pravidelné konvexní mnohostěny

Rozměr: px
Začít zobrazení ze stránky:

Download "pravidelné konvexní mnohostěny"

Transkript

1 PLATÓNOVA TĚLESA pavidelné konvexní mnohostěny Platónova tělesa Stěny Počet stěn S vcholů V han H Čtyřstěn tetaed ovnostanný tojúhelník Šestistěn(Kychle) hexaed čtveec Osmistěn oktaed ovnostanný tojúhelník Dvanáctistěn dodekaed pavidelný pětiúhelní Dvacetistěn ikosaed ovnostanný tojúhelník Euleovafomule: S + V = H+2

2 PRAVIDELNÝ DVANÁCTISTĚN 2 PRAVIDELNÝ DVANÁCTISTĚN Každá stěna pavidelného dvanáctistěnu je pavidelný pětiúhelník. Označmevcholyjednéstěny A,, C, DaE,ovinu této stěny označme α. L E K D α A F C H G Z každého vcholu dvanáctistěnu vycházejí 3 hany. Označme další vcholy dvanáctistěnu takto: zvcholu Avycházejíhany A, AE, AF, zvcholu hany A, C, G, zvcholu Chany C, CD, CH, zvcholu Dhany DC, DE, DK, zvcholu Ehany EA, ED, EL. E D A C Odchylky ovin(a,, F),(, C, G),(C, D, H), (D, E, K)a(A, E, F)(ovinstěn)odoviny α jsou stejné. Pavidelný dvanáctistěn lze vepsat do kulové plochy κ(s, SA ),bod Sjestředemsouměnostitělesa. G L K H D C A F S F E D H K C L G Označme další vcholy dvanáctistěnu takto: vchol souměný k vcholu A podle středu S označme A, vchol souměný k vcholu podle středu S označme,. vchol souměný k vcholu L podle středu S označme L. Tedybod Sjestředemúseček AA,,..., LL. E A Pavidelný dvanáctistěn má 20 vcholů.

3 PRAVIDELNÝ DVANÁCTISTĚN příklad 1 3 PRAVIDELNÝ DVANÁCTISTĚN a jeho zobazení v MP Příklad 1 A4navýšku,MP: O[10,5;17] Zobazte pavidelný dvanáctistěn, jehož jedna stěna ACDE o středu Q leží v půdoysně π, Q[0;7;0], A[0;3;0]. (Obázky v textu jsou v měřítku 1:2.) Zobazíme pavidelný pětiúhelník ACDE ostředu Qležícívπ.Označme = AQ. Q 2 = A 2 C (Q 1 ; ) jepavidelnýpětiúhelníkvepsaný dokužnice (označeníposměuhodinových učiček) 2.náysempětiúhelníka ACDEjeúsečka 2 Q 1 Q 2 = A 2 C 2 2 Vcholy A,, C, D, E stěny potilehlé ke stěně ACDE jsou body souměné k bodům A,, C, D, Epodlestředu S. 3. S 1 = Q 1 jebodsouměnýk podle S 1 Q 1 = S 1 body,,,,,,,,, jsou vcholy pavidelného desetiúhelníka vepsanéhodokužnice

4 PRAVIDELNÝ DVANÁCTISTĚN příklad 1 4 a 1 2 Odchylkaoviny β(a,, F)odpůdoysnyaodchylkaoviny γ(a, E, F)odpůdoysnyjestejná. Označme a půsečnici ovin β a γ(půsečnice ovindvoustěn), a=β γ= AF. 4. p β 1= p γ 1 = a 1 jeosouúhlupřímek p β 1 a pγ 1 p γ 1 p β 1 F o = = A o = o Chceme zobazit bod F, kteý je vcholem pavidelného pětiúhelníka AGK F v ovině β (a také vcholem pavidelného pětiúhelníka AELH Fvovině γ). Otočímeovinu βkolem p β dopůdoysnytak, žepětiúhelník A o o G o K o F o splynespětiúhelníkem ACDE,tj. F o = E. = K o a 1 z F = G o (F) p β 1 5.využijemepavoúhléafinitysosou p β 1 a 1, F o p β 1 6. učíme z-ovou souřadnici bodu F A F: AF = stana pětiúhelníka ACDE (A F)=90 sestojíme bod(f) při přesném ýsování je z F = (F) ==poloměkužnice k

5 PRAVIDELNÝ DVANÁCTISTĚN příklad 1 5 L 2 K 2 H 2 G 2 7., G 1, H 1, K 1, L 1 jsouvcholypavidelného pětiúhelníka vepsaného do kužnice l 1 (Q 1, = Q 1 ) z F = z G = z H = z K = z L = A 2 C 2 2 L 1 G 1 8.bod jesouměnýk podle S 1, bod G 1 jesouměnýkg 1 podle S 1,. K 1 Q 1 = S 1 H 1 l 1 body, K 1, G 1, L 1, H 1,, K 1, G 1, L 1, H 1 jsouvcholypavidelnéhodesetiúhelníka vepsanéhodokužnice l 1 atentodesetiúhelník je obysovou čaou půdoysu dvanáctistěnu G 2 H 2 K 2 L 2 H 1 S 2 A 2 C 2 2 K 1 9. učíme z-ovou souřadnici bodu F C F: CF = AC (C F)=90 sestojíme(f) při přesném ýsování je z F = (F) ==poloměkužnice l z F = z G = z H = z K = z L = L 1 Q 1 = S 1 G 1 10.bod S 2 jestředúsečky A 2 bodsouměnýka 2 podle S 2 z A = + G 1 l 1 L 1 K 1 H zobazení tělesa, viditelnost z F (F)

6 PRAVIDELNÝ DVANÁCTISTĚN příklad 1 6 V měřítku 1:1. 2 C 2 A 2 G 2 H 2 K 2 L 2 S 2 L 2 K 2 H 2 G 2 A 2 C 2 2 H 1 K 1 L 1 G 1 Q 1 = S 1 G 1 L 1 K 1 H 1

7 PRAVIDELNÝ DVANÁCTISTĚN příklad 2 7 Příklad 2 A4navýšku,MP: O[10,5;15] Zobazte pavidelný dvanáctistěn o velikosti hany 4 cm, jehož tělesová úhlopříčka AA je kolmá kpůdoysně π, A[0,6,0], z A >0. D Nejdříve sestojíme pavidelný pětiúhelník ACDE,známe-lijehostanu A =4cm. a)úsečka Avelikosti4 E C b) b: b, b A S c) M b, M = 1 2 A p=am d) m(m, M ) U m p(unenívnitřníbodúsečky AM) p A AU = velikost úhlopříčky pětiúhelníka označme AU =u e)vcholc: AC =u, C =4 vchole: AE =4, E =u m M U vchold: CD =4, ED =4 f) snadno již sestojíme kužnici pětiúhelníku opsanou(střed S, polomě SA ) b SD A AS CD

8 PRAVIDELNÝ DVANÁCTISTĚN příklad 2 8 Z vcholu A dvanáctistěnu vycházejí 3 hany A, AE, AF. Potože AA π,úhlopříčky E, EF a F pětiúhelníků stěn obsahující vchol A jsou ovnoběžné s půdoysnou. u 1. = = =u,, jsouvcholyovnostanného tojúhelníkaostaně uastředu body,, leží na kužnici (, = ) polomě učíme pomocnou konstukcí ovnostanného tojúhelníka o staně u volmebod tak,že x =0ay > y A O= A 2 Přímka Ejehlavnípřímka1.osnovy oviny α, oviny pětiúhelníka ACDE. 2. = h α 1 p α 1: p α 1, p α 1 h α 1 p α 1 h α 1

9 PRAVIDELNÝ DVANÁCTISTĚN příklad 2 9 O= A 2 Otočíme ovinu α kolem p α do půdoysny. V otočení sestojíme pavidelný pětiúhelník A o o C o D o E o. E o 3. využíváme pavoúhlou afinitu sosou p α 1 o p α 1, o =4, E o p α 1, E o =4 = A o sestojíme pavidelný pětiúhelník A o o C o D o E o D o ovnoběžnost se v afinitě zachovává: A o o C o E o ( C o p α 1) o p α 1 je půdoys pavidelného pětiúhelníka ACDE C o 4 4.abychom sestojili body 2 a,učíme z = z E A : A =4 (A )=90 sestojíme bod() z = () =z E z () u 5.abychomsestojilibody C 2 a,učíme z C = z D A C: AC =u (A C)=90 sestojíme bod(c) z C = (C) =z D pokud ýsujeme přesně, je z C = z D = =polomě z C (C)

10 PRAVIDELNÝ DVANÁCTISTĚN příklad Půdoysy pavidelných pětiúhelníků AELH F a AF K G jsou pětiúhelníky shodné s. ody,, L 1, H 1, K 1, G 1 ležínakužnici l 1 (, ). C 2 L 2 G 2 H 2 K 2 2 O=A 2 L 1 H 1 K 1 l 1 G 1

11 PRAVIDELNÝ DVANÁCTISTĚN příklad 2 11 A 2 7.bod Sjestředemsouměnosti tělesa K 2 S 1 = sestojme půdoysy vcholů A,, C, D, E, F, G, H, K, L, kteé jsou souměné kbodům A,, C, D, E, F, G, H, K, L S 2 =,, ležína z 2 L 1 O= A 2 H 1 G 1 K 2,, G 1, H 1, K 1, L 1 ležína l 1 lomená čáa K 1 G 1 L 1 H 1 K 1 G 1 L 1 H 1 je obysová čáa dvanáctistěnu v půdoyse, její delší úsečky jsou délky 4, její katší úsečky majídélkuovnou z K 1 = S 1 = 8. učíme z-ovou souřadnici bodu K sklopíme půdoysně pomítací lichoběžník úsečky DK z D =, (D)(K) =4 K 1 pak K 1 (K) =z K při přesném ýsování je z K =2=2 polomě l 1 K 1 H 1 z K (D) 4 L 1 G 1 (K) 9.středúsečky K 2 K 2 je bod S 2 sestojíme náysy všech zbývajících vcholů tělesa (využíváme souměnosti podle S 2 )

12 PRAVIDELNÝ DVANÁCTISTĚN příklad 2 12 A 2 2 K 2 G 2 H 2 L 2 C 2 S 2 C 2 L 2 H 2 G 2 K 2 2 O=A 2 L 1 G 1 H 1 K 1 = S 1 = K 1 G 1 H 1 L 1

13 PRAVIDELNÝ DVACETISTĚN 13 PRAVIDELNÝ DVACETISTĚN Každá stěna pavidelného dvacetistěnu je ovnostanný tojúhelník. A Označmevcholyjednéstěny A,, Caovinu této stěny označme α. α C E F A D Z každého vcholu dvacetistěnu vychází 5 han. Označme hany vycházející z vcholu A takto: A, AC, AD, AE, AF. C Pavidelný dvacetistěn lze vepsat do kulové plochy κ(s, SA ),bod Sjestředemsouměnostitělesa. C E A Označme další vcholy dvacetistěnu takto: vchol souměný k vcholu A podle středu S označme A, vchol souměný k vcholu podle středu S označme, F D A S E D F. vchol souměný k vcholu F podle středu S označme F. Tedybod Sjestředemúseček AA,,..., FF. C Pavidelný dvacetistěn má 12 vcholů.

14 PRAVIDELNÝ DVACETISTĚN příklad 3 14 PRAVIDELNÝ DVACETISTĚN a jeho zobazení v MP Příklad 3 A4navýšku,MP: O[10,5;17] Zobazte pavidelný dvacetistěn, jehož jedna stěna AC o středu Q leží v půdoysně π, Q[0;7;0], A[0;?;0], y A > y Q, A =6. (Obázky v textu jsou v měřítku 1:2.) Sestojíme pomocný ovnostanný tojúhelník ostaně6azjistímepolomě kužniceopsané. Q 2 = A 2 2 C 2 Zobazíme ovnostanný tojúhelník AC ostředu Qležícívπ. 1. (Q 1 ; ) [0;7+;0] Q 1 ovnostanný vepsanýdokužnice (označení po směu hodinových učiček) 2.náysemtojúhelníka ACjeúsečka 2 C 2 Q 2 = A 2 2 C 2 Vcholy A,, Cstěnypotilehlékestěně AC jsoubodysouměnékbodům A,, C podle středu S. S 1 = Q 1 3. S 1 = Q 1 jebodsouměnýk podle S 1 body,,,,, jsou vcholy pavidelného šestiúhelníka vepsaného do kužnice

15 PRAVIDELNÝ DVACETISTĚN příklad 3 15 Q 2 = A 2 2 C 2 Q 1 Označme β ovinu pavidelného pětiúhelníka AD C E, p β = A. Označme γ ovinu pavidelného pětiúhelníka ACF E, p γ = AC. Odchylka oviny β od půdoysny a odchylka oviny γ od půdoysny je stejná. Označme a půsečniciovin βa γ, a=β γ= AE. 4. p β 1= p γ 1 = a 1 jeosouúhlupřímek p β 1 a pγ 1 p γ 1 a 1 p β 1 Pomocná konstukce; konstukce pavidelného pětiúhelníka o staně A = 6. (Viz také příklad 2.) a)úsečka Avelikosti6 b)přímka b: b, b A p A c)bod M: M b, M = 1 2 A =3 d)přímka p=am kužnice m(m, M ) m M b U e)bod U: U m p (Unenívnitřníbodúsečky AM) AU velikost úhlopříčky pětiúhelníka, označme AU =u

16 PRAVIDELNÝ DVACETISTĚN příklad Q 2 = A 2 C 2 Zobazíme pavidelný pětiúhelník AD C E v ovině β a také pavidelný pětiúhelník ACF Evovině γ. Otočímeovinu βkolem p β dopůdoysny. D o = o Q 1 5.sestojímeotočenýpětiúhelník A o o D o C o E o A o = A o = E o : AE o =6, E o =u (z předchozí konstukce) = A o D o : D o =6, AD o =u C o : E o C o = D o C o =6 C o 6.využijemepavoúhléafinitysosou p β 1 E o a 1 p β 1 a 1, E o p β 1 E o D o p β 1, =u (bod jesestojensouměněk podle S 1 ) Q 2 = A 2 2 C 2 p γ 1 7. ovinu γ nebudeme již otáčet, konstukce by byla stejná p 1 γ, = =u,, jsou vcholy ovnostanného tojúhelníka vepsaného do kužnice l 1 (Q 1, = Q 1 ) Q 1 u l 1 6 E o a 1 p β 1 6 z E (E) 8. učíme z-ovou souřadnici bodu E využijeme A E: AE =stanatělesa=6 (A E)=90 sestojíme bod(e) při přesném ýsování je z E = (E) ==poloměkužnice l z E = z D = z F =

17 PRAVIDELNÝ DVACETISTĚN příklad C 2 Q 2 = A 2 9.bod jesouměnýk podle S 1 bod jesouměnýk podle S 1 bod jesouměnýk podle S 1 body,,,,, jsouvcholypavidelného šestiúhelníka vepsaného do kužnice l 1 a tento šestiúhelník je obysem půdoysu dvacetistěnu Q 1 = S 1 l 1 (C) C 2 z C u A učíme z-ovou souřadnici bodu C využijeme A C: AC = u(u je velikost úhlopříčky pětiúhelníka AD C E) (A C)=90 sestojíme bod(c) při přesném ýsování je z C = (C) =+ =polomě k+polomě l z C = z A = z = + S 2 2 A 2 C S 2 jestředúsečky A 2 A 2, 2 2, C 2 C 2 bod jesouměnýk podle S 2 z E = z F = z D = =polomě k 12. zobazení tělesa a viditelnost Q 1 = S 1

18 PRAVIDELNÝ DVACETISTĚN příklad 3 18 V měřítku 1:1 C 2 A 2 2 S 2 2 Q 2 = A 2 C 2 Q 1 = S 1

19 PRAVIDELNÝ DVACETISTĚN příklad 4 19 Příklad 4 A4navýšku,MP: O[10,5;15] Zobazte pavidelný dvacetistěn o velikosti hany 6cm, jehož tělesová úhlopříčka AA je kolmá kpůdoysně π, A[0;7;0], z A >0. Nejdříve sestojíme pavidelný pětiúhelník CDEF, jehož stana má velikost C = 6cm(viz příklad č.3 a také č.2). Označme polomě kužnice pětiúhelníku opsané. E D F C

20 PRAVIDELNÝ DVACETISTĚN příklad 4 20 Zvcholu Advacetistěnuvychází5han A, AC, AD, AEa AF.Pavidelnýpětiúhelník CDEF o staně 6 leží v ovině ovnoběžné s půdoysnou. A 2 1. jepavidelný pětiúhelník o staně 6 a středu, vcholy pětiúhelníka leží na kužnici (, ) (značeno po směu hodinových učiček) zvolmebod tak,že x =0ay > y A Označme A,, C, D, E a F vcholy tělesa souměné k vcholům A,, C, D, E, Fpodlestředu S. 2. S 1 = = = S 1 = bod jesouměnýk podle S 1 bod jesouměnýk podle S 1. bod jesouměnýk podle S 1 je pavidelný desetiúhelník vepsaný do kužnice a tento desetiúhelník je obysovou čaou půdoysu dvacetistěnu () 6 z z () 3. učíme z-ovou souřadnici bodu využijeme A : A =6 (A )=90 sestojíme bod() při přesném ýsování je z = =stanapavidelného desetiúhelníkavepsanéhokužnici z = z C = z D = z E = z F 6 4. učíme z-ovou souřadnici bodu využijeme pomítací lichoběžník úsečky D: z D = z, D =6 z D (D) připřesnémýsováníje z = + z z = z C = z D = z E = z F = + z

21 PRAVIDELNÝ DVACETISTĚN příklad 4 21 A 2 5. S 2 je střed úsečky 2 2, C 2 C 2,... z A = +2 z 2 C 2 6. zobazení tělesa a viditelnost S 2 C 2 2 A 2 = S 1 =

22 PRAVIDELNÝ DVACETISTĚN příklad 4 22 A 2 2 C 2 S 2 C 2 D2 2 A 2 = S 1 =

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru Geometie Zoazovací metody Zoazení kužnice v pavoúhlé axonometii Zoazení kužnice ležící v souřadnicové ovině Výklad v pavoúhlé axonometii lze poměně snadno sestojit půmět kužnice dané středem a poloměem,

Více

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená. MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný

Více

Planimetrie. Přímka a její části

Planimetrie. Přímka a její části Planimetie Přímka a její části Bod - značí se velkými tiskacími písmeny - bod ozděluje přímku na dvě opačné polooviny Přímka - značí se malými písmeny latinské abecedy nebo AB, AB - přímka je dána dvěma

Více

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text Technická univezita v Libeci Fakulta příodovědně-humanitní a pedagogická Kateda matematiky a didaktiky matematiky KŘIVKY Pomocný učební text Peta Piklová Libeec, leden 04 V tomto textu si budeme všímat

Více

Syntetická geometrie II

Syntetická geometrie II Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 58. očník Matematické olympiády Úlohy domácí části I. kola kategoie C 1. Honza, Jika, Matin a Pet oganizovali na náměstí sbíku na dobočinné účely. Za chvíli se u nich postupně zastavilo pět kolemjdoucích.

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Polopravidelné mnohostěny Vypracovala: Lucie Kocourková Třída: 4. C Školní rok: 2014/2015 Seminář : Deskriptivní geometrie Prohlašuji,

Více

Pravidelný dvanáctistěn

Pravidelný dvanáctistěn Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Pravidelný dvanáctistěn Vypracoval: Miroslav Reinhold Třída: 4. C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Prohlašuji,

Více

Fulereny. Ing. Zuzana Benáková 1

Fulereny. Ing. Zuzana Benáková 1 Fuleeny Ing. Zuzana Benáková 1 1. FULLER (189-198) geodetické kopule Richad Buckminste Fulle je známý jako achitekt a podnikatel. Jeho aktivity yly velmi šioké, posadil se však pávě v olasti achitektuy.

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

Úlohy domácí části I. kola kategorie A

Úlohy domácí části I. kola kategorie A 67. očník Matematické olympiády Úlohy domácí části I. kola kategoie A 1. Pavel střídavě vpisuje křížky a kolečka do políček tabulky (začíná křížkem). Když je tabulka celá vyplněná, výsledné skóe spočítá

Více

ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN

ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE PRAVIDELNÝ DVACETISTĚN Vypracovala: Zuzana Dykastová Třída: 4. C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že

Více

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě

MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. - Mnohostěny mají stěny, hrany

Více

CVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 53 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána funkce f: y = x p, x R {3}, kde p je reálný

Více

Rovinné grafy. In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, pp

Rovinné grafy. In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, pp Rovinné grafy VIII. kapitola. Konvexní mnohostěny In: Bohdan Zelinka (author): Rovinné grafy. (Czech). Praha: Mladá fronta, 1977. pp. 99 112. Persistent URL: http://dml.cz/dmlcz/403912 Terms of use: Bohdan

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

Písemná práce. 1. Rozhodni zda trojúhelník s následujícími délkami je pravoúhlý: a) 8,5 m; 13m; 15,1 m. b) 9,5cm; 16,8cm; 19,3cm

Písemná práce. 1. Rozhodni zda trojúhelník s následujícími délkami je pravoúhlý: a) 8,5 m; 13m; 15,1 m. b) 9,5cm; 16,8cm; 19,3cm Písemná práce Třída:. Jméno:.. Skupina : A Vyhodnocení: 1. Rozhodni zda trojúhelník s následujícími délkami je pravoúhlý: a) 8,5 m; 13m; 15,1 m b) 9,5cm; 16,8cm; 19,3cm čet bodů: 2. Je dán kvádr ABCDEFGH

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 49. očník Matematické olympiády Úlohy domácího kola kategoie B 1. Po kteá eálná čísla t má funkce f(x) = 5x + 44 + t x 3 x t maximum ovné 0? Daná funkce je lineání lomená, potože obsahuje dva výazy s absolutní

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky.

Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky. Upozornění : barevné odstíny zobrazené na této stránce se mohou z důvodu možného zkreslení Vašeho monitoru lišit od fyzické dodávky. ODSTÍN SKUPINA CENOVÁ SKUPINA ODRÁŽIVOST A10-A BRIGHT A 1 81 A10-B BRIGHT

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 68. očník Matematické olympiády I. kolo kategoie Z9 Z9 I 1 Najděte všechna kladná celá čísla x a y, po kteá platí 1 x + 1 y = 1 4. Nápověda. Mohou být obě neznámé současně větší než např. 14? (A. Bohiniková)

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU 36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

PLANIMETRIE ZÁKLADNÍ POJMY PŘÍMKA A JEJÍ ČÁSTI

PLANIMETRIE ZÁKLADNÍ POJMY PŘÍMKA A JEJÍ ČÁSTI Předmět: Ročník: ytvořil: Dtum: MTEMTIK DRUHÝ Mg. Tomáš MŇÁK 17. květn 2012 Název zcovného celku: PLNIMETRIE ZÁKLDNÍ POJMY Plnimetie = geometie v ovině. Zákldními útvy eukleidovské geometie jsou: bod římk

Více

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku. Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

Golayův kód 23,12,7 -kód G 23. rozšířený Golayův kód 24,12,8 -kód G 24. ternární Golayův kód 11,6,5 -kód G 11

Golayův kód 23,12,7 -kód G 23. rozšířený Golayův kód 24,12,8 -kód G 24. ternární Golayův kód 11,6,5 -kód G 11 Golayův kód 23,12,7 -kód G 23 rozšířený Golayův kód 24,12,8 -kód G 24 kód G 23 jako propíchnutí kódu G 24 ternární Golayův kód 11,6,5 -kód G 11 rozšířený ternární Golayův kód 12,6,6 -kód G 12 dekódování

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

Mongeovo zobrazení. Řez jehlanu

Mongeovo zobrazení. Řez jehlanu Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Geometrická zobrazení

Geometrická zobrazení Geometrická zobrazení Franta Konopecký Geometrická zobrazení jsou nádherná kapitola matematiky, do které když proniknete, tak už neuniknete. Pro lepší představu v tomto příspěvku najdete stručný přehled,

Více

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině. ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě

Více

Sada 7 odchylky přímek a rovin I

Sada 7 odchylky přímek a rovin I Sada 7 odchylky přímek a rovin I Odchylky přímek 1) Je dána krychle ABCDEFGH. Určete odchylku daných přímek a) AB, AE b) AB, AD c) AE, AF d) AB, BD e) CD, GH f) AD, FG g) AB, SAEF h) ED, FC 2) Je dána

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

1. Planimetrie - geometrické útvary v rovině

1. Planimetrie - geometrické útvary v rovině 1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma

Více

RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.

RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen. RELIÉF Lineární (plošná) perspektiva ne vždy vyhovuje pro zobrazování daných předmětů. Například obraz, namalovaný s osvětlením zleva a umístěný tak, že je osvětlený zprava, se v tomto pohledu "nemodeluje",

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB

Více

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,... STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

DIDAKTIKA MATEMATIKY

DIDAKTIKA MATEMATIKY DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

3. jarní série. Stereometrie. Háňasiběhempsaníbakalářkyvyrobilačtyřstěn,jehoždélkyhranjsouceláčísla1,1, x, x,3, 3.Čemuvšemusemůžerovnat x?

3. jarní série. Stereometrie. Háňasiběhempsaníbakalářkyvyrobilačtyřstěn,jehoždélkyhranjsouceláčísla1,1, x, x,3, 3.Čemuvšemusemůžerovnat x? Téma: atumodeslání:. jarní série Stereometrie ½¾º Ù Ò ¾¼½¼ ½º ÐÓ Ó Ýµ Háňasiběhempsaníbakalářkyvyrobilačtyřstěn,jehoždélkyhranjsouceláčísla1,1, x, x,,.čemuvšemusemůžerovnat x? ¾º ÐÓ Ó Ýµ Franta má doma

Více

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.

Více

Trojpoměr v geometrii

Trojpoměr v geometrii Trojpoměr v geometrii Anša Lauschmannová Co to ten trojpoměr vlastně je? Definice. Trojpoměrem 6 bodu Cpřímky ABvzhledemkbodům A, Bnazýváme číslo(abc) definované takto: (i) leží-li Cnaúsečce AB,je(ABC)=

Více

Opakování ZŠ - Matematika - část geometrie - konstrukce

Opakování ZŠ - Matematika - část geometrie - konstrukce Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny

Více

3.2.2 Shodnost trojúhelníků II

3.2.2 Shodnost trojúhelníků II 3.. hodnost tojúhelníků II Předpoklady: 30 Pokud mají tojúhelníky speiální vlastnosti, mohou se věty o shodnosti zjednodušit Př. : Zfomuluj věty o shodnosti: a) ovnoamennýh tojúhelníků b) ovnostannýh tojúhelníků

Více

Řešení 1) = 72000cm = 30 80

Řešení 1) = 72000cm = 30 80 Steeometie 1) uzavřeném skleněném kvádu s hanami délek 0 cm, 60 cm a 80 cm je obavená voda. Postavíme-li kvád na stěnu s ozměy 0 cm x 60 cm dosáhne voda do výšky 40 cm. jaké výšce bude hladina vody, ostavíme-li

Více

Zlatý řez nejen v matematice

Zlatý řez nejen v matematice Zlatý řez nejen v matematice Zlatý řez v planimetrii In: Vlasta Chmelíková (author): Zlatý řez nejen v matematice. (Czech). Praha: Katedra didaktiky matematiky MFF UK, 009. pp. 37 66. Persistent URL: http://dml.cz/dmlcz/400794

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je a) 4:π, b) :π, c) :4π, d) :4π, e) π :,. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 %, zmenší

Více

STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117

STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117 STEREOMETRIE Odchylky přímky a roviny Mgr. Jakub Němec VY_3_INOVACE_M3r0117 ODCHYLKA PŘÍMKY A ROVINY Poslední kapitolou, která se týká problematiky odchylek v prostoru, je odchylka přímky a roviny. V této

Více

Počítání v planimetrii Michal Kenny Rolínek

Počítání v planimetrii Michal Kenny Rolínek Počítání v planimetrii Michal Kenny Rolínek Cílem této přednášky je obohatit vaše znalosti z planimetrie o nové metody, založené na algebraickém přístupu. Nebudeme ovšem sáhodlouze upravovat obrovskévýrazy,jakbysemohlozdát.naopaksiukážemepříklady,vnichžnástrocha

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,

Více

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114 STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

Analytická geometrie ( lekce)

Analytická geometrie ( lekce) Analytická geometrie (5. - 6. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 20. června 2011 Vektory Vektorový součin Vektorový

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY

NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY NESTANDARDNÍ APLIKAČNÍ ÚLOHY A PROBLÉMY Růžena Blažková Úvod Tématický okruh Nestandardní aplikační úlohy a problémy poskytuje žákům možnosti řešení úloh a problémů zábavnou formou, úloh s tématikou z

Více

SBÍRKA ÚLOH Z DESKRIPTIVNÍ GEOMETRIE

SBÍRKA ÚLOH Z DESKRIPTIVNÍ GEOMETRIE SBÍRKA ÚLOH Z DESKRIPTIVNÍ GEOMETRIE ANTONÍN KEJZLAR 1963 Vydavatel: Vysoká škola strojní a textilní v Liberci Nakladatel: Státní nakladatelství technické literatury Praha Elektronické zpracování: Jan

Více

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm

p ACD = 90, AC = 7,5 cm, CD = 12,5 cm Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru

Více

Řešení 5. série kategorie Student

Řešení 5. série kategorie Student Řešení 5 série kategorie Student Řešení S-I-5-1 Aby byl daný trojúhelník (ozn trojúhelník A) pravoúhlý, musí podle rozšířené Pythagorovy věty (pravidelné 9-úhelníky jsou podobné obrazce) platit, že obsah

Více

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. 11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S

Více

U3V Matematika Semestr 1

U3V Matematika Semestr 1 U3V Matematika Semestr 1 Přednáška 03 Platónská a archimédovská tělesa A zase jsme u starých Řeků! Jaké problémy si vybereme pro tuto přednášku? Odvodíme tzv. Eulerovu větu, což je vztah mezi počty vrcholů,

Více