MC230P83 Hmotnostní detekce v separačních metodách, Hmotnostní detekce v separačních metodách III.

Rozměr: px
Začít zobrazení ze stránky:

Download "MC230P83 Hmotnostní detekce v separačních metodách, Hmotnostní detekce v separačních metodách III."

Transkript

1 Hmotnostní detekce v separačních metodách III. - Iontové zdroje - Iontové zdroje pracující za sníženého tlaku: EI/CI - Iontové zdroje pro spojení s planárními separacemi: MALDI, DESI, DAPPI, DART - Iontové zdroje pro prvkovou analýzu: ICP - Pohyb iontů v elektrických a magnetických polích - Hmotnostní analyzátory - Magnetický sektorový analyzátor - Analyzátor doby letu Iontové zdroje pracující za sníženého tlaku EI/CI

2 Iontový zdroj Vzorek Data Iontový zdroj Hmotnostní analyzátor Detektor Zdroj vakua Elektronová a chemická ionizace, EI a CI vlákno EI zdroje (filament) V EI módu molekuly interagují s elektrony (energie 70 ev) emitovanými ze žhaveného wolframového vlákna. Vznikají radikál-kationty (M + ), přebytek energie vede k jejich rozsáhlé fragmentaci. V CI módu je do ionového zdroje zaváděn reakční plyn, který interaguje s elektrony emitovanými z filamentu. Vzniká reaktivní plasma, která ionizuje analyt přenosem protonu ([M+H] + ). Fragmentace je silně potlačena.

3 Elektronová a chemická ionizace, EI a CI EI: M + e - -> M + + 2e - Ionizační energie IE: minimální množství energie, které musí být absorbováno neutrální molekulou aby došlo k ionizaci odstraněním elektronu. IE pro většinu molekul je v rozmezí 7-15 ev. Nejvyšší účinnost ionizace je kolem 70 ev. CI: M + [BH] + -> [M+H] + + B Protonová afinita PA: změna enthalpie spojená s protonizací (PA = -H r0 ). Protonizace (chemická ionizace) proběhne pouze pokud je reakce exotermní. Používané reakční plyny: methan, isobutan, amoniak. CH 4 CI: chemická ionizace s methanem tvorba reaktivních částic (např. CH 5+ ) CH 4 + e - -> CH + 4, CH + 3, CH + 2, CH +, C +, H + 2, H + CH CH 4 -> CH CH 3 Spektra EI a CI EI methionin CI

4 Knihovny EI spekter NIST/EPA/NIH Mass Spectral Library Wiley Registry of Mass Spectral Data EI spekter (70 ev) MS/MS spekter, retenční indexy látek strukturní vzorce spectra EI spekter (70 ev) strukturní vzorce Elektronová & chemická ionizace EI/CI iontový zdroj VG ZAB EQ

5 Elektronová & chemická ionizace EI/CI iontový zdroj Agilent - MSD Elektronová a chemická ionizace, EI, CI EI/CI je zdroj používaný pro GC/MS. Klasický způsob ionizace v organické MS. - poskytuje spektra, která jsou informačně obsažná, lze je interpretovat, prohledávat v databázích - dobrá kompatibilita s analyty vhodnými pro GC, vysoká citlivost, univerzální detekce EI někdy nelze určit ze spektra molekulovou hmotnost CI vyžaduje optimalizaci (výběr reakčního plynu a jeho tlaku) Využití: pro všechny analyty, které lze analyzovat pomocí GC

6 Elektronová a chemická ionizace, aplikace Př. identifikace organických látek v dechu kuřáka a nekuřáka metodou GC/Q-MS SPME 15 min, GC/MS, identifikace dle spekter, porovnání s knihovnou Nekuřák: ethanol, acetone, isoprene, carbon disulfide, 2- and 3-methylpentane, benzene, methylcyclopentane, hexane, toluene Kuřák- látky navíc: acetonitrile, furan, 3-methylfuran, 2,5-dimethylfuran, 2-butanone, octane, decane DOI /bmc.1141 Elektronová a chemická ionizace, aplikace Př. Stanovení polycyklických aromatických uhlovodíků v odpadních vodách metodou GC/QqQMS/MS; SPE LODs < 0.1g/L Chromatogram směsi standardů DOI /j.aca

7 Studená elektronová ionizace Elektronová ionizace molekul, které jsou vibračně ochlazené supersonickou expanzí nosného plynu do vakua. Mobilní fáze z GC kolony je spolu s pomocným (make-up) plynem zavedena do trysky směřující do čerpaného prostoru (vakua). Dojde k expanzi plynu, při které se molekuly ochladí (zamrznou v určitém vibračním módu). Následuje ionizace elektrony ze žhaveného vlákna (filamentu). Výhody: vysoká intenzita molekulového píku rozdíly ve spektrech izomerů nižší šum, omezení chvostování píků způsobené zdrojem Studená elektronová ionizace

8 Přímé spojení nanolc/ei-ms Mobilní fáze ( nl/min) se zavádí přímo do iontového zdroje. Ve vysokém vakuu se tvoří aerosol dochází k rychlému odpaření rozpouštědla. Ve zdroji je vysoká teplota C nutná ke kompenzaci výparného tepla. K ionizaci dochází v plynné fázi mechanismem EI (nedochází k CI). Vlastnosti - univerzální detektor pro malé molekuly - EI spektra (možnost porovnání s knihovnami) - ng citlivost v plném skenu (pg v SIM) Komerčně nedostupný A. Cappiello et al., Iontové zdroje pro spojení s planárními separacemi MALDI, DESI, DAPPI, DART

9 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Spojení planárních separačních technik s MS Planární separační techniky jednoduché a rychlé chromatografické metody v plošném uspořádání Tenkovrstvá chromatografie (TLC) Separace na deskách (sklo, kov, plast) s tenkou vrstvou sorbentu. Adsorpční nebo rozdělovací chromatografie. - vysokoúčinná tenkovrstvá chromatografie (HPTLC) využívá stacionární fáze o malé a jednotné velikosti částic (vysoká separační účinnost), instrumentaci pro automatické dávkování Papírová chromatografie (PC) Separace na speciálních filtračních papírech Rozdělovací chromatografie (stacionární fáze je kapalina zachycená v papíru) - starší, málo používaná metoda MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Spojení planárních separačních technik s MS Spojení planárních technik s MS: - nejprve se látky separují pomocí TLC (PC výjimečně), po odpaření rozpouštědla následuje analýza oddělených zón na desce či papíru Analýza látek z TLC desky 1/ automatizovaná extrakce & MS analýza extraktu 2/ desorpce analytů &přímá MS analýza 1/ 2/ DOI: /C3MD00235G

10 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Spojení planárních separačních technik s MS On-line spojení TLC (PC) s hmotnostním spektrometrem (ionizace ESI nebo APCI). Extrakční rozpouštědlo dodávané čerpadlem vstupuje do eluční hlavice, která je v přímém kontaktu a s analyzovaným povrchem. Extrakt je následně unášen do API zdroje spektrometru. Zařízení je možné využít i pro analýzy jiných povrchů, např. řezů tkání. Firemní materiály ADVION MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Spojení planárních separačních technik s MS Desorpci analytů z povrchu lze realizovat pomocí MALDI, DESI, DAPPI a dalších ambientních ionizačních technik - skenování povrchu, záznam signálu v ose desky, případně z celé plochy DOI: /C3MD00235G

11 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Ionizace laserem za účasti matrice - MALDI Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Int. J. Mass Spectrom. Ion Proc. 1987, 78, Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Comm. Mass Spectrom. 1988, 2, Vzorek je po smísení s matricí vnesen do zdroje pro MALDI. Pomocí laserového pulsu dojde k desorpci. Primárně se ionizuje matrice, následnými reakcemi (nejčastěji přenos protonu) se ionizuje analyt. MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Ionizace laserem za účasti matrice - MALDI MALDI je vhodná pro: - peptidy, proteiny, oligonukleotidy, - polymery - lipidy, uhlovodíky - nízkomolekulární netěkavé látky lasery () infračervené ultrafialové Ionty ve spektrech: [M+H] +, [M-H] -, adukty s alkalickými kovy Funkce matrice: absorpce energie laseru, zředění analytu, izolace molekul, ionizace

12 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Ionizace laserem za účasti matrice - MALDI Běžné matrice pro UV MALDI kyselina -kyano-4-hydroxyskořicová peptidy kyselina sinapová peptidy kyselina 2,5-dihydroxybenzoová obecné použití, lipidy, proteiny, peptidy kyselina 3-hydroxypikolinová nukleové kyseliny dithranol syntetické polymery TLC - MALDI MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 MALDI lze s výhodou kombinovat s TLC TLC deska se nechá vyschnout, pokryje se vhodnou matricí (sprejováním) a umístí se pomocí adaptéru na MALDI desku. Změří se MALDI spektra z vybraných bodů, případně se v režimu MALDI imaging sejmou spektra z celé desky (časově náročné)

13 Ambientní ionizace MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 přímá ionizace z povrchu analyzovaných objektů bez nutnosti extrakce analytů Výhody: - jednoduchost analýzy (odpadá složitá úprava vzorků) - vysoká propustnost vzorků - široká aplikační oblast (analýza výbušnin, léčiv, lipidů, metabolitů, peptidů a proteinů, forenzní analýza, analýza potravin, sledování chemický reakcí apod.) - možnost zobrazování distribuce látek na povrchu objektů - kombinace s planárními separačními technikami (TLC) MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 DESI Desorpční ionizace elektrosprejem Proud pozitivně nebo negativně nabitých kapiček vytvořený elektrosprejem je pod daným úhlem nasměrován na zkoumaný povrch. Ionty jsou tvořeny obdobně jako v ESI, vznikají [M+H] +, [M+Na] +, [M-H] -, [M+Cl] - apod. Účinnost ionizace ovlivňuje geometrické uspořádání (sprejovací úhel), typ a průtok rozpouštědla (typicky MeOH nebo MeOH/H 2 O), vlastnosti povrchu.

14 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 DAPPI Desorpční fotoionizace za atmosférického tlaku Vyhřívaný aerosol tvořený rozpouštědlem a nebulizačním plynem je nasměrován na zkoumaný povrch. Dojde k desorpci analytů, které jsou následně v plynné fázi fotoionizovány UV výbojkou. Obdobně lze ionizovat pomocí koronového výboje na jehle (DAPCI). MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 DART Direct Analysis in Real Time Doutnavý výboj ve zdroji vytvoří plazmu, ze které jsou odstraněny nabité částice. Zbylé neutrální částice jsou v excitovaném stavu (metastabilní částice N*) a ionizují buď přímo analyt za tvorby radikál kationtu ( Penningova ionizace ), nebo vodu, která přenese proton na analyt -> tvorba [M+H] +. Tvorba radikál-kationtu: N* + M M + + e - + N Tvorba protonovaných molekul: N* + nh 2 O [(H 2 O) n-1 + H] + + OH + N [(H 2 O) n-1 + H] + + M [M+H] + + nh 2 O

15 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Ambientní ionizace pro detekci v TLC TLC/DESI-MS TLC/DART-MS doi: /j.chroma Př. Charakterizace sfingolipidů v oční čočce metodou TLC/DESI-MS doi: /j.bbalip Iontové zdroje pro prvkovou analýzu ICP

16 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Indukčně vázaná plasma - ICP Vzorek je zmlžen, vzniklý aerosol je po smíchání s argonem přiveden do plasmového hořáku. Horká plazma desolvatuje, atomizuje a ionizuje vzorek. Ionty jsou extrahovány z plazmy pomocí chlazených skimmerů a vedeny iontovou optikou do analyzátoru. Většina prvků poskytuje za podmínek ICP jednou nabité ionty. MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Indukčně vázaná plasma - ICP Zdroj pro ultrastopová prvkovou analýzu. Umožňuje analyzovat téměř všechny prvky od lithia po uran s vysokou citlivostí. Aplikace: Kontrola kvality potravin, pitné vody, léčiv, biologie a medicína, geologie LC aplikace analýza metaloproteinů, organokovů, iontověvýměnná chromatografie anorganických iontů Vysoké množství solí vede ke kontaminaci (zanášení) zdroje a k matričním efektům ovlivňujícím signál (salinita mořské vody je ~40 g/l, krevní plasmy nebo krve ~25 g/l). Řeší se naředěním.

17 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Indukčně vázaná plasma - ICP MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Indukčně vázaná plasma - ICP Příklad: Analýza sloučenin obsahujících arzen v pitné vodě Tetsushi Sakai: Agilent E (2003)

18 Pohyb iontů v elektrických a magnetických polích Vizualizace pohybu Rb + v iontové pasti ( MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Pohyb nabité částice v homog. elektrostatickém poli - homogenní elektrostatické pole mezi rovnoběžnými deskami s rozdílnými elektrickými potenciály elektrostatická síla F e působící na částici s nábojem q 1. směr okamžité rychlosti kladně nabité částice je rovnoběžný s vektorem E intenzity elektrického pole a má shodný směr + E = konst. v 1 v v 1 < v 2 - elektrostatická síla F e působící na nabitou částici (ion) mění velikost její rychlosti - potenciální energie elektrostatického pole se mění na kinetickou energii elektronu -nabitá částice (ion) koná pohyb přímočarý a rovnoměrně zrychlený

19 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Pohyb nabité částice v homog. elektrostatickém poli - průchodem elektrostatického pole (urychlením) získá nabitá částice energii E el e: elementární náboj (e = 1, C), z: nábojové číslo, U: urychlovací napětí - potenciální energie E el se změní na kinetickou energii E k (částice se pohybuje), tj. - po průchodu elektrostatickým polem má získá nabitá částice rychlost v 2 MC230P75 MC230P83 Vysokoúčinná Hmotnostní kapalinová detekce chromatografie v separačních s hmotnostní metodách, detekcí, /2008 Pohyb nabité částice v homog. elektrostatickém poli 2. směr okamžité rychlosti kladně nabité částice je kolmý k vektoru E intenzity homogenního elektrického pole E = konst. + v + x v x v y,1 + v y,2 v y,1 < v y,2 - elektrostatická síla působící na nabitou částici mění směr její rychlosti a nabité částici uděluje zrychlení ve směru vektoru - částice koná ve směru osy x rovnoměrný pohyb a ve směru kolmém pohyb rovnoměrné zrychlený -nabitá částice se pohybuje po parabole k desce s opačným nábojem

20 Pohyb nabité částice v homogenním magnetickém poli - homogenní magnetické pole (např. mezi Helmholtzovými cívkami) magnetická síla F m působící na částici s rychlostí v a nábojem q sinα B: magnetické indukce homogenního magnetického pole α: úhel, který svírá směr magnetické indukce B se směrem rychlosti v 1. směr okamžité rychlosti nabité částice je shodný (nebo opačný) s vektorem magnetické indukce (α = 0 nebo α = 180 ) - magnetické pole na pohybující se částici s nábojem Q silově nepůsobí Pohyb nabité částice v homogenním magnetickém poli 2. směr okamžité rychlosti nabité částice je kolmý k vektoru magnetické indukce (α = 90 ); velikost magnetické síly je maximální magnetické pole působí na částici tak, že zakřivuje její trajektorii do tvaru kružnice - F m se stává silou dostředivou (F m = F d ) +

21 Pohyb nabité částice v homogenním magnetickém poli 3. směr okamžité rychlosti nabité částice je pod určitým úhlem vzhledem vektoru magnetické indukce (α 0, 90, 180 ) - nabitá částice se pohybuje po šroubovici Velikost rychlosti částice (a tedy i kinetická energie) se v magnetickém poli nemění. Směr se měnit může. Pohyb nabité částice v elektromagnetickém poli Pohybuje-li se částice současně v magnetickém i elektrickém poli, působí na ní jak síla elektrostatická F e, tak síla magnetická F m. Výslednicí obou těchto sil je síla F L, která se nazývá Lorentzova síla. značí vektorový součin Pozn. Někdy je jako Lorentzova síla označován pouze příspěvek magnetické síly

22 Hmotnostní analyzátory Hmotnostní analyzátor Vzorek Data Iontový zdroj Hmotnostní analyzátor Detektor Zdroj vakua Hmotnostní analyzátor je zařízení, které využívá elektrických a magnetických polí k separaci iontů v plynné fázi podle jejich poměru hmotnost/náboj (m/z).

23 Hmotnostní analyzátory TOF B Q LIT IT OT ICR Analyzátor doby letu Magnetický sektorový analyzátor Lineární kvadrupól Lineární kvadrupólová iontová past Iontová past Orbitrap Iontová cyklotronová resonance Hmotnostní analyzátory se liší principem měření, a tedy i svými vlastnostmi. Vhodný typ analyzátoru volíme dle aplikace. doi: / (87) Parametry hmotnostních analyzátorů Hmotnostní rozsah nejnižší a nejvyšší hodnota m/z, kterou lze s daným analyzátorem měřit Rozlišovací schopnost schopnost poskytnout rozlišené signály pro ionty s malým rozdílem hmotností Přesnost určení hmotnosti přesnost, se kterou lze měřit m/z iontů (udává se pro vnitřní i vnější kalibraci) Dynamický rozsah - počet koncentračních řádů, v nichž je odezva závislá na koncentraci Rychlost rychlost záznamu spekter

24 Parametry hmotnostních analyzátorů Magnetický sektorový analyzátor (B)

25 Magnetický sektorový analyzátor Ionty jsou urychleny vysokým napětím (4-8 kv) do magnetického pole vytvořeného elektromagnetem. Využívá se zakřivení dráhy iontů v magnetickém poli (poloměr dráhy iontů je úměrný poměru m/z). Při analýze iontů je detektor na fixní pozici, skenuje se buď magnetické pole nebo urychlovací napětí. Klasický typ analyzátoru používaný od počátků organické MS. Magnetický sektorový analyzátor Ionty upouštějí iontový zdroj po urychlení napětím U s rychlostí v: 2 V magnetickém poli se ionty začnou pohybovat po kruhové dráze s poloměrem r: Kombinací vztahů získáme výraz pro m/z ( základní rovnice hmotnostní spektrometrie dnes se takto již neoznačuje): 2 Magnetický sektorový analyzátor separuje ionty v prostoru na základě zakřivení dráhy iontů. Magnetický sektorový analyzátor lze skenovat buď změnou magnetické indukce B nebo urychlovacího napětí U.

26 Sektorové analyzátory s dvojitou fokusací Analyzátory s dvojitou fokusací kromě magnetického sektoru obsahují ještě elektrostatický sektor, který kompenzuje energetickou disperzi iontů a tak zvyšuje rozlišení. Elektrostatický sektorový analyzátor vytváří radiální elektrické pole mezi dvěma opačně nabitými deskami. Ionty o stejném m/z s různou kinetickou energií jsou zaostřeny (fokusovány) do jednoho místa. Elektrostatický analyzátor neseparuje monoenergetické ionty! Magnetické sektorové analyzátory Obecně: Klasický typ analyzátoru s vysokou rozlišovací schopností umožňující izolace při vysokém rozlišení, a vysokoenergetické MS/MS. Vysoký dynamický rozsah, avšak relativně pomalý. Typické aplikace stopová GC/MS dioxinů, furanů, bromovaných difenyletherů, polychlorovaných naftalenů (PCNs) apod. Rozlišení: do (dvojitá fokusace) Přesnost určení hmotnosti: 5 ppm Hmotnostní rozsah: Rychlost skenu: pomalý

27 Analyzátor doby letu (TOF) Analyzátor doby letu Měření doby letu částic o známé kinetické energii v trubici o fixní délce. Nabité částice (ionty) s různým m/z jsou urychleny elektrickým polem. Získají tak stejnou energii, ale různou rychlost. Čas, který je potřebný k překonání letové dráhy je rozdílný - těžší ionty potřebují delší čas než lehčí ionty. potenciální energie iontu v elektrickém poli E p 1 2 kinetická energie iontu E k 2 2 Příklad: Doba letu iontu o hmotnosti 1000 Da, napětí 20 kv, délka 1 m: t = 16 s

28 Lineární uspořádání TOF MS odpuzovací elektroda (repeller) 20 kv extrakční mřížka 18 kv mřížka 0 V ionty E = 0 urychlovací mřížka 0 V L detektor Zdroje iontů: - pulzní zdroje (doba pulzu ns), tvorba balíčků (obláčků) iontů - ideální zdroj: vytvoří všechny ionty ve stejném čase, ve stejném místě, se stejnou rychlostí ve směru k detektoru a s nulovými rychlostmi v ostatních směrech - reálné zdroje: disperze času a místa vzniku iontů, různé počáteční rychlosti a směry pohybu Tvorba iontů pro TOF MS: pulzní zdroje Extrakce konstantním elektrickým polem - pulzní ionizace (např. MALDI), konstantní elektrické pole Extrakce napěťovým pulzem - pulzní ionizace (např. MALDI), pulzní elektrické pole (pulsed extraction, delayed extraction, time-lag focusing) - kontinuální zavádění iontů v kolmém směru, pulzní elektrické pole (orthogonal extraction, orthogonal acceleration) pulzní ionizace laserem z ortogonální extrakce iontů

29 Reálné iontové zdroje pro TOF MS A1 A2 A3 Vliv počáteční prostorové distribuce iontů A1: odpuzovací elektroda; A2: extrakční mřížka; A3: urychlovací mřížka Ionty vzniklé v různé vzdálenosti od odpuzovací elektrody stráví různě dlouhou dobu pod vlivem pole. Ionty tak získají různé rychlosti a kinetické energie (čím jsou dále od akcelerační mřížky, tím mají větší rychlost a energii). F V určitém místě rychlejší ionty doženou pomalejší (primární ohnisko). Primární ohnisko nelze využít k detekci, ionty o různém m/z nejsou ještě dostatečně rozděleny. Reálné iontové zdroje pro TOF MS Vliv počátečních rychlostí a směrů pohybu iontů Ionty s počáteční rychlostí směrem k detektoru dorazí dříve. Ionty s opačným směrem jsou nejdříve zpomaleny, otočeny, a tím se zpozdí. Počáteční rychlost v kolmém směru způsobuje drift iontu z osy letové trubice. - + Korekce směru iontů se provádí pomocí dvojice elektrod ( steering plates ). V reálných iontových zdrojích dochází ke snižování rozlišení.

30 Zlepšení rozlišení v TOF MS I. Vysoká urychlovací napětí II. Reflektron III. Opožděná extrakce iontů IV. Dlouhá letová dráha I. Vysoká urychlovací napětí v: celková rychlost iontu; v 0 : počáteční rychlosti iontu Při vyšších urychlovacích napětích se snižuje relativní příspěvek počáteční rychlosti k celkové rychlosti iontu. II. Reflektron: elektrostatické iontové zrcadlo odpuzovací elektroda (repeller) extrakční mřížka reflektron, - ionty se stejným m/z v (E k ) > v (E k ) urychlovací mřížka detektor - reflektron: soustava elektrod s postupně se zvyšujícím potenciálem - ionty s větší E k pronikají hlouběji do elektrostatického pole, tím se prodlouží dráha a dojde k jejich zpoždění - hloubka průniku do elektrostatického pole nezávisí na m/z, pouze na E k - detektor je v oblasti sekundárního (reflektronového) ohniska Rozlišení se zvyšuje na úkor citlivosti a snížení hmotnostního rozsahu.

31 III. Opožděná extrakce iontů µs napětí na odpuzovací elektrodě (MALDI desce) t 0 odpuzovací elektroda extrakční mřížka urychlovací mřížka 18 kv 18 kv 0 V t 0 t Po vytvoření iontů pulzním zdrojem (např. MALDI) se urychlovací napětí vloží až po malé časové prodlevě (t ). Ionty se při E = 0 rozdělí podle rychlostí. t 20 kv 18 kv 0 V Po vložení napěťového pulsu (E > 0) získají pomalejší ionty více energie a rychlosti iontů se vyrovnají. t x 18 kv 18 kv 0 V Izobarické ionty se pohybují trubicí s užší distribucí rychlostí, zlepšuje se rozlišení. Brown, Lennon Anal. Chem. 67 (1995) IV. Letová dráha rozlišení v TOF MS: 2 t - doba letu; Δt -časový interval detekce iontů se stejným poměrem m/z Vyšší rozlišení lze dosáhnout prodloužením dráhy letících iontů. Výrazné prodlužování letové trubice nepraktické: řešením je opakované použití stejné dráhy pro prodloužení doby letu iontů - technická řešení: 1/ bezmřížkové elektrostatické reflektrony TOF s vícenásobným odrazem iontového svazku 2/ elektrostatické sektory TOF s vícenásobným otočením iontového svazku analyzátory s otevřenou nebo uzavřenou dráhou (uzavřená dráha: lehčí ionty mohou vykonat více otáček, nejednoznačná spektra).

32 Typy analyzátorů podle letové dráhy Lineární TOF TOF s vícenásobným odrazem iontového svazku TOF s vícenásobným otočením iontového svazku TOF s jedním odrazem iontového svazku (reflektron) uzavřená dráha uzavřená dráha otevřená dráha otevřená dráha Int. J. Mass Spectrom (2013) 134 TOF s vícenásobným odrazem iontového svazku Folded Flight Path (FFP) Ionty ze zdroje jsou odráženy iontovými zrcadly a směrovány sérií fokusačních prvků umístěných v řadě uprostřed. Podle režimu měření ionty prochází různou trajektorií a s tím souvisí i dosažené rozlišení. Bezmřížková iontová zrcadla vysoká transmise (>50 % v High resolution módu) Délka analyzátoru 75 cm, maximálně 64 odrazů (celková dráha až 40 m) Rozlišení max FWHM, přesnost určení hmotnosti <1 ppm, Rychlost sběru dat do 200 spekter za sekundu LECO Corporation

33 TOF s vícenásobným otočením iontového svazku MULTUM: Konstrukční řada analyzátorů TOF z Univerzity v Osace původně vyvíjený pro projekt COSAC (ROSETTA space mission). - základem 4 válcovité elektrostatické sektory - R > (po 500 cyklech) - nízké ztráty iontů (1-2 % na cyklus) - malé rozměry mobilní přístroje MULTUM-S II Anal. Chem. 2010, 82, ; J. Mass Spectrom. 2003; 38: TOF s vícenásobným otočením iontového svazku SpiralTOF ion optic system Konstrukční řešení: 4 toroidní elektrostatické sektory s otvory, iontový svazek se několikrát otočí celková dráha iontů ~ 17 m - refokusace iontového svazku během každého cyklu nedochází k disperzi vysoké rozlišení Parametry: -vysoké rozlišení vysoká přesnost určení m/z:1 ppm s vnitřní kalibrací, 10 ppm s vnější kalibrací -dobrá citlivost -malé rozměry ( benchtop přístroje) - součást MALDI-TOF/TOF Jeol

34 Fragmentace za zdrojem (post source decay, PSD) laser pulzní selektor (deflektor) rozpad metastabilního iontu v oblasti mezi deflektorem a reflektronem: PSD + m m 1 m 2 - napěťový puls aplikovaný na selektor umožňuje výběr prekurzoru (okno až 1 Da) - prekurzory s vyšší energií se samovolně rozpadají v letové trubici - fragmenty mají stejnou rychlost jako prekurzor, ale jinou energii - reflektron se využije pro separaci iontů podle kinetické energie: těžší ion s vyšší E k pronikne hlouběji do reflektronu a tím se zpozdí - omezená schopnost lineárního reflektronu pokrýt velké rozdíly v E k : spektrum se skládá z více měření při různém potenciálu reflektronu - kvadratický reflektron umožňuje změřit celé PSD spektrum najednou TOF/TOF analýza Dvě odlišná řešení: TOF/TOF s CID kolizní celou TOF/TOF s CID kolizní celou: Po výběru prekurzoru selektorem jsou ionty fragmentovány v kolizní cele (CID). Produkty jsou následně akcelerovány do reflektronu. TOF/TOF s LIFT celou: Nedochází k CID, ale detekují se ionty vzniklé samovolným rozpadem prekurzorů za iontovým zdrojem (postsource decay, PSD). Prekurzory i PSD fragmenty mají stejnou rychlost (vznikly až po urychlení).v LIFT cele jsou ionty urychleny napěťovým pulsem a získají tak různé rychlosti. Dále procházejí reflektronem a jsou detekovány. TOF/TOF s LIFT celou

35 Hmotnostní analyzátory TOF: shrnutí - velký (teoreticky neomezený) hmotnostní rozsah - záznam celého spektra pro každý pulz (neskenující zařízení) - velká rychlost záznamu dat (možnost spojení s rychlými separacemi) - vysoká citlivost díky velké propustnosti iontů - lze dosáhnout vysokých rozlišení a přesností měření m/z

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku Iontové zdroje II. Iontové zdroje pracující za sníženého tlaku Elektronová/chemická ionizace Iontové zdroje pro spojení s planárními separacemi Ionizace laserem za účasti matrice Ambientní ionizační techniky

Více

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku MC230P43 Hmotnostní detekce v separačních metodách, 2015 Iontové zdroje II. Iontové zdroje pracující za sníženého tlaku Elektronová/chemická ionizace Iontové zdroje pro spojení s planárními separacemi

Více

MALDI, DESI, DAPPI, DART

MALDI, DESI, DAPPI, DART Hmotnostní detekce v separačních metodách III. - Iontové zdroje - Iontové zdroje pro spojení s planárními separacemi: MALDI, DESI, DAPPI, DART - Iontové zdroje pro prvkovou analýzu: ICP - Pohyb iontů v

Více

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie Klinická a farmaceutická analýza Petr Kozlík Katedra analytické chemie e-mail: kozlik@natur.cuni.cz http://web.natur.cuni.cz/~kozlik/ 1 Spojení separačních technik s hmotnostní spektrometrem Separační

Více

Hmotnostní analyzátory I

Hmotnostní analyzátory I Hmotnostní analyzátory I Analýza iontů Tandemová hmotnostní spektrometrie Typy analyzátorů Analyzátor doby letu Magnetický sektorový analyzátor Kvadrupólový analyzátor Iontová past Hmotnostní analyzátor

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

Hmotnostní spektrometrie. Historie MS. Schéma MS

Hmotnostní spektrometrie. Historie MS. Schéma MS Hmotnostní spektrometrie MS mass spectrometry MS je analytická technika, která se používá k měření poměru hmotnosti ku náboji (m/z) u iontů původně studium izotopového složení dnes dynamicky se vyvíjející

Více

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE MASS SPECTROMETRY (MS) Alternativní názvy (spojení s GC, LC, CZE, ITP): Hmotnostně spektrometrický (selektivní) detektor Mass spectrometric (selective) detector (MSD) Spektrometrie

Více

Ionizace, iontové zdroje

Ionizace, iontové zdroje Hmotnostní detekce v separačních metodách II. Iontové zdroje - Iontové zdroje pracující za sníženého tlaku: EI/CI - Iontové zdroje pracující za atmosferického tlaku: ESI, nano-esi, APCI, APPI Ionizace,

Více

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE A MOŽNOSTI JEJÍHO SPOJENÍ SE SEPARAČNÍMI METODAMI SEPARACE chromatografie CGC, GC x GC HPLC, UPLC, UHPLC, CHIP-LC elektromigrační m. CZE, CITP INTERFACE SPOJENÍ x ROZHRANÍ GC vyhřívaná

Více

No. 1- určete MW, vysvětlení izotopů

No. 1- určete MW, vysvětlení izotopů No. 1- určete MW, vysvětlení izotopů ESI/APCI + 325 () 102 (35) 327 (33) 326 (15) 328 (5) 150 200 250 300 350 400 450 500 ESI/APCI - 323 () 97 (51) 325 (32) 324 (13) 326 (6) 150 200 250 300 350 400 450

Více

Hmotnostní spektrometrie - Mass Spectrometry (MS)

Hmotnostní spektrometrie - Mass Spectrometry (MS) Hmotnostní spektrometrie - Mass Spectrometry (MS) Další pojem: Hmotnostně spektrometrický (selektivní) detektor - Mass spectrometric (selective) detector (MSD) Spektrometrie - metoda založená na interakci

Více

INTERPRETACE HMOTNOSTNÍCH SPEKTER

INTERPRETACE HMOTNOSTNÍCH SPEKTER INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

Hmotnostní analyzátory a detektory iont

Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory a detektory iont Hmotnostní analyzátory Hmotnostní analyzátory Rozdlí ionty v prostoru nebo v ase podle jejich m/z Analyzátory Magnetický analyzátor (MAG) Elektrostatický analyzátor

Více

Indentifikace molekul a kvantitativní analýza pomocí MS

Indentifikace molekul a kvantitativní analýza pomocí MS Indentifikace molekul a kvantitativní analýza pomocí MS Identifikace molekul snaha určit molekulovou hmotnost, sumární složení, strukturní části molekuly (funkční skupiny, aromatická jádra, alifatické

Více

Hmotnostní analyzátory I

Hmotnostní analyzátory I Hmotnostní analyzátory I Analýza iontů Tandemová hmotnostní spektrometrie Typy analyzátorů Analyzátor doby letu Magnetický sektorový analyzátor Kvadrupólový analyzátor Iontová past Hmotnostní analyzátor

Více

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda Zdroje iont používané v hmotnostní spektrometrii Miloslav Šanda Ionizace v MS Hmotnostní spektrometrie je fyzikáln chemická metoda, pi které se provádí separace iont podle jejich hmotnosti a náboje m/z

Více

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně Šárka Dušková 24. září 2015-61. konzultační den Hodnocení expozice chemickým látkám na pracovištích 1 HPLC-MS/MS HPLC high-performance

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE -samostatně - strukturní analýza, identifikace látek - kvalitativní i kvantitativní detekce v GC a LC - prvková analýza kombinace s ICP - pyrolýzní hmotnostní spektrometrie - analýza

Více

ÚSTAV CHEMIE A ANALÝZY POTRAVIN

ÚSTAV CHEMIE A ANALÝZY POTRAVIN VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMIE A ANALÝZY POTRAVIN Technická 5, 166 28 Praha 6 tel./fax.: + 420 220 443 185; jana.hajslova@vscht.cz LABORATOŘ Z ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ

Více

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS)

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS) 1 Úvod... 1 2 Cíle úlohy... 2 3 Předpokládané znalosti... 2 4 Autotest základních znalostí... 2 5 Základy práce se systémem GC-MS (EI)... 3 5.1 Parametry plynového chromatografu... 3 5.2 Základní charakteristiky

Více

Hmotnostní detekce v separačních metodách

Hmotnostní detekce v separačních metodách Hmotnostní detekce v separačních metodách MC230P83 2/1 Z+Zk 4 kredity doc. RNDr. Josef Cvačka, Ph.D. Mgr. Martin Hubálek, Ph.D. Ústav organické chemie a biochemie AVČR, v.v.i. Flemingovo nám. 2, 166 10

Více

Iontové zdroje I. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Ionizace, vlastnosti iontových zdrojů, iontová optika

Iontové zdroje I. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Ionizace, vlastnosti iontových zdrojů, iontová optika Iontové zdroje I. Ionizace, vlastnosti iontových zdrojů, iontová optika API zdroje: Iontové zdroje pracující za atm. tlaku Elektrosprej Nanoelektrosprej Chemická ionizace za atmosférického tlaku Fotoionizace

Více

Spojení hmotové spektrometrie se separačními metodami

Spojení hmotové spektrometrie se separačními metodami Spojení hmotové spektrometrie se separačními metodami RNDr. Radomír Čabala, Dr. Katedra analytické chemie Přírodovědecká fakulta Univerzita Karlova Praha Spojení hmotové spektrometrie se separačními metodami

Více

Hmotnostně spektrometrické zobrazování malých molekul

Hmotnostně spektrometrické zobrazování malých molekul Univerzita Pardubice Fakulta chemicko technologická Hmotnostně spektrometrické zobrazování malých molekul Martin Dušek Bakalářská práce 2012 University of Pardubice Faculty of chemical technology Mass

Více

Chromatografie. Petr Breinek

Chromatografie. Petr Breinek Chromatografie Petr Breinek Chromatografie-I 2012 Společným znakem všech chromatografických metod je kontinuální dělení složek analyzované směsi mezi dvěma fázemi. Pohyblivá fáze (mobilní), eluent Nepohyblivá

Více

MS analyzátory - II. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

MS analyzátory - II. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 MS analyzátory - II Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Sektorový analyzátor (Sector Mass Analyzer) Umožňuje dosažení vysokého rozlišení Využívá magnetické pole často

Více

Hmotnostní spektrometrie.

Hmotnostní spektrometrie. Hmotnostní spektrometrie....co to umí? Měřit přesnou molekulovou hmotnost Určovat izotopové zastoupení Napomáhat určení struktury Provádět kvantitativní měření Hmotnostní spektrometrie....co se s tím dělá?

Více

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie 10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Iontové zdroje. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Iontové zdroje. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Iontové zdroje Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Elektronová ionizace (Electron ionization, Electron Impact, EI) Dempster, Bleakney, Nier Látka je v plynném stavu

Více

Metody spektrální. Metody hmotnostní spektrometrie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody hmotnostní spektrometrie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody hmotnostní spektrometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti HMOTNOSTNÍ SPEKTROMETRIE - samostatně - strukturní analýza, identifikace látek - kvalitativní

Více

Hmotnostní detekce v separačních metodách IV.

Hmotnostní detekce v separačních metodách IV. Hmotnostní detekce v separačních metodách IV. - Hmotnostní analyzátory - Kvadrupólový analyzátor - Iontová past - Orbitální past - Iontová cyklotronová resonance - Tandemová MS a techniky fragmentace iontů

Více

Hmotnostní spektrometrie ve spojení se separačními metodami

Hmotnostní spektrometrie ve spojení se separačními metodami Pražské analytické centrum inovací Projekt CZ.04.3.07/4.2.01.1/0002 spolufinancovaný ESF a Státním rozpočtem ČR Hmotnostní spektrometrie ve spojení se separačními metodami Ivan Jelínek PřF UK Praha Definice:

Více

Stručná historie hmotnostní spektrometrie. Analytická chemie II: Úvod do hmotnostní spektrometrie. Stručná historie hmotnostní spektrometrie.

Stručná historie hmotnostní spektrometrie. Analytická chemie II: Úvod do hmotnostní spektrometrie. Stručná historie hmotnostní spektrometrie. ACh II - MS Analytická chemie II: Úvod do hmotnostní spektrometrie Jan Preisler 3A14, Ústav chemie PřF MU, UKB, tel.: 54949 6629 preisler@chemi.muni.cz Specializovaný kurz: C7895 Hmotnostní spektrometrie

Více

ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE

ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE (c) David MILDE 2003-2010 Metody anorganické MS ICP-MS hmotnostní spektrometrie s indukčně vázaným plazmatem, GD-MS spojení doutnavého výboje s MS, SIMS hmotnostní

Více

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními principy hmotnostní spektrometrie a v žádném případě nezahrnuje

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018

DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018 DETEKTORY pro kapalinovou chromatografii Izolační a separační metody, 2018 Detektory v kapalinové chromatografii Typ detektoru Zkratka Měřená veličina Refraktometrický detektor RID index lomu Spektrofotometrický

Více

Pražské analytické centrum inovací Projekt CZ / /0002 spolufinancovaný ESF a Státním rozpočtem ČR

Pražské analytické centrum inovací Projekt CZ / /0002 spolufinancovaný ESF a Státním rozpočtem ČR Pražské analytické centrum inovací Projekt CZ.04.3.07/4.2.01.1/0002 spolufinancovaný ESF a Státním rozpočtem ČR SEPARACE PROTEINŮ Preparativní x analytická /měřítko, účel/ Zvláštnosti dané povahou materiálu

Více

Mass Spectrometry (MS) Lenka Veverková 2012

Mass Spectrometry (MS) Lenka Veverková 2012 HMOTNOSTNÍ SPEKTROMETRIE Mass Spectrometry (MS) Lenka Veverková 2012 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře

Více

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip Plynová chromatografie (GC) - princip Plynová chromatografie (Gas chromatography, zkratka GC) je typ separační metody, kdy se od sebe oddělují složky obsažené ve vzorku a které mohou být převedeny do plynné

Více

MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda

MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL Miloslav Šanda Ionizaní techniky využívané k analýze biomolekul (biopolymer) MALDI : proteiny, peptidy, oligonukleotidy, sacharidy ESI : proteiny, peptidy, oligonukleotidy,

Více

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů

Více

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní). CHROMATOGRAFIE ÚOD Existují různé chromatografické metody, viz rozdělení metod níže. Společný rys chromatografických dělení: vzorek jako směs látek - složek se dělí na jednotlivé složky působením dvou

Více

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Část 16 Iontová chromatografie Iontová chromatografie je speciální technika vyvinutá pro separaci anorganických iontů a organických

Více

Vysokoúčinná kapalinová chromatografie Kvalitativní analýza

Vysokoúčinná kapalinová chromatografie Kvalitativní analýza Vysokoúčinná kapalinová chromatografie Kvalitativní analýza Josef Cvačka, 4. 12. 2017 Kvalitativní analýza Porovnání (interpretace) retenčních dat Porovnání (interpretace) spektrálních dat Grafika www.chromacademy.org

Více

Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms)

Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms) Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms) Teorie: Desorpční elektrosprej (DESI) byl popsán v roce 2004 Zoltánem Takátsem. Jedná se o

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie II. Příprava předmětu byla podpořena projektem

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE Mass Spectrometry (MS) (c) Lenka Veverková, 2013 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Mass Spectrometry (MS) (c) David MILDE, 2003-2010 ÚVOD MS je nejrychleji se rozvíjejí technika analytické chemie. Dokáže poskytnout informace o: elementárním složení vzorku, struktuře

Více

Metody analýzy povrchu

Metody analýzy povrchu Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení

Více

Chromatografie. Petr Breinek. Chromatografie_2011 1

Chromatografie. Petr Breinek. Chromatografie_2011 1 Chromatografie Petr Breinek Chromatografie_2011 1 Společným znakem všech chromatografických metod je kontinuální rozdělování složek analyzované směsi vzorku mezi dvěma fázemi. Nepohyblivá fáze (stacionární

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Hmotnostní spektrometrie (MS) je analytická metoda sloužící k převedení molekul na ionty, rozlišení těchto iontů podle poměru hmotnosti a náboje (m/z) a následnému záznamu relativních

Více

PLYNOVÁ CHROMATOGRAFIE (GC)

PLYNOVÁ CHROMATOGRAFIE (GC) PLYNOVÁ CHROMATOGRAFIE (GC) Dělení látek mezi stacionární a mobilní fázi na základě rozdílů v těkavosti a struktuře (separované látky vykazují rozdílnou chromatografickou afinitu) Metoda vhodná pro látky:

Více

Molekulární modelování a bioinformatika. Hmotnostní spektrometrie I

Molekulární modelování a bioinformatika. Hmotnostní spektrometrie I Molekulární modelování a bioinformatika Hmotnostní spektrometrie I Co nás čeká 1) Základy hmotnostní spektrometrie, ionizační techniky, analyzátory, fragmentační techniky. 2) Měření proteinů, peptidů,

Více

Průtokové metody (Kontinuální měření v proudu kapaliny)

Průtokové metody (Kontinuální měření v proudu kapaliny) Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení těkavých látek (metoda: plynová chromatografie s hmotnostně spektrometrickým detektorem) Garant úlohy: doc. Ing. Jana Pulkrabová, Ph.D. 1 OBSAH

Více

HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice

HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice Lukáš Chytil Ústav organické technologie VŠCHT Praha Medicinální diagnostika a hmotnostní spektrometrie Medicinální diagnostika: - Klasické

Více

Hmotnostní analyzátory II

Hmotnostní analyzátory II Hmotnostní analyzátory II Typy analyzátorů Iontová cyklotronová rezonance Orbitrap Analyzátory iontové pohyblivosti Hybridní hmotnostní spektrometry Hmotnostní analyzátor Vzorek Data Iontový zdroj Hmotnostní

Více

Hmotnostní detekce biologicky významných sloučenin pro biotechnologie

Hmotnostní detekce biologicky významných sloučenin pro biotechnologie Název: Školitelé: Hmotnostní detekce biologicky významných sloučenin pro biotechnologie MSc. Miguel Angel Merlos Rodrigo, Mgr. Ondřej Zítka, Ph.D. Datum: 17.5.2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148

Více

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou.

S p e c i f i c k ý n á b o j e l e k t r o n u. Z hlediska mechanických účinků je magnetická síla vlastně silou dostředivou. S p e c i f i c k ý n á b o j e l e k t r o n u Ú k o l : Na základě pohybu elektronu v homogenním magnetickém poli stanovit jeho specifický náboj. P o t ř e b y : Viz seznam v deskách u úlohy na pracovním

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení těkavých látek (metoda: plynová chromatografie s hmotnostně spektrometrickým detektorem) Garant úlohy: Ing. Jaromír Hradecký, Ph.D. 1 OBSAH Základní

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS 1 Účel a rozsah Tato metoda specifikuje podmínky pro stanovení nepovolených doplňkových látek Zn-bacitracinu,

Více

Pondělí 10. září 2007

Pondělí 10. září 2007 Pondělí 10. září 2007 8:00-13:00 Příjezd účastníků, registrace, instalace stánků 12:00-13:00 Oběd Sekce 1: Úvod do hmotnostní spektrometrie (předsedající: M. Ryska, V. Havlíček) 13:00-13:10 J. Čáslavský

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Základy hmotnostní spektrometrie

Základy hmotnostní spektrometrie Základy hmotnostní spektrometrie Lenka Hernychová e-mail: hernychova@pmfhk.cz Ústav molekulární patologie, Fakulta vojenského zdravotnictví, Universita obrany Hradec Králové Historie Koichi Tanaka vyvinul

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY ELEKTROFORÉZA K čemu to je? kritérium čistoty preparátu stanovení molekulové hmotnosti makromolekul stanovení izoelektrického

Více

isolace analytu oddělení analytu od matrice (přečištění) zakoncentrování analytu stanovení analytu (analytů) ve vícesložkové směsi

isolace analytu oddělení analytu od matrice (přečištění) zakoncentrování analytu stanovení analytu (analytů) ve vícesložkové směsi SEPARAČNÍ METODY Využití separačních metod isolace analytu oddělení analytu od matrice (přečištění) zakoncentrování analytu stanovení analytu (analytů) ve vícesložkové směsi Druhy separačních metod Srážení

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Metody separace. přírodních látek

Metody separace. přírodních látek Metody separace přírodních látek (5) Chromatografie; základní definice a klasifikace ruzných metod; kapalinová chromatografie, plynová chromatografie, přístrojová technika. Chromatografie «F(+)d» 1897

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie MS - ÚVOD Základní pojmy v hmotnostní sp. Hmotnostní spektrometrie = Mass Spectrometry = MS - analytická metoda, která slouží k převedení molekul na ionty, rozlišení těchto iontů

Více

4. Chemická ionizace. (E el = ev, p CH4 = Pa, p M = 0,05 0,1 Pa) => 0,1 % analytu)

4. Chemická ionizace. (E el = ev, p CH4 = Pa, p M = 0,05 0,1 Pa) => 0,1 % analytu) 4. Chemická ionizace Munson, Field - 1966 Princip: reakce ion - molekula jako zdroj iontů => zprostředkování ionizace analytu jiným médiem Výsledek: iontové adukty (často protonované molekuly) Iont. zdroj:

Více

Analyzátor doby letu. (Time-of-Flight, TOF)

Analyzátor doby letu. (Time-of-Flight, TOF) Analyzátor doby letu (Time-of-Flight, TOF) Analyzátor doby letu RP: 10 000-60 000 správnost určení hmotnosti: 1-5 ppm hmotnostní rozsah: až 10 5 (až 10 6 bez reflektronu, 20 000 pro QqTOF spektrometr)

Více

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla Teorie chromatografie - III Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 4.3.3 Teorie dynamická Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma

Více

Hmotnostní spektrometrie. Hmotnostní spektrometrie 1

Hmotnostní spektrometrie. Hmotnostní spektrometrie 1 Hmotnostní spektrometrie 1 HMOTNOSTNÍ SPEKTROMETRIE Fyzikální principy: pohyb elektricky nabité částice v elektrickém a magnetickém poli 2 Princip metody (Mass spectrometry-ms) je separační technika, která

Více

Analyzátory iontové pohyblivosti (iontová mobilita)

Analyzátory iontové pohyblivosti (iontová mobilita) Hmotnostní detekce v separačních metodách VI. - Separace iontů podle jejich pohyblivosti. Iontová mobilita v oblasti iontového zdroje a hmotnostního analyzátoru. - Detektory iontů, vakuová technika. -

Více

MALDI hmotnostní spektrometrie pro analýzu kovy značených proteinů. Typ laseru Vlnová délka UV-MALDI N 2

MALDI hmotnostní spektrometrie pro analýzu kovy značených proteinů. Typ laseru Vlnová délka UV-MALDI N 2 Laboratoř Metalomiky a Nanotechnologií MALDI hmotnostní spektrometrie pro analýzu kovy značených proteinů Teorie PRINCIP MALDI Laserová desorpce/ionizace za účasti matrice (MALDI) měkká ionizační technika;

Více

Detekce a detektory část 2

Detekce a detektory část 2 Detekce a detektory část 2 Ivan Mikšík Fyziologický ústav AV ČR, v.v.i. Praha Spojení (spřažení) hmotnostní spektrometrie a separačních technik Analýza složitých směsí (nejdříve separace, poté analýza)

Více

Metody analýzy povrchu

Metody analýzy povrchu Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. 2 Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Diagnostika bronchiálního. ho astmatu HPLC/MS analýzou. Kamila Syslová Ústav organické technologie

Diagnostika bronchiálního. ho astmatu HPLC/MS analýzou. Kamila Syslová Ústav organické technologie Diagnostika bronchiálního ho astmatu HPLC/MS analýzou Kamila Syslová Ústav organické technologie Bronchiální astma Civilizační onemocnění rostoucí počet případů snižující se věková hranice prvních projevů

Více

Základy interpretace MS spekter získaných měkkými ionizačními technikami. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.

Základy interpretace MS spekter získaných měkkými ionizačními technikami. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1. Základy interpretace MS spekter získaných měkkými ionizačními technikami Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Pravidlo sudého počtu elektronů v (kvazi)molekulárním iontu

Více

Experimentální metody strukturálního výzkumu. Hmotnostní spektrometrie

Experimentální metody strukturálního výzkumu. Hmotnostní spektrometrie Experimentální metody strukturálního výzkumu Hmotnostní spektrometrie Michal Holčapek Plná PDF verze přednášky ke stažení: http://holcapek.upce.cz/ Hmotnostní spektrometrie Držitelé Nobelových cen za chemii

Více

CRH/NPU I - Systém pro ultraúčinnou kapalinovou chromatografii (UHPLC) ve spojení s tandemovým hmotnostním spektrometrem (MS/MS)

CRH/NPU I - Systém pro ultraúčinnou kapalinovou chromatografii (UHPLC) ve spojení s tandemovým hmotnostním spektrometrem (MS/MS) ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY v souladu s 156 zákona č. 137/2006, Sb., o veřejných zakázkách, ve znění pozdějších předpisů Nadlimitní veřejná zakázka na dodávky zadávaná v otevřeném řízení v souladu s ust.

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

mobilní fáze pohyblivá - obsahuje dělené látky, které mají různou afinitu ke stacionární fázi.

mobilní fáze pohyblivá - obsahuje dělené látky, které mají různou afinitu ke stacionární fázi. separační metody Chromatografické metody Distribuce látky mezi dvě fáze: stacionární fáze nepohyblivá - ukotvený materiál mobilní fáze pohyblivá - obsahuje dělené látky, které mají různou afinitu ke stacionární

Více

Kapilární elektroforéza ve spojení s MS

Kapilární elektroforéza ve spojení s MS Kapilární elektroforéza ve spojení s MS Spojení CE/MS - s pomocnou kapalinou - s kapalinovým spojem - bez pomocné kapaliny Spojení CE a MS Problémy spojení kapilární zónové elektroforézy a MS: - nekompatibilita

Více

Vysokoúčinná kapalinová chromatografie

Vysokoúčinná kapalinová chromatografie Vysokoúčinná kapalinová chromatografie HPLC High Performance Liquid Chromatography Vysokoúčinná...X... Vysoceúčinná kapalinová chromatografie RRLC Rapid Resolution Liquid Chromatography Rychle rozlišovací

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více