HEMODYNAMIKA A KUBICKÝ ZÁKON
|
|
- Andrea Dvořáková
- před 9 lety
- Počet zobrazení:
Transkript
1 HEMODYNAMIKA A KUBICKÝ ZÁKON Jan Ježek Hana Netřebská Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze jan.jezek@fs.cvut.cz, hana.netrebska@fs.cvut.cz Abstract: The paper deals with three cube laws: 1) Girard s law for hydraulic losses 2) Shear stress cube law 3) Murray s cube law, minimizing the total rate of energy expenditure Klíčová slova: Hydraulické ztráty, tečné napětí, metabolický výkon Proudění krve v kardiovaskulárním systému je velice složitý jev, a proto vznikají komplikace jak při teoretickém řešení tak i při experimentování. Velmi často se činí zjednodušující předpoklady např. se uvažuje stacionární laminární proudění newtonské tekutiny dlouhou tuhou trubicí s vyvinutým rychlostním profilem. Řešením je v tomto případě známý Hagenův Poiseuilleův zákon Q = (п Δp D4 ) / (128 μ L). Vzhledem k tomu, že laminární proudění je popisováno lineárními rovnicemi, a platí proto superposice řešení, je možno rozložit pulsační proudění na část stacionární a oscilační, proto se zabýváme i stacionárním prouděním. Třecí ztráty Ovšem první známé experimenty, jež se zabývaly třecímí ztrátami při laminárním proudění v trubicích kruhového průřezu provedl Girard (1813) /1/. Použil mosazné trubičky o průměru 2,0 až 3,0 mm a výsledky vyjádřil vztahem: Q=KD 3 (P 1 - P 2 )/L. O deset let později se Navier pokusil odvodit rovnici pro proudění vazké tekutiny trubicí kruhového průřezu a asi ovlivněn Girardovými pokusy dospěl také k výsledku, že průtok je úměrný třetí mocnině průměru /2/. Všechna poslední měření např.: Hagena a Poiseuilleaplatnost Gerardova zákona nepotvrdila. V roce 1839 publikoval Hagen /3/ výsledky svých experimentů rovněž s mosaznými trubicemi o průměru 2,81 mm, 4,05 mm, 5,96 mm. Na obrázku 1 jsou výsledky vyneseny jako závislost rychlosti (v rýnských palcích za sekundu) na teplotě (ve Reamura: 80 R=100 C) při různých výškách hladiny. Na obrázku 2 jsou tyto výsledky přepočteny na závislost mezi součinitel třecích ztrát λ a Reynoldsovým číslem Re (oba obrázky převzaty z ruského překladu práce o vzniku turbulence H. Schlichtinga: Vozniknovenie turbulentnosti, Moskva 1962). V /2/ se uvádí, že s ohledem na nepřesnost měření vychází exponent 4,12.
2 Z hlediska třecích ztrát v hemodynamice by byly nejvýhodnější co největší průměry cév, aby namáhání srdce bylo pokud možno co nejmenší.
3 Přesnější měření provedl francouzský lékař Poiseuille /4/ se skleněnými trubičkami o průměrech D=0,03 až 0,14 mm podle /2/ (podle Richtera /5/ D=0,014 mm až 0,652 mm). Výsledky vyjádřil vztahem: Q=KD 4 (P 1 - P 2 )/L. Hodnotu konstanty K na základě Stokesova řešení proudění vazké kapaliny nezávisle na sobě stanovili Wiedemann (1856) a Hagenbach (1860): K=π/(128μ). Podle Richtera /5/ byla platnost tohoto zákona potvrzena i pro velmi vazké tekutiny jako je např. Ricinový olej, jehož viskozita μ byla 4000krát větší než vody, a dokonce platil i pro koloidní směsi s viskozitou 10 9 krát větší než vody. Vliv drsnosti stěn se při laminárním proudění neprojevil pokud výška nerovností byla menší než 3,5% průměru trubice. Tečné napětí V hemodynamice je důležitou veličinou tečné napětí, jež může poškozovat červené krvinky hemolýza. Je-li tečné napětí větší než jeden asi 1kPa, dochází ve velmi krátkém čase k porušení membrány červených krvinek ČK (hemolýze). Pod hladinou 0,15 kpa již k poruše krvinek nedochází /7/. Pokud bude tečné napětí v rozsahu 0,15 až 1 kpa, bude porucha membrány červených krvinek vyvolána únavou její struktury. Významnou roli pak hraje doba účinku tečných napětí. Životnost erytrocytů se udává 100 až 120 dní. Těčné napětí se však špatně měří přímo. Zpravidla se stanovuje ze vztahu, který platí přesně při vyvinutém laminárním stacionárním proudění: (P 1 - P 2 )/L=4τ s /D, kde τ s je tečné napětí na stěně trubice, tj. maximální tečné napětí v průřezu. Dosadíme-li za tlakový spád z H.P. zákona dostaneme τ s =32 μ Q /(π D 3 ), kde tečné napětí je funkcí třetí mocniny průměru D. Průměr cév se v lidském těle mění asi od m do 2, m tedy skoro o čtyři řády. Z tohoto vztahu lze určit závislost mezi průměrem cévy a maximálním průtokem, při kterém ještě nedochází k hemolýze kubický zákon: Q = τ s π D 3 /(32 μ). Dosadíme-li za tečné napětí spodní mez 0,15 kpa a za viskozitu 0,0037 Pa.s dostaneme vztah Q (m 3 /s) 4000 D 3 (m 3 ) Tento vztah není příliš názorný, a proto zavedeme do něj střední rychlost podle objemu a po zaokrouhlení dostaneme, že v arteriolách by měla být rychlost nejvýše v cm/s a v kapilárách nejvýše mm/s. Tento vztah by měl být respektován i v mimotělním oběhu. Je třeba
4 poznamenat, že v kapilárách jsou rozměry červených krvinek řádově stejné jako je průměr kapilár a tím je ovlivněno rychlostní pole. Jak vyplývá z omezené životnosti červených krvinek není tato podmínka splněna ani v lidském těle. I v tomto případě vliv velikosti tečného napětí na životnost červených krvinek se jeví jako výhodné velké průměry cév. Na rozdíl od strojařských problémů, kde se zabýváme prouděním v pasivních objektech v hemodynamics nesmíme zapomínat, že se jedná o proudění živých a aktivních objektech, což může značně ovlivnit závěry učiněné z našich mechanických řešení. Minimální metabolický výkon Pro zatížení srdce čerpadla je zapotřebí stanovit výkon, třeba jen teoretický, k dopravě krve. Zamir /6/ uvádí, že výkon, který označuje H, je dán součinitelem síla krát rychlost. Stanovil sílu působící na stěně trubice o poloměru a a délce L, že je rovna τ s 2 π a L. Tuto sílu násobí střední rychlostí proudící tekutiny u=-k s a 2 /(8μ) (kde -k s >0 je tlakový spád) i když třecí síla působící na stěně trubice resp. na povrchu vrstvy tekutiny, jenž lpí na stěně, má nulovou rychlost. Třecí síla je při stacionárním proudění v rovnováze s tlakovou silou působící na celý průřez trubice: τ s 2 π a L = -Δ p π a 2. Po dosazení za třecí sílu s uvážením, že Q= πa 2 u dostává známý vztah H=ΔpQ=8μLQ 2 /(πa 4 ). Výsledek je správný, ale tato úvaha není zcela korektní, neboť výkon je roven práci vykonané za čas, práce je rovna součinu síly a její dráhy, která je zde rovna nule. Přesnější odvození se získá integrací elementárních výkonů po celém průřezu trubice. V roce 1926 C.D.Murray /8/ předložil tento optimalizační problém: výkon potřebný pro čerpání toku krve Q cévou o poloměru a a délce L je přímo závislý na čtvrté mocnině poměru A/a 4, kde A = 8μLQ 2 /π. Z hlediska hydrodynamiky by tedy měl být poloměr a co největší, aby potřebný výkon byl co nejmenší. Z biologického hlediska však čím větší bude rozměr cév, tím větší bude množství krve potřebné k naplnění kardiovaskulárního systému a tím bude i větší spotřeba metabolické energie k jejímu obnovování. Předpokládal, že metabolický výkon je úměrný objemu a tedy i průřezu cévy Ba 2 a celkový výkon nutný pro čerpání a biologické účely bude dán součtem obou složek H=A/a 4 +Ba 2, B je konstanta reprezentující metabolický výkon. Derivováním podle a našel podmínku pro minimální potřebný výkon: dh/da=(-4a/a 5 )+2Ba=0 a 6 =2A/B Q a 3
5 V literatuře se tato podmínka označuje jako kubický zákon nebo Murrayův zákon. Jiní autoři zavádějí i jiné hodnoty exponentů /6/. Např. pro aortu a první generaci hlavních větví tepen /6, str. 51/, je mnohem příhodnější kvadratický zákon, kdy je průtok Q úměrný a 2. V periferních oblastech arteriálního kmene měřená data potvrzují (s určitým rozptylem) kubický zákon. Tyto optimalizační výpočty mají sloužit k minimalizaci výdajů energie pro dynamické i metabolické účely. Porovnáme-li výsledek Murrayovy optimalizace s naší úvahou o nepřekročení určité velikosti tečného napětí, aby se zabránilo hemolýze vidíme, že výsledky jsou stejné a to právě v oblasti, kde jsou největší úbytky tlaku v krevním oběhu. Poděkování: Tato práce vznikla za finanční podpory grantu GAČR 101/05/0675. Literatura: /1/ Girard (1813) citováno v Hatschek E: The Viskosity of Liquids,1928, London, Bell citováno též v /2/ nebo Szabó I. (1979): Geschichte der mechanischen Prinzipien, Birkhäuser Verlag, Stuttgart, str /2/ Nichols W.W., O Rourke M.F. (2005): Mc Donalds Blood Flow in Arteries, 5. vyd., Hodder Arnold, London /3/ Hagen G. (1839), Ann. Physik 46,str.423 /4/ Poiseuille J.L.M. (1846) :Mém. des Savants Etrangers 9, str. 433 /5/ Richter H., (1962): Rohrhydraulik, Springer, Berlin /6/ Zamir M. (2000): The Physics of Pulsatile Flow, Springer N.Y., str.49 /7/ Valenta J. (1992): Biomechanika srdečně cévního systému, skriptum ČVUT, str. 241, 249 /8/ Murray C.D. (1926): citováno v /6/ Proceedings of the Nat. Acad. Of Science, 12: str
Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice
VíceNávrh výměníku pro využití odpadního tepla z termického čištění plynů
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh výměníku pro využití odpadního tepla z termického čištění plynů Frodlová Miroslava Elektrotechnika 09.08.2010 Práce je zaměřena na problematiku využití
VíceProudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
VícePraktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. III Název: Proudění viskózní kapaliny Pracoval: Matyáš Řehák stud.sk.: 16 dne: 20.3.2008
VíceKontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
VícePříklady - rovnice kontinuity a Bernouliho rovnice
DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho
VíceV i s k o z i t a N e w t o n s k ý c h k a p a l i n
V i s k o z i t a N e w t o n s k ý c h k a p a l i n Ú k o l : Změřit dynamickou viskozitu destilované vody absolutní metodou a její závislost na teplotě relativní metodou. P o t ř e b y : Viz seznam
VíceVýtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy)
Výtok kapaliny otvorem ve dně nádrže (výtok kapaliny z danaidy) Úvod: Problematika výtoku kapaliny z nádrže se uplatňuje při vyprazdňování nádrží a při nejjednodušším nastavování konstantních průtoků.
VíceLaboratorní práce č. 1: Určení výtokové rychlosti kapaliny
Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia
VíceMěření kinematické a dynamické viskozity kapalin
Úloha č. 2 Měření kinematické a dynamické viskozity kapalin Úkoly měření: 1. Určete dynamickou viskozitu z měření doby pádu kuličky v kapalině (glycerinu, roztoku polysacharidu ve vodě) při laboratorní
Více3. STRUKTURA EKOSYSTÉMU
3. STRUKTURA EKOSYSTÉMU 3.4 VODA 3.4.1. VLASTNOSTI VODY VODA Voda dva významy: - chemická sloučenina 2 O - přírodní roztok plynné kapalné pevné Skupenství Voda jako chemická sloučenina 1 δ+ Základní fyzikální
VíceKrevní oběh. Helena Uhrová
Krevní oběh Helena Uhrová Z hydrodynamického hlediska uzavřený systém, složený ze: srdce motorický orgán, zdroj mechanické energie cév rozvodný systém, tvořený elastickými roztažitelnými a kontraktilními
VíceMechanika zemin I 3 Voda v zemině
Mechanika zemin I 3 Voda v zemině 1. Vliv vody na zeminy; kapilarita, bobtnání... 2. Proudění vody 3. Měření hydraulické vodivosti 4. Efektivní napětí MZ1_3 November 9, 2012 1 Vliv vody na zeminy DRUHY
Více. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
VíceZtráty tlaku v mikrofluidních zařízeních
Ztráty tlaku v mikrofluidních zařízeních 1 Teoretický základ Mikrofluidní čipy jsou zařízení obsahující jeden nebo více kanálků sloužících k manipulaci a zpracování tutin nebo k detci chemických slož v
VíceZVÝŠENÍ KONKURENCESCHOPNOSTI SPALOVACÍHO MOTORU NA STLAČENÝ ZEMNÍ PLYN COMPETITIVENESS INCREASE OF THE CNG ENGINE
ZVÝŠENÍ KONKURENCESCHOPNOSTI SPALOVACÍHO MOTORU NA STLAČENÝ ZEMNÍ PLYN COMPETITIVENESS INCREASE OF THE CNG ENGINE David Svída 1 Anotace: V současné době ve vozidlech převládá trend výkonných maloobjemových
VíceDigitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
VícePro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci
TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického
VíceÚSTAV ORGANICKÉ TECHNOLOGIE
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE () A Určování binárních difúzních koeficientů ve Stefanově trubici Vedoucí práce: Ing. Pavel Čapek, CSc. Umístění práce: laboratoř 74 Určování binárních difúzních
VíceČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
Více+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
Více2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
VíceCVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
VíceFakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 6
Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ převody Přednáška 6 Pevnostní výpočet čelních ozubených kol Don t force it! Use a bigger hammer. ANONYM Kontrolní výpočet
VícePROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
VíceIlustrační animace slon a pírko
Disipativní síly Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Určeno pro základní kurz biomechaniky studentů FTVS UK, školní rok 2008/2009 Disipativní síly
Více215.1.18 REOLOGICKÉ VLASTNOSTI ROPNÝCH FRAKCÍ
215.1.18 REOLOGICKÉ VLASTNOSTI ROPNÝCH FRAKCÍ ÚVOD Reologie se zabývá vlastnostmi látek za podmínek jejich deformace toku. Reologická měření si kladou za cíl stanovení materiálových parametrů látek při
Více(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada
(Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem
VícePovrchové odvodnění stavební jámy. Cvičení č. 8
Povrchové odvodnění stavební jámy Cvičení č. 8 Příklad zadání Vypočtěte přítok vody do stavební jámy odvodněné povrchově. Jáma je hloubená v písčitém štěrku o mocnosti 8 m. Pod kterým je rozvětralá jílovitá
Více12 Prostup tepla povrchem s žebry
2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem
Vícenafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ
HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm
VíceMECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
VíceRychlostní a objemové snímače průtoku tekutin
Rychlostní a objemové snímače průtoku tekutin Rychlostní snímače průtoku Rychlostní snímače průtoku vyhodnocují průtok nepřímo měřením střední rychlosti proudu tekutiny v STŘ. Ta závisí vzhledem k rychlostnímu
VíceČVUT V PRAZE FAKULTA DOPRAVNÍ
ČVUT V PRAZE FAKULTA DOPRAVNÍ BAKALÁŘSKÁ PRÁCE 2010 Jana Kuklová originál zadání bakalářské práce Prohlášení Prohlašuji, že jsem předloženou práci vypracovala samostatně a že jsem uvedla veškeré použité
VíceCVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
VíceKriteria výběru maziv pro valivá ložiska
Technická I N F O R M A C E Kriteria výběru maziv pro valivá ložiska TI 153 Strana 1/5 Jak uvádí ve svém katalogu známý výrobce ložisek, mazivo ve valivém ložisku zamezuje bezprostřednímu styku valivého
Vícewww.utp.fs.cvut.cz REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení č. 2
REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení č. 2 1 REGULACE V TECHNICE PROSTŘEDÍ (STAVEB) Cvičení: Inteligentní budovy - sudé středy 17.45 až 19.15 hod v místnosti č. 366 Strojní inženýrství - liché
VíceUltrazvuk Principy, základy techniky Petr Nádeníček1, Martin Sedlář2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno Čejkovice 2011
Ultrazvuk Principy, základy techniky Petr Nádeníček 1, Martin Sedlář 2 1 Radiologická klinika, FN Brno 2 Biofyzikální ústav, LF MU Brno zdroj UZ vlnění piezoelektrický efekt rozkmitání měniče pomocí vysokofrekvenčního
Více2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA
2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění
Více3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice
3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem
VíceCFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky
Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,
VíceMechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
VícePŘÍRUČKA PRO UŽIVATELE PROGRAMU SMRD-HS
PŘÍRUČKA PRO UŽIVATELE PROGRAMU SMRD-HS Jaroslav Zapoměl Petr Ferfecki Ostrava 2012 Prof. Ing. Jaroslav Zapoměl, DrSc. Ústav termomechaniky AV ČR, v.v.i. Centrum inteligentních systémů a struktur Ing.
VíceÚnosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil.
Směrnice Obsah Tato část se zabývá polyesterovými a vinylesterovými konstrukčními profily vyztuženými skleněnými vlákny. Profily splňují požadavky na kvalitu dle ČSN EN 13706. GDP KORAL s.r.o. může dodávat
VíceMěření logaritmického dekrementu kmitů v U-trubici
Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový
Více5 Měření tokových vlastností
5 Měření tokových vlastností K měření tokových vlastností se používají tzv. reometry. Vzhledem k faktu, že jednotlivé polymerní procesy probíhají při rozdílných rychlostech smykové deformace (Obr. 5.1),
VíceMASARYKOVA UNIVERZITA Pedagogická fakulta BAKALÁŘSKÁ PRÁCE
MASARYKOVA UNIVERZITA Pedagogická fakulta BAKALÁŘSKÁ PRÁCE BRNO 2013 Tomáš NOVOTNÝ MASARYKOVA UNIVRZITA Pedagogická fakulta Tomáš NOVOTNÝ Pracovní listy a zadání pro experimenty s viskozitou kapalin Bakalářská
VíceMěření axiálních rychlostních profilů v nádobách s centrální cirkulační trubkou pomocí LDA systému
Měření axiálních rychlostních profilů v nádobách s centrální cirkulační trubkou pomocí LDA systému J.Brož*,M. Severa**, T.Jirout*, F.Rieger* *Department of Process Engineering Czech Technical University
VíceKubatury, hydraulika vodní toky 4
AutoPEN, Ing. Lubomír Bucek, Halasova 895, 460 06 Liberec 6 www.autopen.net, autopen@volny.cz 481 120 160, 606 638 253 Kubatury, hydraulika vodní toky 4 Uživatelský manuál obsah Kapitola Stránka 1 Instalace
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,
VíceTepelné jevy při ostřiku okují Thermal phenomena of descalling
Tepelné jevy při ostřiku okují Thermal phenomena of descalling Toman, Z., Hajkr, Z., Marek, J., Horáček, J, Babinec, A.,VŠB TU Ostrava, Czech Republic 1. Popis problému Technický pokrok v oblasti vysokotlakých
Více27.11.2013, Brno Připravil: Tomáš Vítěz Petr Trávníček. Proudění tekutin. Principy měření průtoku
7.11.013, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Proudění tekutin Ztráty při proudění tekutin ti Principy měření průtoku strana Rovnice kontinuity Při ustáleném proudění ideální kapaliny
Více5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
VícePÍSTOVÁ ČERPADLA. Jan Kurčík 3DT
PÍSTOVÁ ČERPADLA Jan Kurčík 3DT CHARAKTERISTIKA PÍSTOVÝCH ČERPADEL Pístová čerpadla jsou vhodná pro čerpání menších objemů kapalin, při vyšších tlacích. Hlavním znakem pístových čerpadel je převod rotačního
VíceTéma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony
VíceElektromagnetické ventily
Elektromagnetické ventily 94 Jednocestné elektromagnetické ventily Přehled výrobního programu elektromagnetických ventilů typová řada provedení 240RA 540 RA 110 RB 200 RB 8/9/12/16T9 16T11/20 8/9/12/16
VícePříklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.
VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:
VíceBUBEN A JEHO VESTAVBY Vývoj funkce bubnu
BUBEN A JEHO VESTAVBY Vývoj funkce bubnu U kotlů vodotrubných ztrácí původní funkci výparné plochy Tvoří buben spojovací prvek pro varnice a spádové trubky Do bubnu se napájí Z bubnu se kotel odluhuje
VíceTZB - VZDUCHOTECHNIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT02-11 HLUK A CHVĚNÍ VE VZDUCHOTECHNICE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU
Více2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
VíceBIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
Víceúčinnost zdroje tepla
Ztráty tepelných rozvodů při rozvodu tepelné energie Ing. Roman Vavřička, Ph.D. ČVUT v Praze, Fakulta strojní Ústav techniky prostředí Roman.Vavricka@fs.cvut.cz www.utp.fs.cvut.cz Účinnost přeměny energie
VíceRADA EVROPSKÉ UNIE. Brusel 22. března 2012 (OR. en) 7975/12 ENER 109 ENV 226 PRŮVODNÍ POZNÁMKA
RADA EVROSKÉ UNIE Brusel 22. března 2012 (OR. en) 7975/12 ENER 109 ENV 226 RŮVODNÍ OZNÁMKA Odesílatel: Evropská komise Datum přijetí: 20. března 2012 říjemce: Generální sekretariát Rady Č. dok. Komise:
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,
VíceSborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17.
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17 Lenka LAUSOVÁ 1 OSOVĚ ZATÍŽEÉ SLOUPY ZA POŽÁRU AXIALLY LOADED COLUMS DURIG
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007
TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo
VíceMechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník
Více4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.
4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, navrhování z hlediska MSÚ a MSP. Návrh na únavu: zatížení, Wöhlerův přístup a
VíceFyzikální praktikum 1
Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,
VíceIdentifikátor materiálu: ICT 1 16
Identifikátor materiálu: ICT 1 16 Registrační číslo projektu Náze projektu Náze příjemce podpory náze materiálu (DUM) Anotace Autor Jazyk Očekáaný ýstup Klíčoá sloa Druh učebního materiálu Druh interaktiity
VíceBiomechanika srdečněcévnísoustavy a konstitutivnímodelování
Biomechanika srdečněcévnísoustavy a konstitutivnímodelování Biomechanika a lékařsképřístroje Biomechanika I LukášHorný Laboratoř biomechaniky člověka Ústavu mechaniky Fakulty strojní ČVUT v Praze E Empirická
VíceSledování změn obsahu volného aktivního chloru při dopravě pitné vody
Sledování změn obsahu volného aktivního chloru při dopravě pitné vody Ing. Kateřina Slavíčková, Prof. Ing. Alexander Grünald, Csc., Ing. Marek Slavíček Katedra zdravotního inženýrství, Fakulta stavební,
Více3. TEKUTINY A TERMIKA 3.1 TEKUTINY
3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině
VíceLEPENÉ SPOJE. 1, Podstata lepícího procesu
LEPENÉ SPOJE Nárůst požadavků na technickou úroveň konstrukcí se projevuje v poslední době intenzivně i v oblasti spojování materiálů, kde lepení je často jedinou spojovací metodou, která nenarušuje vlastnosti
VíceBAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B 341 Strojírenství Studijní zaměření: Energetické zdroje a zařízení BAKALÁŘSKÁ PRÁCE Návrh a realizace experimentálního zařízení pro měření
VícePlazma v mikrovlnné troubě
Plazma v mikrovlnné troubě JIŘÍ KOHOUT Katedra obecné fyziky, Fakulta pedagogická, Západočeská univerzita v Plzni V tomto příspěvku prezentuji sérii netradičních experimentů souvisejících se vznikem plazmatu
VíceČást 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn
VíceVedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua
Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice
VíceSedlové ventily (PN 16) VS 2 Dvoucestný ventil, vnější závit
Datový list Sedlové ventily (PN 16) VS 2 Dvoucestný ventil, vnější závit Popis Vlastnosti: ROZDĚLOVACÍ charakteristika určená pro většinu náročných aplikací (DN 20 a DN 25) Několik k VS hodnot Zacvakávací
VíceVysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 2007
Vysoká škola báňská Technická univerzita Ostrava Mechanika tekutin návody pro laboratorní měření Milada Kozubková a kolektiv Ostrava 007 Určeno pro projekt: Operační program Rozvoj lidských zdrojů Název:
VíceŠROUBOVÉ SPOJE VÝKLAD
ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k
VíceNěkteré zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení
Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.
Více3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
VíceVytápění BT01 TZB II cvičení
CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Cvičení 6: Návrh zdroje tepla pro RD Zadání V
VíceVýroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry
Úvod Znalosti - klíč k úspěchu Materiál přeložil a připravil Ing. Martin NEUŽIL, Ph.D. SPIRAX SARCO spol. s r.o. V Korytech (areál nádraží ČD) 100 00 Praha 10 - Strašnice tel.: 274 00 13 51, fax: 274 00
Více9 Spřažené desky s profilovaným plechem v pozemních stavbách
9 Spřažené desky s profilovaným plechem v pozemních stavbách 9.1 Všeobecně 9.1.1 Rozsah platnosti Tato kapitola normy se zabývá spřaženými stropními deskami vybetonovanými do profilovaných plechů, které
Vícestavební obzor 5 6/2014 79
stavební obzor 5 6/2014 79 Homogenizace kompozitních materiálů v problémech přenosu tepla Ing. Martin Jan VÁLEK, Ph.D. prof. Ing. RNDr. Petr Pavel PROCHÁZKA, DrSc. ČVUT v Praze Fakulta stavební V článku
VíceMECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
VícePOZEMNÍ STAVITELSTVÍ I
POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora
VíceZakázka: D111029 Stavba: Sanace svahu Olešnice poškozeného přívalovými dešti v srpnu 2010 I. etapa Objekt: SO 201 Sanace svahu
1 Technická zpráva ke statickému výpočtu... 2 1.1 Identifikační údaje... 2 1.1.1 Stavba... 2 1.1.2 Investor... 2 1.1.3 Projektant... 2 1.1.4 Ostatní... 2 1.2 Základní údaje o zdi... 3 1.3 Technický popis
VíceKap. 8.2 Lepené spoje
Kap. 8. Lepené spoje Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVUT v Praze.. 007-6.. 007 Úvod Proč spojovat? Obtížná výroba funkčních celků
VíceMOLEKULOVÁ FYZIKA KAPALIN
MOLEKULOVÁ FYZIKA KAPALIN Struktura kapalin Povrchová vrstva kapaliny Povrchová energie, povrchová síla, povrchové napětí Kapilární tlak Kapilarita Prof. RNDr. Emanuel Svoboda, CSc. STRUKTURA KAPALIN Tvoří
Více8. TLAKOMĚRY. Úkol měření. Popis přípravků a přístrojů
Úkol měření 8. TLAKOMĚRY 1. Ověřte funkci diferenčního kapacitního tlakoměru pro měření malých tlakových rozdílů. 2. Změřte závislost obou kapacit na tlakovém rozdílu.. Údaje porovnejte s průmyslovým diferenčním
Více2. Matice, soustavy lineárních rovnic
Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí
VíceVYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS
1 VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS JAN KNÁPEK Katedra analytické chemie, Přírodovědecká fakulta MU, Kotlářská 2, Brno 611 37 Obsah 1. Úvod 2. Tepelný zmlžovač 2.1 Princip 2.2 Konstrukce 2.3 Optimalizace
VíceBRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL
VíceOTOPNÁ TĚLESA Rozdělení otopných těles 1. Lokální tělesa 2. Konvekční tělesa Článková otopná tělesa
OTOPNÁ TĚLESA Rozdělení otopných těles Stejně jako celé soustavy vytápění, tak i otopná tělesa dělíme na lokální tělesa a tělesa ústředního vytápění. Lokální tělesa přeměňují energii v teplo a toto předávají
VíceProjekt: Autodiagnostika pro žáky SŠ - COPT Kroměříž, Registrační číslo: CZ.1.07/1.1.38/01.0006. Mazání motoru
Mazání motoru Soustava mazání motoru musí zásobovat součásti motoru dostatečným množstvím mazacího oleje a přitom musí být zajištěn správný tlak oleje. Úkolem mazací soustavy je: - mazání snížení tření
Více