8 Střední hodnota a rozptyl



Podobné dokumenty
7 Pravděpodobnostní modely úvod

11 Rovnoměrné a normální rozdělení psti

Náhodná veličina a rozdělení pravděpodobnosti

Diskrétní náhodná veličina. November 12, 2008

4 Numerické derivování a integrace

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

pravděpodobnosti 10 Poissonovo a exponenciální rozdělení pravděpodobnosti

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

NÁHODNÁ VELIČINA. 3. cvičení

I. D i s k r é t n í r o z d ě l e n í

7. Rozdělení pravděpodobnosti ve statistice

p(x) = P (X = x), x R,

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

Téma 22. Ondřej Nývlt

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Základy teorie pravděpodobnosti

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Definice spojité náhodné veličiny zjednodušená verze

Vzorová písemka č. 1 (rok 2015/2016) - řešení

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

PRAVDĚPODOBNOST A STATISTIKA

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Náhodné chyby přímých měření

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

PRAVDĚPODOBNOST A STATISTIKA

2 Hlavní charakteristiky v analýze přežití

1 Rozptyl a kovariance

Diskrétní náhodná veličina

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Stavový model a Kalmanův filtr

Fyzikální korespondenční seminář MFF UK

Náhodný vektor a jeho charakteristiky

NÁHODNÁ VELIČINA. Podle typu výběrového prostoru rozlišujeme dva základní druhy NV Diskrétní (nespojitou) náhodnou veličinu Spojitou náhodnou veličinu

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

Vybraná rozdělení náhodné veličiny

Téma je podrobně zpracováno ve skriptech [1], kapitola

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Tomáš Karel LS 2012/2013

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Náhodné (statistické) chyby přímých měření

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Poznámky k předmětu Aplikovaná statistika, 4. téma

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

Praktická statistika. Petr Ponížil Eva Kutálková

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka?

Pravděpodobnost a aplikovaná statistika

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

Řešení. Označme po řadě F (z) Odtud plyne, že

NÁHODNÝ VEKTOR. 4. cvičení

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

Chyby měření 210DPSM

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

Pravděpodobnost a matematická statistika

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

MATEMATICKÁ STATISTIKA - XP01MST

Poznámky k předmětu Aplikovaná statistika, 4. téma

8. Normální rozdělení

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Derivace a monotónnost funkce

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

Odhad parametrů N(µ, σ 2 )

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

MATEMATICKÁ STATISTIKA

Výběrové charakteristiky a jejich rozdělení

Digitální učební materiál

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Lineární funkce, rovnice a nerovnice

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

MATEMATIKA III V PŘÍKLADECH

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Kapitola 7: Integrál. 1/17

Statistika I (KMI/PSTAT)

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Transkript:

Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení této přednášky: po přečtení kapitoly 10 ve skriptech [1] můžete absolvovat str. 165-168 (otázky i příklady). bed b@d OBSAH 1/39

Nejdůležitějšími pojmy této přednášky jsou průměr, modus a medián souboru naměřených hodnot ; rozptyl souboru naměřených hodnot (= empirický rozptyl); směrodatná odchylka souboru naměřených hodnot (= empirická směrodatná odchylka) (JEDNODUCHÉ, nebudeme probírat, prosím přečtěte si ve skriptech [1] strany 154-159) distribuční funkce náhodné veličiny X vzorce pro diskrétní i pro spojitou veličinu; střední hodnota a rozptyl náhodné veličiny X vzorce pro diskrétní i pro spojitou veličinu. bed b@d OBSAH 2/39

Uvedené pojmy budou vysvětleny na příkladech 2 a 5 z minulé přednášky a na dalších čtyřech příkladech v této přednášce. Vraťme se k příkladu 2 z minulé přednášky (X = počet šestek v pěti hodech kostkou; situace popsána tzv. pravděpodobnostní funkcí, veličina X je diskrétní veličina). A vraťme se také k příkladu 5 z minulé přednášky (X = životnost žárovky do temné komory; situace popsána tzv. hustotou, veličina X je spojitá veličina). bed b@d OBSAH 3/39

Existuje nějaký matematický pojem, který by dokázal spojit jak popis diskrétní veličiny (pravděpodobnosti počítáme pomocí sumy), tak popis spojité veličiny (pravděpodobnosti počítáme pomocí integrálu)? Existuje, a jmenuje se distribuční funkce. Definice: Distribuční funkce F (x 0 ) náhodné veličiny X se definuje jako pravděpodobnost, že náhodná veličina X nabude hodnotu menší než x 0. F (x 0 ) = P (X < x 0 ). bed b@d OBSAH 4/39

Způsob výpočtu: F (x 0 ) = P (X (, x 0 )) = k<x 0 p(k) pro diskrétní X; x0 f(x) dx pro spojitou X. (1) (POZOR, ROZLIŠUJTE f hustotu od F distribuční fce! case-sensitivity) Je jasné, že pak hodnoty distribuční funkce vypočteme buď diskrétním, nebo spojitým přístupem, ale samotný pojem distribuční funkce popisuje jak veličiny spojité, tak veličiny diskrétní. Vypočtěme distribuční funkci v příkladech 2 a 5 z minulé přednášky: bed b@d OBSAH 5/39

Ad příklad 2: v tabulce jsou dány hodnoty pravděpodobnostní funkce p(k): k 0 1 2 3 4 5. p(k) 0,4019 0,4019 0,1608 0,0321 0,0032 0,0001 Sestrojte příslušnou distribuční funkci F (x) této veličiny. Řešení: užijme vzorec 1 pro každé reálné x dostaneme funkci F (x) na obrázku: bed b@d OBSAH 6/39

bed b@d OBSAH 7/39

Ad příklad 5: hustota životnosti X žárovky je dána vztahem 0 pro x < 0; f(x) = 1 100 e 100 1 x pro x 0. Vypočtěte distribuční funkci F (x) této veličiny (opět POZOR rozlišujte f od F ). Už v minulé přednášce jsme viděli obrázek hustoty f(x): bed b@d OBSAH 8/39

bed b@d OBSAH 9/39

Nyní se podíváme na obrázek distribuční funkce F (x): Tato byla získána integrací hustoty f(x) podle vztahu 1: x 0 pro x 0; F (x) = f(t) dt = 1 e 1 100 x pro x > 0. bed b@d OBSAH 10/39

1 0.8 0.6 0.4 0.2 0.4 0.2 0 0.2 0.4 0.6 0.8 1 Co mají společného grafy na stranách 7 a 11? bed b@d OBSAH 11/39

Jedná se o distribuční funkce v případě diskrétním (ad př. 2 z minulé přesnášky) i v případě spojitém (ad příklad 5 z minulé přednášky). Přestože spojitý případ se od diskrétního liší, existuje několik vlastností distribuční funkce, které platí pro všechny situace. Tyto vlastnosti lze odvodit z definice distribuční funkce (z toho, že distribuční funkce je jistá pravděpodobnost, tj. hodnota v intervalu 0; 1 ). Například pro x 1 < x 2 máme z definice F (x 1 ) = P (X (, x 1 )), F (x 2 ) = P (X (, x 2 )), a protože druhý z intervalů je delší než ten první, musí platit F (x 1 ) F (x 2 ). vlastnosti přehledně: 1. lim x F (x) = 0; lim x F (x) = 1. bed b@d OBSAH 12/39

2. F je neklesající funkce (jedná se o jakousi kumulativní pravděpodobnost, která pro rostoucí hodnoty proměnné x může jen růst, nikoli klesat). 3. Funkce F je zleva spojitá v každém bodě, tj. limita zleva se rovná funkční hodnotě v každém bodě: lim x x 0 F (x) = F (x 0 ) pro libovolné reálné x 0. 4. U obou typů veličin (diskrétní i spojité) platí P (X a; b)) = F (b) F (a). bed b@d OBSAH 13/39

Klíčová je vlastnost číslo 4: pro diskrétní i spojitou veličinu X platí vztah P (X a; b)) = F (b) F (a). (tento vztah pro spojitou veličinu není nic než jiného než Newton-Leibnizova formule pro výpočet určitého integrálu, ale po zavedení pojmu distribuční funkce je jeho platnost rozšířena i pro diskrétní veličiny). Pro výpočet pravděpodobností platí tedy tento klíčový vztah: P (X a; b)) = F (b) F (a) = b a k a;b) p(k) pro diskrétní X; f(x) dx pro spojitou X. bed b@d OBSAH 14/39

Podívejme se nyní na další příklady, ve kterých se naučíme pracovat s distribuční funkcí. Příklad 8.1. Náhodná veličina X je popsána distribuční funkcí 0,5 pro 0 < x 1; F (x) = 0,7 pro 1 < x 3;?? jinak. Určete následující pravděpodobnosti, pokud je to možné: a) P (X > 1); b) P (X < 1); c) P (X 1); d) P (X 1). bed b@d OBSAH 15/39

Řešení: Distribuční funkci známe jen na části reálné osy, ale jsme schopni pomocí ní určit všechny uvedené pravděpodobnosti: Nejednodušší je b), protože to je přesně definice funkce F (x) v bodě x = 1: P (X < 1) = F (1) = 0,5. Ze zadání jsme také schopni určit hodnotu pravděpodobnostní funkce p v bodě x = 1, protože ta je rovna výšce schodu distribuční funkce v bodě x = 1, A TEDY p(1) = 0,2. Odtud lze určit b): P (X 1) = P (X < 1)+P (X = 1) = F (1)+p(1) = 0,5+0,2 = 0,7. a) a c) dopočítáme z toho faktu, že od hodnoty 1 bed b@d OBSAH 16/39

odečteme pravděpodobnost opačného jevu: P (X > 1) = 1 P (X 1) = 1 0,7 = 0,3; P (X 1) = 1 P (X < 1) = 1 0,5 = 0,5. Tyto patálie se mohou objevit pouze u diskrétní veličiny. U spojité veličiny P (X = 1) = 0 vždy, a proto vždy platí pro spojitou veličinu P (X < 1) = P (X 1). Podívejme se tedy také na distribuční funkci spojité veličiny: Vezměme opět příklad 5 z minulé přednášky: bed b@d OBSAH 17/39

Příklad 8.2. Distribuční funkce životnosti žárovky X je dána vztahem 0 pro x 0; F (x) = 1 e 100 1 x pro x > 0. Určete pravděpodobnosti a) P (X < 1) = P (X 1); b) P (X 30) = P (X > 30); c) P (X 80; 120 ). Řešení: u spojité veličiny nás nezajímá, zda je v intervalech kulatá či ostrá závorka, protože to při integraci nehraje roli. Také je ideální, že je zadána bed b@d OBSAH 18/39

distribuční funkce. Ta totiž v sobě uchovává výsledek integrace a pro výpočet integrálů stačí už jen dosadit meze!! P (X < 1) = F (1) = 1 e100 1. = 0,00995; P (X > 30) = 1 P (X 30) = 1 F (30) = e 30. 100 = 0,74082; P (80 < X < 120) = F (120) F (80) = e 80 100 e 120 100 = 0,14813. Viz prostřední řádek výpočtu: s využitím opačného jevu se snažíme nerovnosti typu X > x 0 převést na výraz využívající pravděpodobnost X < x 0, a pak dosadit distribuční funkci v daném x 0. Důležitým cvičením je v každém z uvedených tří případů nakreslit obrázek plochy, jejíž obsah počítáme (viz minulá přednáška). bed b@d OBSAH 19/39

Příklad 8.3. Domácí úkol na příští přednášku: s využitím vztahu F (x) = x f(t) dt vypočtěte F (x), jeli zadána hustota f(x) na obrázku: 1 y0.5 1 0 0.5 1 x 2 3 bed b@d OBSAH 20/39

Důležitými parametry pro popis náhodné veličiny jsou střední hodnota a rozptyl. Střední hodnota náhodné veličiny X je, zhruba řečeno, průměrná hodnota, kterou naměříme. Přesněji řečeno, jedná se o teoretický průměr = průměr hodnot měření veličiny X, který bychom většinou spočetli, pokud by se měřená veličina chovala přesně podle teoretického popisu zadaného distribuční funkcí F (x). Studenti musí opět pečlivě vážit, zda při výpočtu užít diskrétní či spojitou variantu vzorce: bed b@d OBSAH 21/39

EX = k Ω k p(k) pro diskrétní X; + x f(x) dx pro spojitou X. (3) Dalším důležitým parametrem je rozptyl: ten udává, jak moc by se odchylovaly měřené hodnoty X od své střední hodnoty EX, pokud by se veličina X chovala přesně podle teoretického popisu zadaného distribuční funkcí F (x). Vzorec pro výpočet: DX = ( k Ω k2 p(k) ) (EX) 2 pro diskrétní X; + x2 f(x) dx (EX) 2 pro spojitou X. (4) bed b@d OBSAH 22/39

Protože rozměr veličiny DX je čtverec rozměru veličiny X, pro praktické účely potřebujeme znát tzv. směrodatnou odchylku, definovanou jako σ(x) = DX. (5) Směrodatná odchylka je tedy veličina, která nám reprezentuje míru odchylování veličiny X od její střední hodnoty EX a to ve stejných jednotkách jako jsou jednotky veličiny X. bed b@d OBSAH 23/39

Pro názornost: zhruba řečeno, u mnoha veličin platí tzv. pravidlo šesti σ: asi 97,5 procent měření veličiny X (tedy naprostá většina měření veličiny) leží v intervalu EX 3σ; EX + 3σ. Tedy rozptýlenost měření veličiny X lze popsat intervalem šířky 6σ a středem v bodě EX. Více o tomto pravidle bude řečeno u normálního rozdělení pravděpodobnosti. bed b@d OBSAH 24/39

Poznámka: pokud máme k dispozici měření x 1, x 2,..., x n veličiny X, tak odhadem její střední hodnoty EX je průměr těchto měření x = 1 n n x i, odhadem jejího rozptylu DX je empirický rozptyl naměřených hodnot ( ) s 2 = 1 n (x x) 2 1 n =... = x 2 i (x) 2 n n 1 (pomůcka pro zapamatování: průměr čtverců minus čtverec průměru). 1 1 bed b@d OBSAH 25/39

Příklad 8.4. Diskrétní náhodná veličina udává počet gramatických chyb v krátkém textu, platí pro ni 0 pro x 0 F (x) = 0,5 pro x (0; 1 ; 0,8 pro x (1; 2 ; 0,9 pro x (2; 3 ; 0,95 pro x (3; 4 ; 1 pro x (4; ). Určete pravděpodobnost toho, že v textu budou a) méně než dvě chyby; b) právě tři chyby; c) vypočtěte EX, DX. bed b@d OBSAH 26/39

Řešení: Ad a) Nejjednodušší úkol: pouze dosadíme zadání: P (X < 2) = F (2) = 0,8. Ad b,c) Veličina X může nabývat hodnot 0, 1, 2, 3, 4 to plyne z charakteru funkce F (x). Hodnoty pravděpodobnostní funkce jsou rovny výšce schodů v jednotlivých bodech skoku. Pak P (X = 3) = 0,05; pro střední hodnotu platí (vzorec 3) EX = 0 (0,5 0) + 1 (0,8 0,5) + 2 (0,9 0,8) + 3 (0,95 0,9) +4 (1 0,95) = 0,85. DX = 1 0,3 + 2 2 0,1 + 3 2 0,05 +4 2 0,05 0,85 2 = 1,2275. σ = DX. = 1,08. bed b@d OBSAH 27/39

Příklad 8.5. Spojitá náhodná veličina je popsána distribuční funkcí 0 pro x 0 x 4 pro x (0; 2 ; F (x) = x 2 2 2x + 5 2 pro x (2; 3 ; 1 pro x (3; ). Určete a) P (X (1,5; 2,5)); P (X > 2, 5) b) EX, DX; c) x 0 tak, aby veličina X nabývala hodnoty menší než x 0 s pravděpodobností 0,8. bed b@d OBSAH 28/39

Řešení: ad a) získáme pomocí vztahu 2: P (X (1,5; 2,5)) = F (2,5) F (1, 5) = 0,25; P (X > 2,5) = 1 F (2,5) = 1 5 8 = 0,375. Ad c) vlastně tentýž příklad jako a), jen máme zadaný výsledek pravděpodobnosti a máme určit x 0. Jen musíme dát pozor, který předpis pro F (x) platí pro dané x 0 : z toho, že P (X < x 0 ) = 0,8 F (x 0 ) = 0,8 plyne, že x 0 nemůže být z intervalu (0; 2, protože rovnice x 4 = 0,8 nemá řešení na intervalu (0; 2. Tedy bed b@d OBSAH 29/39

x (2; 3 a lze do F (x 0 ) = 0,8 dosadit předpis x 2 0 2 2x 0 + 5 2 = 0,8; A nyní víme, že při řešení této kvadratické rovnice musíme hledat řešení v intervalu x (2; 3, tedy ze dvou řešení kvadratické rovnice nyní odpovídá situaci pouze x 0 = 2,7746. Ad b) pozor, case-sensitive vzorec pro EX vyžaduje, abychom z F (x) určili hustotu f(x). Díky vzorci 1 víme, že F (x) je integrálem z f(x) naopak f(x) bed b@d OBSAH 30/39

tedy najdeme jako derivaci distribuční funkce: 0 pro x 0 1 f(x) = F 4 pro x (0; 2 ; (x) = x 2 pro x (2; 3 ; 0 pro x (3; ). Nyní pomocí vzorce 3 můžeme počítat EX = = 2 3 x 1 0 4 dx + x (x 2) dx = 2 [ ] x 2 2 [ ] x 3 3 + 8 3 x2 = 1,8333. 0 2 bed b@d OBSAH 31/39

a podle 4 DX = [ x 3 = 6 2 0 ] 2 0 x 2 1 2 dx + [ x 4 + 4 2x3 3 3 2 ] 3 2 x 2 (x 2) dx 1,8333 2 = 1,8333 2 = 0,97222. bed b@d OBSAH 32/39

Zakončíme dalšími shrnujícími otázkami k opakování, jejichž odpovědi musí každý student znát: otázka č. 6. Jak se definuje distribuční funkce F (x)? Odpověď: F (x) = P (X < x). otázka č. 7. Jak se čte zápis z otázky číslo 6? Odpověď: Hodnota funkce F v bodě x se rovná pravděpodobnosti, že veličina X nabude hodnoty menší než x, tj. hodnoty z intervalu ( ; x). otázka č. 8. Jaké jsou vlastnosti distribuční funkce F (x) u diskrétní i spojité veličiny X? Odpověď: bed b@d OBSAH 33/39

1. lim x F (x) = 0; lim x F (x) = 1. 2. F je neklesající funkce (jedná se o jakousi kumulativní pravděpodobnost, která pro rostoucí hodnoty proměnné x může jen růst, nikoli klesat). 3. Funkce F je zleva spojitá v každém bodě, tj. limita zleva se rovná funkční hodnotě v každém bodě: lim F (x) = F (x 0 ) x x 0 pro libovolné reálné x 0. 4. U obou typů veličin (diskrétní i spojité) platí P (X a; b)) = F (b) F (a). bed b@d OBSAH 34/39

otázka č. 9. Je nějaký rozdíl mezi hodnotami pravděpodobnostip (X (a; b)), P (X a; b)), P (X (a; b ), P (X a; b )? Odpověď: U spojité veličiny NE, u diskrétní veličiny ANO. přesněji u diskrétní veličiny uvedené čtyři pravděpodobnosti mohou být navzájem různé: P (X a; b)) = F (b) F (a); P (X a; b ) = F (b) F (a) + P (X = b); P (X (a; b)) = F (b) F (a) P (X = a); P (X (a; b ) = F (b) F (a) + P (X = b) P (X = a). Jednoduše řečeno, pokud by se uvedené vzorce někomu zdály kostrbaté, vždy lze z funkce F (x) bed b@d OBSAH 35/39

vyjádřit pravděpodobnostní funkci p(x) a vzorec P (X I) = k I p(k) platí pro jakýkoli tvar intervalu I. otázka č. 10. Jak se vypočte střední hodnota náhodné veličiny X? Odpověď: Pro diskrétní veličinu (s pravděpodobnostní funkcí p(k)) EX = k Ω k p(k); bed b@d OBSAH 36/39

(s hustotou f(x) pozor, case-sensitive!) EX = x f(x)dx. otázka č. 11. Jak se vypočte rozptyl náhodné veličiny X? odpověď: Pro diskrétní veličinu (s pravděpodobnostní funkcí p(k)) ( ) DX = k 2 p(k) (EX) 2 ; k Ω bed b@d OBSAH 37/39

(s hustotou f(x) pozor, case-sensitive!) DX = x 2 f(x)dx (EX) 2. otázka č. 12. Sice platí F (x) = f(x), ale F (x) f(x). Jak je to možné? Odpověď: f(x) je označení celé třídy funkcí, které se liší o konstantu. Jen jedna z nich má graf ležící celý v pásu mezi přímkami y = 0 a y = 1 a je dost malá pravděpodobnost, že je to zrovna ta, pro niž je konstanta rovna nule. Správný vztah je F (x) = x f(t)dt. bed b@d OBSAH 38/39

Literatura Dosazením mezí je výpočet správné konstanty zaručen. Literatura [1] Fajmon, B., Růžičková, I.: Matematika 3. Skriptum FEKT 2003 (identifikační číslo v informačním systému VUT: MAT103). http://www.rozhovor.cz/souvislosti/matematika3.pdf. [2] Hlavičková, I., Hliněná, D.: Sbírka úloh z pravděpodobnosti. Skriptum FEKT 2008. bed b@d OBSAH 39/39