Analytická geometrie II: Geometrické transformace

Rozměr: px
Začít zobrazení ze stránky:

Download "Analytická geometrie II: Geometrické transformace"

Transkript

1 Analytická geometrie II: Geometrické transformace Naďa Stehlíková Tento materiál vzniká postupně na základě skript Geometrické transformace (metoda analytická) autorů M. Hejný, D. Jirotková, N. Stehlíková, PedF UK, Není s nimi však totožný, obsahuje nový materiál, jiné pořadí apod. 1

2 Použité značky N, Z, R množina všech přirozených čísel/ celých čísel/ reálných čísel 2Z množina všech sudých celých čísel M množina M M matice M I [E n ] množina všech izometrií v E n g f, gf složené zobrazení f složeno s g (v tomto pořadí) f 1 inverzní zobrazení k zobrazení f AB velikost úsečky AB QED konec důkazu (quod erat demonstrandum) E 1, E 2 Eukleidovská přímka/ rovina I 0 [E 1 ], I 0 [E 2 ] grupa všech izometrií v E 1 / E 2 zachovávajících počátek I [E 1 ], I [E 2 ] grupa všech izometrií v E 1 / E 2 M = X Z bod M je střed dvojice bodů X, Z {} prázdná množina t u, t u posunutí o vektor u s M, s 0 středová souměrnost se středem souměrnosti M/ v počátku r β otočení o úhel β R(β), R(M, β) matice otočení o úhel β, kolem bodu O/ kolem bodu M s m osová souměrnost s osou souměrnosti m S(µ), S(M, µ) matice osové souměrnosti s osou, která svírá s osou x úhel µ a prochází bodem O/ bodem M I matice identity, jednotková matice T( u), T([u; v]), T(u, v) matice posunutí o vektor u = [u; v] U(m, n; α), V(m, n; µ) matice ( izometrie ) a b a, b, c, d matice c d MNO obsah trojúhelníka MNO AOB velikost úhlu AOB A 1, A 2 afinní přímka/ rovina A 0 [A 1 ], A 0 [A 2 ] grupa všech afinit v A 1 / A 2 zachovávajících počátek A [A 1 ], A [A 2 ] grupa všech afinit v A 1 / A 2 f a,b afinita na A 1 x ax + b f X afinita v A 2 určená maticí X Ω, Γ osnova přímek, směr Σ svazek přímek D diskriminant δ determinant matice a, b, c, d IN V množina všech samodružných bodů IN V množina všech samodružných přímek P, Q simplex 2

3 Přehled základních pojmů Zobrazení f : E n E n se nazývá izometrie, nebo-li shodnost na E n, jestliže pro libovolné body X, Y E n je f(x)f(y ) = XY. Tedy izometrie je zobrazení, které zachovává vzdálenost. Množinu všech izometrií na E n označíme I [E n ]. Zobrazení id : E n E n, X X, které každý bod nechává na místě, se nazývá identita na E n. Jsou-li f, g dvě zobrazení E n E n, pak složením (superpozicí) těchto zobrazení v uvedeném pořadí rozumíme zobrazení g f : E n E n, X g(f(x)). Jestliže navíc platí g f = id, pak zobrazení g se nazývá inverzní k f a označuje se f 1. Zobrazení f : E n E n je involutorní (stručně involuce), když f = f 1. Zobrazení f : M M je injektivní (když f(x 1 ) = f(x 2 ), pak x 1 = x 2 ); f je surjektivní pro každé w M existuje x M tak, že f(x) = w. K zobrazení f existuje inverzní zobrazení f 1, právě když je f vzájemně jednoznačné, tj. injektivní (prosté) a surjektivní (na). Je-li g inverzní k f, pak je f inverzní ke g (f = g 1 ) a platí g f = f g. Zobrazení f : M M je transformací právě tehdy, když je bijektivní, tedy injektivní (prosté) a současně surjektivní (na). Tedy f je transformace existuje f 1. Nechť X je bod a P je podmnožina v M. Řekneme, že X je samodružný nebo též invariantní bod transformace f, když f(x) = X. Řekneme, že M je samodružná, invariantní množina transformace f, jestliže f(m) = M. Upozornění: Podmínka f(m) = M říká, že bod ležící v M se transformací f převede opět do bodu ležícího v M, nikoli však nutně do sebe. Např. posunutí podél přímky p tuto přímku jako celek, tedy jako množinu bodů, zachová, i když nezachová žádný z jejích bodů. 3

4 Přehled transformací Shodná transformace (shodnost): Pro každé dva body roviny X a Y a jejich obrazy X a Y platí X Y = XY. Podobná transformace (podobnost): Pro každé dva body roviny X a Y a jejich obrazy X a Y platí X Y = k XY, kde k R + je poměr podobnosti. Afinní transformace (afinita): Pro každé tři kolineární body roviny X, Y, Z a jejich obrazy X, Y, Z platí, že X, Y, Z jsou také kolineární a (XY Z) = (X Y Z ). Projektivní transformace (kolineace): Pro každé čtyři různé kolineární body roviny V, X, Y, Z a jejich obrazy V, X, Y, Z platí, že V, X, Y, Z jsou také různé kolineární a (V XY Z) = (V X Y Z (V XY ) ). (V XY Z) je dvojpoměr a je definován jako (V XY Z) = (V XZ). Jejich základní vlastnosti jsou přehledně znázorněny v tabulce (Kuřina, 10 geometrických transformací): Kolinearita Shodnost Poměr velikostí dělící po- dvojpoměr bodů úseček úseměr 3 4 bodů ček bodů Shodnost Podobnost Afinita Kolinearita V tomto textu se budeme zabývat prvními třemi typy transformací, a to zejména z hlediska analytického. 4

5 Kapitola 1 Opakování poznatků ze syntetické geometrie Pro pochopení úvah v tomto textu jsou nutné následující poznatky: Definice shodností v rovině. Skládání shodností v rovině a naopak jejich rozklad na osové souměrnosti. 1.1 Úlohy skládání izometrií A. Dokažte, že každé posunutí t u lze vyjádřit psát jako složení dvou osových souměrností t u = = s b s a, kde a b, u je kolmý na zaměření přímky b, b = t u (a). 2 Řešení: Řešení je zřejmé z obrázku 1.1a. B. Dokažte, že každé otočení r M,ϕ lze vyjádřit jako složení dvou osových souměrností r M,ϕ = = s b s a, kde {M} = a b a orientovaný úhel a, b je ϕ 2. Řešení: Řešení je zřejmé z obrázku 1.1b. C. Nechť A, B jsou body a c, d přímky. Dokažte, že pak platí (a) s A s B s A = s X, kde X = s A (B), (c) s c s A s c = s X, kde X = s c (A), (b) s A s c s A = s y, kde y = s A (c), (d) s c s d s c = s y, kde y = s c (d). Řešení: Řešení přenecháme čtenáři. 5

6 Obrázek 1.1: 1.2 Věta důležité rovnosti skládání izometrií Nechť a, b, c, d jsou čtyři ne nutně různé přímky procházející počátkem O. Pak platí tvrzení: 1. s b s a je otočení r β α kolem počátku O o úhel β α; 2. s b s a = s d s c, právě když orientovaný úhel přímek a, b je shodný s orientovaným úhlem přímek c, d; 3. s c s b s a je osová souměrnost s d, přičemž orientovaný úhel a, b je shodný s orientovaným úhlem d, c; 4. s a s b s a = s c orientovaný úhel přímek a, b se rovná orientovanému úhlu přímek c, a. 5. s c s b s a = s a s b s c. Důkaz: Tvrzení 1 bylo dokázáno v předmětu Elementární geometrie II a jeho analytický důkaz bude podán později. Tvrzení 2 je důsledkem předchozího. Je-li totiž s b s a = r β α a s d s c = r δ γ, pak s b s a = = s d s c r β α = r δ γ β α = δ γ + kπ pro vhodné k Z orientovaný úhel přímek a, b je shodný s orientovaným úhlem přímek c, d. Tvrzení 3: s c s b s a = s c s c s d = s d (podle tvrzení 2) orientovaný úhel přímek a, b se rovná orientovanému úhlu přímek d, c, tj. γ δ = β α + kπ (viz obrázek 1.2a). Tvrzení 4: s a s b s a = s c (podle tvrzení 3) α γ = β α + kπ přímka a je jednou z os přímek c, b, tj. c = s a (b) (viz obrázek 1.2b). Tvrzení 5: Víme, že s c s b s a = s x, s a s b s c = s y. Pak s x s y = s c s b s a s a s b s c = = s c s b id s b s c = s c id s c = id. Tedy s x s y = id, s x = s y, nebo-li x = y. Proto 6

7 s c s b s a = s a s b s c. Obrázek 1.2: 1.3 Cvičení skládání izometrií A. Nechť p, q, r jsou přímky těžnic rovnoramenného pravoúhlého trojúhelníka P QR s pravým úhlem u vrcholu R. Zjistěte, jak vypadá zobrazení: (a) s p s q s r, (d) s r s p s q s r s p s q, (b) s p s q s p, (e) s r s p s q s p s q s r, (c) s q s r s p s q, (f) s p s q s p s r. B. Předchozí úlohu řešte v případě, že přímky p, q, r jsou (a) osy stran rovnoramenného pravoúhlého trojúhelníka, (b) strany rovnoramenného pravoúhlého trojúhelníka, (c) osy vnitřních úhlů trojúhelníka s úhly 50, 60, 70. 7

8 1.4 Definice grupa transformací Nechť M je neprázdná množina (bodů) a T neprázdná množina transformací (bijekcí) f. T je grupa transformací na M, jestliže jsou splněny dvě podmínky: f T f 1 T, (1.1) f, g T g f T. (1.2) Dlouhý termín budeme často zkracovat slovem grupa. Grupa, která má konečný počet prvků, se nazývá konečná grupa. Grupa H, která je podmnožinou grupy G, se nazývá podgrupa grupy G. Jestliže navíc G H, pak podgrupu H nazýváme vlastní podgrupou grupy G. Řekneme, že podmnožina T grupy H je generátor grupy H (T generuje H), jestliže se každá transformace z H dá psát jako složení konečného počtu transformací z T a transformací k nim inverzních. Pak píšeme H = G [T ]. Místo přesného G [{f, g}] píšeme často stručně G [f, g] apod. Poznámka: S pojmem grupa se setkáváme v mnoha oblastech matematiky. Víme například, že množina R vzhledem k operaci + je grupa, či množina regulárních matic typu 2 2 M 2 je grupa vzhledem k operaci násobení matic. Tyto grupy píšeme jako dvojice symbolů (množina,operace), tedy (R, +), případně (M 2, ). Měli bychom tedy nahoře definované grupy psát přesně (T, ), (G, ), apod. Nebudeme to dělat, protože v našich úvahách budou vystupovat pouze dvě grupové operace, a to v grupách transformačních a v grupách maticových. Z kontextu bude vždy jasné, o jakou grupu jde. 1.5 Úlohy grupy A. Dokažte, že pro každou transformační grupu G je id G. Důkaz: Podle definice je G neprázdná. Tedy existuje f G. Podle (1.1) pak f 1 G. Podle (1.2) pak id = f f 1 G. B. Je struktura (I 0 [E 2 ; ), kde I 0 [E 2 ] je množina shodností, které zachovávají počátek, grupa? Řešení: Ano. (Ověřte vlastnosti grupy podle definice.) C. Najděte všechny dvouprvkové podgrupy grupy I 0 [E 2 ] (I 0 [E 2 ] je grupa všech izometrií, které zachovávají počátek). Řešení: Z předchozího cvičení víme, že každá dvouprvková grupa má tvar {id, f}, kde f id. Protože podle (1.2) je f 2 {id, f}, je buď f 2 = f, nebo f 2 = id. Vztah f 2 = f implikuje f = id a dostáváme spor. Tedy f je nutně involuce. V množině rotací existuje jediná, která je involucí. Je to r π, nebo-li středová souměrnost. V množině osových souměrností je každý prvek involucí. Tím jsou všechny možnosti vyčerpány. 8

9 Závěr: Hledaná grupa je buď {id, s m }, kde m je libovolná přímka jdoucí počátkem, nebo {id, r π }. D. Dokažte následující tvrzení kritérium podgrupy. Nechť (G, ) je grupa a H neprázdná podmnožina množiny G. Pak (H, ) je podgrupa grupy (G, ), právě když jsou splněny dvě podmínky: (1) f H f 1 H, tj. H je uzavřená vůči invertování, (2) f, g H f g H, tj. H je uzavřená vůči skládání. Důkaz: Jsou-li splněny podmínky (1) a (2), pak z neprázdnosti H plyne, že existuje-li f H, podle (1) je f 1 H a podle (2) je f f 1 H. Tedy neutrální prvek patří do H. Asociativnost v H je důsledkem asociativnosti v G. Tedy H je grupa. Naopak, když některá z podmínek (1), (2) není splněna, H nemůže být grupou, protože zde není definována operace skládání, nebo invertování. 1.6 Cvičení A. Ke každému n N existuje aspoň jedna podgrupa G grupy I 0 [E 2 ], která má právě n prvků. Dokažte. B. Zjistěte, zda (a) množina I r 0 [E 2 ] všech rotací, (b) množina I o 0 [E 2 ] všech osových souměrností je podgrupou grupy I 0 [E 2 ]. C. Najděte podgrupu {id, f, g, h} grupy I 0 [E 2 ] takovou, že f, g, h jsou všechno involuce. D. Najděte přímky m, n tak, aby grupa G [s m, s n ] měla právě (a) čtyři, (b) pět, (c) šest, (d) dvacet prvků. E. Najděte izometrii f I 0 [E 2 ] tak, aby grupa G [f] generovaná prvkem f obsahovala jak rotaci r π, tak i rotaci (a) r π, (b) r π, (c) r π, (d) r π, (e) r 5π, (f) r 2 π. 5 7 F. Je izometrie f v předchozím cvičení jediná? 9

10 Kapitola 2 Analytické vyjádření izometrií v E 2 V této kapitole si postupně odvodíme analytické vyjádření všech shodností v rovině. 2.1 Úlohy analytický popis otočení kolem počátku A. Najděte analytický popis otočení r π 2, tj. otočení o 90 kolem bodu O. Řešení: Z prvního semestru analytické geometrie víme, že otočením vektoru u = [u; v] o +90 (tj. proti pohybu hodinových ručiček) vznikne vektor u = ( v; u). Tedy pro bod X[x; y] platí r π 2 (X) = X [x ; y ], kde x = y, y = x. B. Najděte analytický popis otočení r π 4, tj. otočení o 45 kolem bodu O. Řešení: Nechť r π 4 (X) = X, tj. bod X[x; y] se otočením kolem bodu O o úhel +45 zobrazí do bodu X [x ; y ]. Naším úkolem je najít čísla x, y pomocí čísel x, y. Najděme nejprve bod Z = r π (X) = 2 = [ y; x], pak bod U[u; v] = X Z. Víme, že body O, U, X leží na přímce. Dokonce víme, že vektor OX je 2-násobek vektoru OU, neboť OX = OX = 2 OU (viz obrázek 2.1a). Tedy x = 2 u, y = 2 v. Dalším výpočtem dostaneme x = 2 u = 2(x y), 2 y = 2 v = 2(x + y). 2 Oba předchozí případy zobecňuje následující úloha. C. Najděte analytický popis otočení r β, tj. otočení o úhel β kolem bodu O. Řešení: Nechť r β (X) = X. Tedy bod X[x; y] se otočením kolem O o orientovaný úhel β zobrazí do bodu X [x ; y ]. Naším úkolem je najít čísla x, y pomocí čísel x, y, β. Snadné řešení poskytují polární souřadnice. Nechť X O. Označme d = OX = OX a α velikost úhlu XOI, kde I[1; 0]. 10

11 Tedy otočením polopřímky OI o úhel α kolem počátku O dostaneme polopřímku OX (viz obrázek 2.1b). Pak platí x = d cos α, y = d sin α, x = d cos(α + β), y = d sin(α + β). Odtud x = d cos(α + β) = d cos α cos β d sin α sin β = x cos β y sin β, y = d sin(α + β) = d sin α cos β + d cos α sin β = y cos β + x sin β. Tyto vztahy můžeme zapsat i pomocí matic, jak ukazuje věta 2.2. Obrázek 2.1: 2.2 Věta maticový popis otočení kolem bodu O Zobrazení r β : E 2 E 2, X[x; y] X [x ; y ], které je dáno v maticovém tvaru předpisem ( ) ( ) ( ) x cos β sin β x y = (2.1) sin β cos β y je izometrie. Je to otočení kolem počátku O o orientovaný úhel β. Příslušnou matici označíme R(β). Nulovému otočení, tj. identitě, odpovídá jednotková matice I. Platí R(β) = I β = 2kπ, k Z. Úmluva: Místo dlouhého otočení, které je popsáno maticí R(β) budeme stručně psát otočení R(β). Důkaz: Třetí část věty je zřejmý důsledek druhé části, kterou jsme dokázali v předchozím cvičení 2.1C. Zbývá dokázat část první, tedy že se jedná o izometrii. 11

12 Ze syntetické geometrie již víme, že otočení je izometrie, takže vlastně není co dokazovat. Přesto však dokažme tuto část věty analyticky. Jednak to bude výživné cvičení, jednak uvidíme příklad těžkopádnosti analytické metody ve srovnání se syntetickou. Zvolme libovolné body X[x; y] a U[u; v] a označme r β (X) = X [x ; y ], r β (U) = U [u ; v ]. Potřebujeme dokázat, že XU = X U. Počítejme: X U 2 = (x u ) 2 + (y v ) 2 = = ((x cos β y sin β) (u cos β v sin β)) 2 + ((y cos β + x sin β) (v cos β + u sin β)) 2 = = ((x u) cos β (y v) sin β) 2 + ((y v) cos β + (x u) sin β) 2 = = (x u) 2 + (y v) 2 = XU 2. QED. Poznámka: Všimněte si, že bod O, který jsme v řešení úlohy 2.1C z našich úvah vyloučili, také vyhovuje vztahu (2.1). 2.3 Úlohy skládání zobrazení A. Nechť r α je rotace kolem počátku o úhel α dána maticí R(α) a r β rotace kolem počátku o úhel β dána maticí R(β). Zjistěte, jak vypadá matice zobrazení r β r α. Řešení: Nechť X[x; y] je libovolný bod. Označme r α (X) = X [x ; y ], r β (X ) = X [x ; y ]. Pak ( ) ( ) ( ) ( ) ( ) ( ) x cos α sin α x x cos β sin β x y =, sin α cos α y y = sin β cos β y, ( ) ( ) ( ) ( ) x cos β sin β cos α sin α x odkud y =. sin β cos β sin α cos α y Hledaná matice zobrazení s b s a je tedy součinem matic R(β) R(α). B. Najděte geometrickou interpretaci matice R(β) R(α). Řešení: Protože ( ) cos β cos α sin β sin α cos β sin α sin β cos α R(β) R(α) = = sin β cos α + cos β sin α sin β sin α + cos β cos α ( ) cos(α + β) sin(α + β) = = R(α + β), sin(α + β) cos(α + β) je součinem matic R(β) R(α) dáno otočení kolem počátku O o úhel (α + β). Poznání zformulujeme ve větě

13 2.4 Věta násobení matic a skládání zobrazení Nechť f, g jsou zobrazení E 2 E 2 (ne nutně izometrická), která jsou popsána maticemi F, G. Pak zobrazení g f je popsáno maticí G F. Jinak: Geometrické operaci skládání zobrazení odpovídá algebraická operace náso- bení matic (ve stejném pořadí). Důkaz: Postup řešení úlohy 2.3A zopakujeme s libovolnými maticemi. 2.5 Úlohy analytický popis posunutí a rotace kolem libovolného bodu A. Najděte analytický popis posunutí t u : E 2 E 2 o vektor u [u; v] a zapište t u pomocí matice. Řešení: První část úlohy je snadná (viz obr. 2.2a). t u : E 2 E 2, X[x; y] X [x ; y ], x = x + u, y = y + v. (2.2) Potíže jsou s druhou částí úlohy. Matice posunutí na rozdíl od matice rotace z věty 2.2 nemůže být druhého řádu. Trik spočívá v tom, že ke dvěma souřadnicím bodu X[x; y] z E 2 přidáme třetí, umělou souřadnici, a sice 1. Pak lze vztahy (2.2) zapsat takto: x 1 0 u x y = 0 1 v y. (2.3) 1 1 Příslušnou matici značíme T( u) nebo T(u; v). Alternativně k zápisu X[x; y] budeme psát někdy též X[x; y; 1] s formální třetí souřadnicí 1. K nedorozumění s bodem v E 3 nedojde, protože všechny naše úvahy jsou v E 2. B. V úloze 2.3A jsme viděli, jak snadné je skládání zobrazení pomocí matic. Stojíme před problémem, jak pomocí matic skládat otočení s posunutím. Matice R(β) je totiž druhého a matice T( u) třetího řádu. Co s tím? Lze tuto potíž překonat? Řešení: Lze, a to poměrně jednoduše. Matici R(β) rozšíříme na matici 3 3 tak, abychom uchovali to nejdůležitější chceme, aby bylo skládání zobrazení popsáno násobením matic. Hledaná matice musí převést libovolný bod [x; y; 1] do bodu [x ; y ; 1]. Odtud plyne, že poslední řádek hledané matice má tvar (). Není pak těžké nahlédnout, že cos β sin β 0 R(β) = sin β cos β 0. (2.4) 13

14 C. Najděte matici R(2, 3; π 2 ) otočení r M, π 2 kolem bodu M[2; 3] o úhel π 2. Řešení: Hledané otočení vyjádříme jako složení tří izometrií. Libovolný bod X[x; y] můžeme do polohy X [x ; y ] = r M, π (X) přemístit postupem (viz obr. 2.2b): 2 X t u Y r π 2 Z t u X, kde t u : E 2 E 2, [x; y] [x + 2; y + 3] je posunutí o vektor u (2; 3) a r π : E2 E 2, [x; y] [ y; x] je otočení o π kolem počátku O. 2 2 Pomocí matic dostaneme R(2, 3; π) = T( u) R(0, 0; π ) T( u), tedy 2 2 R(2,3; π ) = = D. Najděte matici R(u, v; α) otočení r M,α kolem bodu M[u; v] o úhel α. Řešení: Zopakujeme postup řešení předchozí úlohy s obecnými maticemi, tj. R(u, v; α) = = T( u) R(0, 0; α) T( u), kde u(u; v). Výsledek je podán ve větě 2.6. Obrázek 2.2: 2.6 Věta maticový popis rotace Nechť r M,α je otočení kolem bodu M[u; v] o úhel α. Pak cos α sin α u(1 cos α) + v sin α R(u, v; α) = sin α cos α v(1 cos α) u sin α je matice otočení r M,α. 14

15 Důkaz: Stačí prověřit rovnost R(u, v; α) = T( u) R(0, 0; α) T( u). (2.5) 2.7 Úlohy analytické vyjádření osové souměrnosti A. Najděte analytické vyjádření osové souměrnosti kolem osy x Řešení: Analytické vyjádření lehce vyčteme z obrázku: x = x, y = y. Maticí: B. Najděte analytické vyjádření osové souměrnosti kolem osy y Řešení: Analytické vyjádření lehce vyčteme z obrázku: x = x, y = y. Maticí: C. Najděte analytické vyjádření osové souměrnosti kolem osy prvního a třetího kvadrantu u Výsledek: Rovnicemi: x = y, y = x. Maticí: D. Najděte analytické vyjádření osové souměrnosti kolem přímky o. Přímka o prochází počátkem a svírá s kladnou částí osy x úhel α. Řešení: Můžeme postupovat např. tak, že si uvědomíme, že složíme-li s x a s o, dostaneme otočení o úhel 2α. Tedy s x s o = r 2α a v maticovém vyjádření S 1 S 2 = R(0, 0; 2α), kde S 1 je matice osové souměrnosti s x a kde S 2 je matice osové souměrnosti s o. Po úpravě dostaneme s o = r 2α s x a v maticovém vyjádření S 2 = R(0, 0; 2α) S 1. Můžeme tedy počítat: ( ) cos 2α sin 2α sin 2α cos 2α ( ) ( ) 1 0 cos 2α sin 2α = 0 1 sin 2α cos 2α E. Najděte analytické vyjádření osové souměrnosti kolem obecné přímky o. Přímka o svírá s kladnou částí osy x úhel α. Řešení: Podobně jako u hledání analytického vyjádření rotace v úloze 2.5D využijeme posunutí. Na ose o zvolíme libovolný bod M[u; v]. Pak s o = t u s o t u, kde o je přímka rovnoběžná s osou o a procházející počátkem a o = t u(o) a vektor u(u; v). Označme matici osové souměrnosti podle osy, která prochází bodem o souřadnicích [u; v] a má směrový vektor (cos α; sin α), jako S(u, v; α). Převedeme-li výše uvedenou rovnost do maticového vyjádření, dostaneme S(u, v; α) = T( u) S(0, 0; α) T( u). To už je jen kalkulace a její výsledek udává věta

16 F. Najděte analytické vyjádření osové souměrnosti kolem přímky o, která je dána rovnicí ax + by + c = 0. Řešení: Označíme X[x; y] a jeho obraz v osové souměrnosti X [x ; y ]. Protože vektor XX je kolmý na osu o, platí XX = k (a; b), kde k R {0}. Tedy x = x + k a, y = y + k b. Dále musíme najít číslo k. Nechť S = X Y. Bod S má souřadnice [ 2x + k a ; 2y + k b ]. 2 2 Protože S o, platí 2x + k a 2 a + 2y + k b 2 b + c = 0. Z této rovnosti vyjádříme k a dosadíme do rovnic pro x a y. Dostáváme x = x 2a(ax + by + c), y 2b(ax + by + c) = y. a 2 + b 2 a 2 + b 2 Zde není účelné převádět rovnice do maticového vyjádření. 2.8 Věta maticový popis osové souměrnosti Nechť s m je osová souměrnost podle přímky m dané bodem M[u; v] a směrovým vektorem m (cos α; sin α). Pak cos 2α sin 2α u(1 cos 2α) v sin 2α S(u, v; α) = sin 2α cos 2α v(1 + cos 2α) u sin 2α je matice osové souměrnosti s m. Nechť s m je osová souměrnost podle přímky m dané rovnicí ax + by + c = 0. Rovnice této osové souměrnosti jsou x 2a(ax + by + c) = x, y 2b(ax + by + c) = y. a 2 + b 2 a 2 + b Cvičení analytické vyjádření rotace a osové souměrnosti V úlohách A K předpokládáme, že rotace je kolem počátku a osová souměrnost kolem přímky procházející počátkem. Budeme používat zkrácené označení R(α) a S(α). A. Nechť s a je osová souměrnost podle přímky a a s b osová souměrnost podle přímky b. Přímky a a b procházejí počátkem. Zjistěte, jak vypadá matice zobrazení s b s a. 16

17 B. Najděte geometrickou interpretaci matice S( β 2 ) S( α 2 ). C. Napište matici I. otočení kolem počátku o úhel (a) 45, (b) 135, (c) 60, (d) 435, II. osové souměrnosti, jejiž osa prochází počátkem a svírá s osovu x úhel (e) 45, (f) 135, (g) 60, (h) 435, (i) 0. D. Zjistěte, pro která x, y R platí (a) R(x) R(y) = R(x y), (b) R(x) R(y) = R(x + y), (c) S(x) S(y) = S(x y). E. Stručně zapište (a) S(3x) S(x), (b) S(x) S(2x), (c) S(x) S(y), (d) S(x) S(2x) S(x), (e) S(x) S(y) S(x), (f) S(x) S(y) S(z). F. Stručně zapište S(x 1 ) S(x 2 )... S(x n ). G. Stručně zapište (a) S(0) R(y), (b) R(y) S(0), (c) S(x) R(y), (d) R(y) S(x), (e) R(y) S(x) R( y), (f) S(x) R(y) S(x) R(y). H. Řešte maticovou rovnici a najděte její geometrickou interpretaci: (a) R 2 (x) = I (jednotková matice I, viz 2.2), (b) R 4 (x) = I, (c) R 3 (x) = I, (d) R 6 (x) = I, (e) R 5 (x) = I. I. Řešte maticovou rovnici a najděte její geometrickou interpretaci: (a) S 2 (x) = I, (b) S 3 (x) = = I, (c) S(x) S(2x) = I, (d) S( x) S( y ) = R(π), (e) S( x) R(y) = R(x) S( y ), (f) S(x) R(y) = R(z). J. Nechť α R. Označme G [R(α)] množinu všech transformací, které lze získat z transformací R(α) a R( α) operací skládání. Zjistěte počet prvků množiny G [R(α)] pro (a) α = 0, (b) α = π, (c) α = π 2, (d) α = π 3, (e) α = 2π 5, (f) α = π 6, (g) α = π 12, (h) α = 2π n, kde n N je dané. K. Najděte všechna x R, pro která G [R(x)] = G [R(α)], když α nabývá stejných hodnot jako v předchozím cvičení. L. Najděte analytické vyjádření shodnosti, znáte-li tři vzory a jejich tři obrazy, a tyto shodnosti geometricky popište. (a) [0; 0] [3; 0], [1; 0] [3; 1], [0; 1] [4; 0] (b) [0; 0] [5; 4], [1; 0] [5; 3], [0; 1] [4; 4] (c) [1; 1] [0; 0], [0; 1] [0; 1], [ 2; 1] [0; 3] (d) [1; 1] [0; 1], [0; 1] [0; 2], [ 2; 1] [0; 4] M. Zjistěte, zda existuje shodnost, pro niž platí A[10; 0] A [0; 0] a B[25; 20] B [0; 25]. Pokud ano, najděte její analytické vyjádření. 17

18 2.10 Úlohy analytické vyjádření posunuté souměrnosti A. Zjistěte, zda transformace daná rovnicemi x = x + 1 a y = y je shodnost. Pokud ano, geometricky ji charakterizujte. Řešení: Lehce ověříme, že pro každé libovolné body X, Y a jejich obrazy X, Y platí XY = X Y. Jedná se tedy o shodnost. Na první pohled se zdá, že jde o osovou souměrnost viz věta 2.8. Zkusme najít samodružné body. Získáme soustavu rovnic x = x + 1, y = y, která však nemá řešení. Žádný samodružný bod tedy neexistuje a nejde o osovou souměrnost. Zkusíme-li si najít několik bodů a jejich obrazů, zjistíme, že se jedná o nepřímou shodnost. Zatím jsme neodvodili analytické vyjádření posunuté souměrnosti. To řeší následující úloha. B. Odvoďte analytické vyjádření posunuté souměrnosti, známe-li úhel, který svírá osa souměrnosti s osou x a vektor posunutí (rovnoběžný s osou souměrnosti). Řešení: Podle definice získáme posunutou souměrnost tak, že složíme osovou souměrnost a posunutí s vektorem posunutí, který je rovnoběžný s osou osové souměrnosti, a to v libovolném pořadí. Tomu odpovídá analytický způsob řešení: Provedeme výpočet: V = S(u, v; α) T(k cos α, k sin α), kde k R {0}. 1 0 k cos α cos 2α sin 2α u(1 cos 2α) v sin 2α V(m, n; α) = 0 1 k sin α sin 2α cos 2α u sin 2α + v(1 + cos 2α) = cos 2α sin 2α m = u(1 cos 2α) v sin 2α + k cos α = sin 2α cos 2α n = u sin 2α + v(1 + cos 2α) + k sin α C. Geometricky interpretujte shodnost z úlohy A. Řešení: Dosazením konkrétních hodnot do obecné matice posunuté souměrnosti získáme soustavu rovnic: 18

19 cos 2α = 1, sin 2α = 0, k cos α + u u cos 2α v sin 2α = 1, k sin α + v + v cos 2α u sin 2α = 0. Řešením tedy je α = π, k = 1, v = 0, u je libovolné reálné číslo. Uvedené rovnice jsou tedy rovnicemi posunuté souměrnosti s osou o: y = 0 a vektorem posunutí (1; 0). D. Najděte kritérium, podle něhož poznáme, zda matice G je matice osové nebo posunuté souměrnosti. cos 2α sin 2α m G = sin 2α cos 2α n Řešení: Osová a posunutá souměrnost se liší počtem samodružných bodů. Hledáme-li známým postupem samodružné body, dospějeme k soustavě rovnic x = x cos 2α + y sin 2α + m, y = x sin 2α y cos 2α + n s neznámými x a y. Po úpravě máme x(cos 2α 1) + y sin 2α + m = 0, x sin 2α (cos 2α + 1)y + n = 0 Vyjádříme-li z první rovnice x a dosadíme do druhé rovnice, po úpravě získáme rovnost n(cos 2α 1) + m sin 2α = 0. Po další úpravě pak dostáváme m cos α + n sin α = 0. Tedy můžeme formulovat kritérium: Matice G je maticí osové souměrnosti, právě když m cos α+n sin α = 0. V opačném případě to je matice posunuté souměrnosti Úloha charakteristika izometrií Najděte všechny izometrie, které lze v maticovém tvaru zapsat předpisem f : E 2 E 2, X(x; y; 1) X (x ; y ; 1), (2.6) 19

20 x p q m x y = r s n. y, kde p, q,..., w R. (2.7) 1 u v w 1 Řešení: Nechť U[u; v] je libovolný bod a f(u) = U [u ; v ]. Pak z podmínky f je izometrie plyne, že pro všechny X, U je XU = X U, čili (x u) 2 +(y v) 2 = (x u ) 2 +(y v ) 2 = ((px+qy) (pu+qv)) 2 +((rx+sy) (ru+sv)) 2 =... Zvolený postup je těžkopádný. Počítání si ulehčíme tím, že místo obecného vztahu zvolíme tři konkrétní a jednoduché vztahy. Vezměme trojúhelník OIJ, kde O[0; 0; 1], I[1; 0; 1], J[0; 1; 1] se zobrazí na trojúhelník O I J, kde O = f(o) = [m; n; w], I = f(i) = [p + m; r + n; u + w], a J = f(j) = = [q + m; s + n; v + w]. Protože poslední souřadnice všech tří bodů musí být 1, máme u = v = 0 a w = 1. Dále platí základní vazby OI = 1 O I = 1 p 2 + r 2 = 1, (2.8) OJ = 1 O J = 1 q 2 + s 2 = 1, IJ = 2 I J = 2 pq + rs = 0, neboť I J 2 = (p q) 2 +(r s) 2 = p 2 +r 2 +q 2 +s 2 2(pq+rs) = 2 2(pq+rs) = IJ 2 = 2. Z geometrických vztahů OI = OI, OJ = OJ a IJ = I J jsme získali algebraické vztahy p 2 + r 2 = 1, q 2 + s 2 = 1, pq + rs = 0. (2.9) Ze vztahů (2.9) plyne, že vektory OI = p (p; r; 0) a OJ = q (q; s; 0) jsou jednotkové a na sebe kolmé ( p = 1, q = 1, p q = 0). Body I, J leží tedy na jednotkové kružnici. Z toho vyplývá, že q = ( r; p; 0) nebo q = (r; p; 0) (q = r a s = p, nebo q = r, s = p) a že existuje takový úhel µ, µ R, že p = cos µ a r = sin µ. Je zřejmé, že µ a µ určují stejnou matici (a tedy stejnou izometrii), právě když µ = µ+2kπ, k Z, tj. právě když se liší o celočíselný násobek čísla 2π. Existuje tedy, a to jediné, µ 0; 2π) tak, že p = cos µ, r = sin µ. Jestliže je f izometrie, pak její matice má tvar cos µ sin µ m M = sin µ cos µ n, (2.10) nebo 20

21 cos µ sin µ m N = sin µ cos µ n. (2.11) 2.12 Věta charakteristika izometrií Zobrazení (2.6), které je dáno vztahem (2.7), je izometrií, právě když platí (2.8). Každá taková izometrie se dá zapsat ve tvaru (2.10), nebo (2.11), kde µ, m, n R jsou vhodná čísla. Naopak, každá z matic (2.10) a (2.11) je maticí izometrie pro libovolné µ, m, n R. Uvedené matice můžeme také zapsat takto: A B C B ±A D, kde A 2 + B 2 = 1. A B C Přímá shodnost je dána maticí B A D, kde A 2 +B 2 = 1. Nepřímá shodnost A B C je dána maticí B A D, kde A 2 + B 2 = 1. Důkaz: Důkaz první a druhé části byl již udělán. Třetí část věty se dokáže trpělivým výpočtem Cvičení shodnosti v rovině A. Geometricky charakterizujte shodnosti s rovnicemi (a) x = y +1, y = x+1, (b) x = x+1, y = y + 6. B. Determinant matice z věty 2.12 je 1, nebo 1. Zjistěte, zda platí věta: Matice F je maticí shodnosti v rovině právě tehdy, když absolutní hodnota jejího determinantu je 1. C. Zjistěte geometrický popis izometrie f I[E 2 ] dané maticí e e 0 e e 1 e e e 2e (a) e e 0, (b) e e e, (c) e e 1, (d) kde e = 1 2. e e 1 e e e e, D. Vyšetřete izometrii f I[E 2 ], která je dána maticí 21

22 0, 8 0, 6 1 0, 8 0, 6 3 0, 8 0, 6 1 (a) 0, 6 0, 8 3, (b) 0, 6 0, 8 1, (c) 0, 6 0, 8 1. Zjistěte, zda se některý z uzlových bodů A[1; 1], B[1; 2], C[1; 3] izometrií f zobrazí opět do uzlového bodu. Najděte všechny uzlové body [x; y], které se zobrazí transformací f opět do uzlových bodů. E. Nechť s J I[E 2 ] je středová souměrnost podle bodu J[0; 1] a s O I[E 2 ] středová souměrnost podle počátku O. (a) Popište geometrický tvar izometrií f 1 = s J s O, f 2 = s J s O s J f 3 = s J s O s J s O, f 4 = s J s O s J s O s J. (b) Předchozí úlohu zobecněte. Popište izometrii f n. (c) Napište matici transformace f n pro n N. (d) Transformace f n je definována pro n = 1, 2, 3,... Bylo by ji možné přirozeným způsobem definovat i pro n = 0, 1, 2, 3,...? (e) Nechť F = {f n ; n N}. Popište geometricky i analyticky grupu G [F ]. F. Nechť kromě označení s O z předchozí úlohy je s m I[E 2 ] osová souměrnost podle přímky m dané rovnicí x y = 2. (a) Popište geometrický tvar izometrií g 1 = s m s O, g 2 = s m s O s m, g 3 = s m s O s m s O, g 4 = s m s O s m s O s m. (b) Předchozí úlohu zobecněte. Popište izometrii g n. (c) Napište matici transformace g n pro n N. (d) Bylo by možné přirozeným způsobem definovat i g 1? (e) Nechť G = {g n ; n N}. Popište geometricky i analyticky grupu G [G]. G. Předchozí úlohu řešte v případě, že bod O všude nahradíte bodem J[0; 1]. H. Zjistěte, pro jakou volbu parametrů p, q R je daná matice maticí izometrie f I[E 2 ] a vyšetřete její geometrický tvar. 0 p 0 p q 0 p 0 0 (a) p 0 0, (b) 0 1 0, (c) 0 q 0, 0 0 q p q q 0 p q p p 0 (d) 0 1 p, (e) p 0 q, (f) p q 0. I. Doplňte scházející čísla v dané matici tak, aby tato byla maticí izometrie g I[E 2 ] a vyšetřete její geometrický tvar. Najděte všechna řešení. 22

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické

Afinní zobrazení, jeho regularita a (totální) singularita. Asociovaný homomorfismus. Analytické Slezská univerzita v Opavě Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava Tel. 553 684 661 ANALYTICKÁ GEOMETRIE Téma 3. Afinní zobrazení Opakování Dělicí poměr; Homomorfismus vektorových prostorů,

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Shodné zobrazení v rovině

Shodné zobrazení v rovině Gymnázium Cheb Shodné zobrazení v rovině seminární práce Cheb, 2007 Lojza Tran Prohlášení Prohlašuji, že jsem seminární práci na téma: Shodné zobrazení v rovině vypracoval zcela sám za použití pramenů

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v rovině Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace shodné transformace (shodnosti, izometrie) převádějí objekt

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

VYUŽITÍ PROGRAMU CABRI PRO ZJIŠŤOVÁNÍ VLASTNOSTÍ OSOVÝCH AFINIT

VYUŽITÍ PROGRAMU CABRI PRO ZJIŠŤOVÁNÍ VLASTNOSTÍ OSOVÝCH AFINIT VYUŽITÍ PROGRAMU CABRI PRO ZJIŠŤOVÁNÍ VLASTNOSTÍ OSOVÝCH AFINIT Naďa Stehlíková 1, Univerzita Karlova v Praze, Pedagogická fakulta Úvod Připomeňme nejdříve, že afinní transformace roviny (nebo afinita)

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr

Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Geometrické transformace v prostoru Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Shodné transformace 1 Shodné transformace stejný přístup jako ve 2D shodné transformace (shodnosti,

Více

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Vektorové prostory R ( n 1,2,3)

Vektorové prostory R ( n 1,2,3) n Vektorové prostory R ( n 1,2,) (Velikonoční doplněk ke cvičení LAG) Prvky kartézské mocniny R RR R jsou uspořádané trojice reálných čísel, které spolu s operacemi ( a1, a2, a) ( b1, b2, b) ( a1b1, a2

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

7 Analytická geometrie v rovině

7 Analytická geometrie v rovině 7 Analytická geometrie v rovině Myslím, tedy jsem (René Descartes) 71 Úsečka V kapitole 51 jsme zavedli pojem souřadnice v rovině pro potřeby konstrukce grafů funkcí Pomocí souřadnic lze ovšem popisovat

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechna prvočísla p, pro něž existuje přirozené číslo n takové, že p n + 1 je třetí mocninou některého přirozeného čísla. 1. Určete všechny trojice

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili

s dosud sestrojenými přímkami a kružnicemi. Abychom obrázky nezaplnili Dělení úsečky ŠÁRKA GRGLITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha V tomto článku se budeme zabývat sadou geometrických úloh, které jsou tematicky podobné. Liší se jen hodnotou jednoho

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012 61. ročník matematické olympiády III. kolo kategorie Hradec Králové, 5. 8. března 01 MO 1. Najděte všechna celá čísla n, pro něž je n 4 3n + 9 prvočíslo. (leš Kobza) Řešení. Zadaný výraz lze jednoduchou

Více

Extremální úlohy v geometrii

Extremální úlohy v geometrii Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0 Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,

Více

Úlohy domácího kola kategorie A

Úlohy domácího kola kategorie A 49. ročník Matematické olympiády Úlohy domácího kola kategorie A 1. Nechť P (x), Q(x) jsou kvadratické trojčleny takové, že tři z kořenů rovnice P (Q(x)) = 0 jsou čísla 22, 7, 13. Určete čtvrtý kořen této

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º) 6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Pravoúhlá axonometrie

Pravoúhlá axonometrie Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015 64. ročník matematické olympiády III. kolo kategorie Praha, 22. 25. března 2015 O 1. Najděte všechna čtyřmístná čísla n taková, že zároveň platí: i) číslo n je součinem tří různých prvočísel; ii) součet

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN

VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

Opakování ZŠ - Matematika - část geometrie - konstrukce

Opakování ZŠ - Matematika - část geometrie - konstrukce Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více