 5 1.2816 = 3.592 7. Náhodná proměnná X má normální rozdělení s parametry µ, σ 2 0. Zjistěte následující pravděpodobnosti (a) P (X (µ σ; µ + σ)) (b) P (X (µ 2σ; µ + 2σ)) (c) P (X (µ 3σ; µ + 3σ)) 2 13
Řešení ( ) ( ) µ + σ µ µ σ µ (a) P (µ σ < X < µ + σ) = F (µ + σ) F (µ σ) = φ φ σ σ φ (1) φ ( 1) = φ (1) 1 + φ (1) = 0.68268 (b) P (µ 2σ < X < µ + 2σ) = φ (2) φ ( 2) = 0.9545 (c) P (µ 3σ < X < µ + 3σ) = φ (3) φ ( 3) = 0.9973 = 8. Pro náhodnou proměnnou s normálním rozdělením platí, že Zjistěte hodnoty parametrů µ, σ 2 0. Řešení: u 0.6 = 0.2533 = 4 µ σ P (X 4) = 0.6, P (X 0) = 0.8 neznámých získáme řešení µ = 3.08, σ 2 0 = 13.35. a současně u 0.8 = 0.8416 = µ. Řešením soustavy dvou rovnic o dvou σ 9. Telefonní ústředna spojí průměrně 76 hovorů za minutu a jejich počet se řídí Poissonovým rozdělením. Spočtěte pravděpodobnost, že ústředna za minutu spojí více než 80 hovorů. 14
Řešení: X P o(76) X {0, 1,...} P (X > 80) = 1 P (X 80) = 1 P (0) P (1)... P (80). Výpočet standardním způsobem je velice náročný. Prověříme předpoklady možných aproximací. Rozptyl náhodné veličiny má hodnotu 76, tzn. podmínka aproximace Poissonova rozdělení rozdělením normálním je splněna (σ 2 9). Platí tedy X N(76; 76) ( ) 80.5 76 P (X > 80) = 1 P (X 80) = 1 F P oisson (80) = 1 F Norm. (80.5) = 1 φ 8.718 1 0.6985 = 0.3015. = 10. Zaokrouhlovací chyba na celé jednotky má rovnoměrné rozložení na intervalu (-0.5; 0.5). Spočtěte pravděpodobnost, že součet 100 zaokrouhlovacích chyb (nezávislých) bude v absolutní hodnotě menší než 5. Řešení: 100 Označme S = X i N(100 0; 100 12 ) i=1 Zaokrouhlovací chyba X i R( 0.5; 0.5) Máme zjistit P ( 5 < S < 5) = F (5) F ( 5) = φ 5 100 12 1 + φ 5 100 12 = 0.9164 15