Iracionálne rovnice = 14 = ±
|
|
- Bohumila Tomanová
- před 6 lety
- Počet zobrazení:
Transkript
1 Iracionálne rovnice D. Rovnica je iracionálna, ak obsahuje neznámu pod odmocninou. P. Ak ide o odmocninu s párnym odmocniteľom, potom musíme stanoviť definičný obor pod odmocninou nesmie byť záporná hodnota (výraz) podmienku (podmienky) podčiarkneme raz 2x = x 2x /-8 2x -8 /:2 x -4 po podmienkach môžeme začať s úpravami Musíme odstrániť odmocninu umocnením rovnice. Lenže umocnenie nie je ekvivalentnou úpravou rovnice. pr. x+2 = x 10 po dosadení x = 7 Ľ: 7+2 = 9 = 3 P: 7 10 = -3 Ľ P ale ak umocníme x + 2 = x 2 20x a znovu dosadíme x = 7 Ľ: = 9 P: = = 9 Ľ = P P. Umocnením rovnice môže pribudnúť riešenie, ktoré ale nie je riešením pôvodnej rovnice. Preto vždy musíme urobiť skúšku správnosti. Ak rovnica obsahuje iba jednu odmocninu, potom upravme ju tak, aby odmocnina stála samostatne na jednej strane rovnice. 2x = x /-8 2x+8 = x 8 /() 2 2x + 8 = x 2 16x + 64 /-2x 8 anulujeme kvadratickú rovnicu 0 = x 2 18x + 56 x1,2 = ± = ( )±( )... = ± = ± = 14 4 obidve výsledky vyhovujú podmienkam teoreticky by mohli byť riešením, ale treba urobiť skúšku Ľ: = = = 14 P: 14 Ľ = P x = 14 je riešením Ľ: = = = 12 P: 14 Ľ P x = 4 nie je riešením Ak rovnica obsahuje viac odmocnín, po prvom umocnení nezmiznú všetky odmocniny umocnením dvojčlena v prostrednom člene ostáva odmocnina: "a+výraz( = a 2 + 2a.výraz + výraz Ak ostal iba jeden člen s odmocninou, tak osamostatníme na jednej strane, a znovu umocníme rovnicu. príklad: 5x x+20 + x+8 = 2
2 Riešte rovnice: Riešte rovnice: 5x -20 x -4 x x -8 5x+20 + x+8 = 2 /() 2 5x x+20. x+8 + x + 8 = 4 6x (5x+20)(x+8) = 4 /-6x 28 2.(5x+20)(x+8) = -6x 24 /:2 (5x+20)(x+8) = -3x 12 /() 2 (5x + 20)(x + 8) = 9x x x x + 20x = 9x x x x = 9x x /-5x 2 60x = 4x x 16 /:4 0 = x 2 + 3x 4 0 = (x + 4)(x 1) x1 = -4 x2 = 1 Ľ: 5.( 4) = = = 2 P: 2 Ľ = P x = -4 je riešením Ľ: = = = 8 P: 2 Ľ P x = 1 nie je riešením a, x 7 = 3 b, x + 1 = 2x c, x + 6 = x d, x = x e, x 12 = x f, x+2 = 8 x a, x +9 = 2x 3 b, x 9 = 3x 11 c, 2x 11 x 1 = 1 d, 2x 1 + x 1 = 5 e, 5x+20 + x+8 = 2 f, 1 x + 1+x = 1 Exponenciálne rovnice D. Rovnica je exponenciálna, ak neznámu obsahuje v mocniteli. Exponenciálne funkcie sú prosté každú funkčnú hodnotu (y-ovú) nadobudnú iba raz (buď je rastúca na celom definičnom obore, alebo je klesajúca). Práve toto využijeme pri riešení exponenciálnych rovníc. V. a x = a y x = y Ak dokážeme upraviť rovnicu tak, aby ostali na obidvoch stranách mocniny s rovnakým základom, potom môžeme písať rovnosť mocniteľov rovnica bude jednoduchšia, väčšinou už nie exponenciálna. P. Samozrejme k úplnému riešeniu aj tohto typu rovníc (ku každému typu) patrí aj skúška správnosti. Opakovanie V. (vety pre počítanie s mocninami 1. ročník) a, a n.a m = a n + m b, -. = an m c, (a.b) n = a n.b n d, / 01 = - - e, (a n ) m = a n.m
3 príklad: 2 5x 3 = 16. skúsime upraviť obidve strany na mocniny s rovnakým základom 2 5x 3 = 2 4 teraz už môžeme písať rovnosť mocniteľov 5x 3 = 4 /+3 5x = 7 /:5 x = 2 2 x x 3 = 8-5. všetky základy sú mocninami 2 2 x + 1.(2 ) 3 = (2 ) odstránime zátvorky a zlúčime na ľavej strane dve mocniny s rovnakým základom 2 x x 6 = x 5 = 2-15 máme rovnosť mocnín so spoločným základom stačí písať rovnosť mocniteľov 5x 5 = -15 /+5 5x = -10 /:5 x = x 1 = 19. číslo 19 sa nedá vyjadriť ako celú mocninu 14 v takomto prípade jedine zlogaritmovanie oboch strán rovnice môže pomôcť na kalkulačkách máme dekadický a prirodzený logaritmus (na niektorých novších typoch už si môžeme zvoliť aj základ logaritmu), tak použime jeden z tých dvoch log 14 x 1 = log 19 a teraz potrebujeme vety o logaritmoch pri úpravách (x 1).log 14 = log 19 /:log 14 x 1 = 4567 / x = a to už kalkulačkou počítame x = 2,115 7 logaritmické hodnoty zaokrúhlime na štyri desatinné miesta Riešte rovnicu v množine racionálnych čísel: a, 3 x = 27 b, 2 x = 8 c, 3 2x = 27 d, 2 3x = 8 e, 3 5x 3 = 81 f, 2 5x 3 = 16 g, 3 4x 5 = 729 h, 2 4x 5 = 64 Riešte rovnicu v množine celých čísel: a, 2 x 2 = 5 2 x b, 3 8 = c, 8 5 x = 7 x 5 d, 5 3 = 5 3 e, 3 x 4 = 2 x 4 f, / 03./ 7 03 = 2 Riešte rovnicu v množine reálnych čísel: g, 4 2x 3 = 7 x 1,5 h, 7 x 3 = 4 2x 6 a, 2 x x = 112 b, 10 x + 10 x 1 = 0,11 c, 2 x x 2 = 34 d, 2 x x x 3 = 896 a, x 1 = 8 575; b, 3 2x 1 = 2 1 2x.36; c, x = 16-3 ; d, 9 x 1.3 2x 1 = 27; e, 8 8 = 7 ; f, 2x = 3 x 1 ;
4 a, x x x = 0,1; b, 3 x.0,25 -x = 12 x ! a, 12 x = 5,423; b, 36,5 x = 259; c, 3 4x 1 = 5 3x + 5! Logaritmické rovnice D. Rovnica je logaritmická, ak neznámu obsahuje v argumente logaritmu. Logaritmické funkcie sú prosté každú funkčnú hodnotu (y-ovú) nadobudnú iba raz (buď je rastúca na celom definičnom obore, alebo je klesajúca). Práve toto využijeme pri riešení logaritmických rovníc. V. loga x = loga y x = y Ak dokážeme upraviť rovnicu tak, aby ostali na obidvoch stranách logaritmy s rovnakým základom, potom môžeme písať rovnosť argumentov rovnica bude jednoduchšia, väčšinou už nie logaritmická. Nakoľko logaritmické funkcie sú definované iba na množine kladných čísel, najprv musíme určiť podmienky, až potom môžeme začať upravovať rovnicu. P. Samozrejme k úplnému riešeniu aj tohto typu rovníc (ku každému typu) patrí aj skúška správnosti. príklad: log3 (x 12) = 2. začíname s podmienkou x 12 > 0 /+12 x > 12 na pravej strane číslo vyjadríme ako logaritmus so základom 3 argument dostaneme, ak základ logaritmu umocníme na číslo log3 (x 12) = log3 3 2 máme rovnosť logaritmov so spoločným základom stačí písať rovnosť argumentov x 12 = 9 /+12 x = 21 log (x 4) + log (x + 3) = log (5x + 4). začíname s podmienkami x 4 > 0 /+4 x > 4 x + 3 > 0 /-3 x > -3 5x + 4 > 0 /-4 5x > -4 /:5 x > najsilnejšia podmienka je x > 4: ak spĺňa tú, potom aj ostatné stačí porovnať výsledok s touto podmienkou log (x 4) + log (x + 3) = log (5x + 4) na ľavej strane zlúčime do jedného logaritmu log (x 4).(x + 3) = log (5x + 4) už stačí písať rovnosť argumentov (x 4).(x + 3) = 5x + 4 x 2 +3x 4x 12 = 5x + 4 x 2 x 12 = 5x + 4 /-5x 4 anulujeme kvadratickú rovnicu x 2 6x 16 = 0 rozložíme na súčin lineárnych činiteľov (x 8)(x + 2) = 0
5 x1 = 8 x2 = -2 druhý výsledok nevyhovuje podmienke x = ;4563 = 3. začíname s podmienkami x > log x 0 /-1 log x -1 log x log 10-1 x 0, ;4563 = 3 /.(1 + log x) odstránime zlomok 1 log x = 3.(1 + log x) 1 log x = log x /+log x 3 separujeme členy: na jednu stranu členy obsahujúce log x a na druhú bez 1 3 = 3.log x + log x /+log x 3 vyjmeme na pravej strane log x 1 3 = log x( 3 + 1) /:( 3 + 1) ; = log x vyhovuje podmienkam x = 0,539 6 log x = log10?@ A?@ A?B A x = 10?B A = 0,539 6 a, log x = log 2 + log 4 b, log x = -2.log 5 c, 2 log x = log 2 + log 4 + log 25 d, log 2 + log x = log (x + 3) e, 2.log x = log 16 + log 4 f, 2.log 5 + log x = 1 log 2 Riešte rovnicu a určte podmienky: 4563 ;4563 a, 2.log x = 3 log 5; b, = 1; c, = 5; 456(3 ) 4563 d, log2 (x 1) + log2 (1 + x) = 2.log2 (x 3) 2; e, log 3 A + log x = 3.log x + log (2x)!
Kvadratické funkcie, rovnice, 1
Kvadratické funkcie, rovnice, 1. ročník Kvadratická funkcia Kvadratickou funkciu sa nazýva každá funkcia na množine reálnych čísel R daná rovnicou y = ax + bx + c, kde a je reálne číslo rôzne od nuly,
Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H.
FUNKCIA, DEFINIČNÝ OBOR, OBOR HODNÔT Funkcia - priradenie (predpis), ktoré každému prvku z množiny D priraďuje práve jeden prvok množiny H. Množina D definičný obor Množina H obor hodnôt Funkciu môžeme
MOCNINY A ODMOCNINY Eva Zummerová
MOCNINY A ODMOCNINY Eva Zummerová . Mocniny s prirodzeným exponentom Zápis a n (čítame a na n-tú ), kde a R, n N a platí : a n = a.a...a n činiteľov sa nazýva n-tá mocnina čísla a. Číslo a sa nazýva základ
Logaritmické funkcie, rovnice a nerovnice. Riešenia. 2. a) 4 = 16, 2 = log 16, b) 3 = log (t. j. 3 = log, 0,064), , 4 = log
Logaritmické funkcie, rovnice a nerovnice Riešenia 1. Pre definičný obor a obor hodnôt inverznej funkcie ff platí DD ff = HH ff, HH ff = DD ff a pre exponenciálnu funkciu ff sa DD ff = R, HH ff = 0;. 2.
3 Determinanty. 3.1 Determinaty druhého stupňa a sústavy lineárnych rovníc
3 eterminanty 3. eterminaty druhého stupňa a sústavy lineárnych rovníc Začneme úlohou, v ktorej je potrebné riešiť sústavu dvoch rovníc o dvoch neznámych. a x + a 2 x 2 = c a 22 a 2 x + a 22 x 2 = c 2
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
NOVÝ POMOCNÍK Z MATEMATIKY 9, 1.časť
Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 9, 1.časť Stupeň vzdelávania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika a práca s informáciami
Riešenie cvičení z 3. kapitoly
Riešenie cvičení z 3. kapitoly Cvičenie 3.1. Prepíšte z prirodzeného jazyka do jazyka výrokovej logiky: (a) Jano pôjde na výlet a Fero pôjde na výlet; (1) vyjadrite túto vetu pomocou implikácie a negácie
TC Obsahový štandard - téma Výkonový štandard - výstup
Mocniny a odmocniny, zápis veľkých čísel Finančná matemati ka UČEBNÉ OSNOVY DEVIATY ROČNÍK TC Obsahový štandard - téma Výkonový štandard - výstup Vklad, úrok, úroková miera Dane zvládnuť základné pojmy
Zvyškové triedy podľa modulu
Zvyškové triedy podľa modulu Tomáš Madaras 2011 Pre dané prirodzené číslo m 2 je relácia kongruencie podľa modulu m na množine Z reláciou ekvivalencie, teda jej prislúcha rozklad Z na systém navzájom disjunktných
MAT I. Logika, množiny 6. Finančná matematika 4. Geometria 8. Planimetria 14. Výrazy 18. Funkcie Függvények 4
MAT I Logika, množiny 6 1. Výrok, pravdivostná hodnota výroku, výroková forma 2. Logické spojky. Kvantifikované výroky 3. Pravdivostná hodnota zložených výrokov 4. Množina, prvok, množina prázdna, konečná,
PODPROGRAMY. Vyčlenenie podprogramu a jeho pomenovanie robíme v deklarácii programu a aktiváciu vykonáme volaním podprogramu.
PODPROGRAMY Podprogram je relatívne samostatný čiastočný algoritmus (čiže časť programu, ktorý má vlastnosti malého programu a hlavný program ho môže volať) Spravidla ide o postup, ktorý bude v programe
Logaritmické a exponenciální funkce
Kapitola 4 Logaritmické a exponenciální funkce V této kapitole se budeme zabývat exponenciálními a logaritmickými funkcemi. Uvedeme si definice vlastnosti a vztah mezi nimi. 4.1 Exponenciální funkce Exponenciální
Rozklad mnohočlenov na súčin
KrAv05-T List 1 Rozklad mnohočlenov na súčin RNDr. Jana Krajčiová, PhD. U: Teraz si ukážeme, ako môžeme rozložiť mnohočlen na súčin mnohočlenov čo najnižšieho stupňa. Napr. 3x 3xy 3xx y), alebo 3x y )
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
M úlohy (vyriešené) pre rok 2017
M úlohy (vyriešené) pre rok 2017 Nájdite najmenšie prirodzené číslo, ktorého ciferný súčet je 2017 Ak má byť prirodzené číslo s daným ciferným súčtom čo najmenšie, musí mať čo najviac číslic 9 Pretože
KrAv02-T List 1. Polynómy. RNDr. Jana Krajčiová, PhD.
KrAv02-T List 1 Polynómy RNDr. Jana Krajčiová, PhD. U: Povieme si niečo o polynómoch, resp. mnohočlenoch. Ž: A je medzi polynómom a mnohočlenom nejaký rozdiel? U: Práveže žiaden. Slovo polynóm je gréckeho
i j, existuje práve jeden algebraický polynóm n-tého stupˇna Priamym dosadením do (2) dostávame:
0 Interpolácia 0 Úvod Hlavnou myšlienkou interpolácie je nájs t funkciu polynóm) P n x) ktorá sa bude zhodova t s funkciou fx) v n rôznych uzlových bodoch x i tj P n x) = fx i ) = f i = y i i = 0 n Niekedy
Limita funkcie. Čo rozumieme pod blížiť sa? y x. 2 lim 3
Limita funkcie y 2 2 1 1 2 1 y 2 2 1 lim 3 1 1 Čo rozumieme pod blížiť sa? Porovnanie funkcií y 2 2 1 1 y 2 1 2 2 1 lim 3 1 1 1-1+ Limita funkcie lim f b a Ak ku každému číslu, eistuje také okolie bodu
Definiční obor funkce
Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R
Matematika Postupnosti
Matematika 1-06 Postupnosti Definícia: Nekonečnou postupnosťou reálnych čísel nazývame zobrazenie f: N R množiny prirodzených čísel N do množiny reálnych čísel R. Označenie: a n n=1 = a 1, a 2,, a n, Matematika
Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
Prevody z pointfree tvaru na pointwise tvar
Prevody z pointfree tvaru na pointwise tvar Tomáš Szaniszlo 2010-03-24 (v.2) 1 Príklad (.(,)). (.). (,) Prevedenie z pointfree do pointwise tvaru výrazu (.(,)). (.). (,). (.(,)). (.). (,) Teraz je funkcia
Multiplexor a demultiplexor
Multiplexor a demultiplexor Mux_DMux [2] Funkcia multiplexoru ako prepínača A D 1 D 0 Y 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 3 x NAND Ak A = 0 výstup Y = D 0 a ak A = 1 výstup
Metóda vetiev a hraníc (Branch and Bound Method)
Metóda vetiev a hraníc (Branch and Bound Method) na riešenie úloh celočíselného lineárneho programovania Úloha plánovania výroby s nedeliteľnosťami Podnikateľ vyrába a predáva zemiakové lupienky a hranolčeky
Lineárne nerovnice, lineárna optimalizácia
Opatrenie:. Premena tradičnej škol na modernú Gmnázium Jozefa Gregora Tajovského Lineárne nerovnice, lineárna optimalizácia V tomto tete sa budeme zaoberat najskôr grafickým znázornením riešenia sústav
Ak stlačíme OK, prebehne výpočet a v bunke B1 je výsledok.
Hľadanie riešenia: ak poznáme očakávaný výsledok jednoduchého vzorca, ale vstupná hodnota, ktorú potrebujeme k určeniu výsledku je neznáma. Aplikácia Excel hľadá varianty hodnoty v určitej bunke, kým vzorec,
Preprava lítiových batérií. Začať
Preprava lítiových batérií Začať 1 1. Otázka Aké typy batérií prepravujete? Lítiovo-iónové batérie Lítiovo-metalické batérie Nabíjacie batérie pre spotrebnú elektroniku. Nenabíjacie batérie s dlhšou životnosťou.
Mocniny s celočíselným exponentom, výrazy s mocninami
KrAv07-T List Mocniny s celočíselným exponentom, výrazy s mocninami RNDr. Jana Krajčiová, PhD. U: Máš nejaké obľúbené miesto, kam rád chodievaš na výlety? Ž: Áno, sú to Vysoké Tatry. U: Je to aj moje obľúbené
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technoiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
MANUÁL K PROGRAMU MATEMATIKA 2.0 STIAHNUTIE A INŠTALÁCIA PROGRAMU:
MANUÁL K PROGRAMU MATEMATIKA 2.0 Program na precvičovanie učiva z matematiky na nájdeme na stránke http://www.slunecnice.cz/sw/4321-matematika/. STIAHNUTIE A INŠTALÁCIA PROGRAMU: Po kliknutí na Stáhnout
EXPONENCIÁLNÍ ROVNICE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ
Nikdy nie je na škodu vedieť urobiť si najprv s mínuskami aspoň trochu poriadok. Ak viete vypočítať nasledujúce príklady, nebude to pre vás ťažké.
12. téma: Kalkulačka I. Troška teórie a troška príkladov Pravdepodobne už teraz máte pocit, že sa bez kalkulačky nezaobídete. Priznajte sa, ste si istý, že sa na ňu skutočne môžete spoľahnúť. Viete ju
Algebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
Ďalší spôsob, akým je možné vygenerovať maticu je použitie zabudovaných funkcií na generovanie elementárnych matíc.
MATICE MATLAB poskytuje obrovskú podporu práce s maticami. Táto hodina sa bude zaoberať základmi práce s maticami. Cieľom prvej časti hodiny je objasnenie základných princípov tvorby matíc, ich editáciu
Matice. Matica typu m x n je tabuľka s m riadkami a n stĺpcami amn. a ij. prvok matice, i j udáva pozíciu prvku
Matice Matice Matica typu m x n je tabuľka s m riadkami a n stĺpcami a11 a12... a1 n a21 a22... a2n............ am1 am2... amn a ij prvok matice, i j udáva pozíciu prvku i- čísluje riadky J- čísluje stĺpce
Začínam so zadaním z NEPOUŽÍVAME ROZSAH POKIAĽ HO MUSÍME PRESKOČIŤ
Chcela som urobiť rozumný tútoriál, netuším či to niekomu pomože, pevne verím že aspoň jeden taký sa nájde pretože keď tomu rozumiem ja tak musí aj total magor tomu rozumieť! Začínam so zadaním z 9.11.2010
Riešené úlohy Testovania 9/ 2011
Riešené úlohy Testovania 9/ 2011 01. Nájdite číslo, ktoré po vydelení číslom 12 dáva podiel 57 a zvyšok 11. 57x12=684 684+11=695 Skúška: 695:12=57 95 11 01. 6 9 5 02. V sude je 1,5 hektolitra dažďovej
PRIEMYSELNÁ INFORMATIKA DISKRÉTNE LINEÁRNE RIADENIE
e(k 1) e(k) e(k) e(k 1) PRIEMYSELNÁ INFORMATIKA 5.5. Číslicové regulátory Od číslicového regulátora budeme očakávať rovnakú funkciu ako od spojitého regulátora a tou je vstupujúcu regulačnú odchýlku zosilňovať,
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
Kombinatorická pravdepodobnosť (opakovanie)
Kombinatorická pravdepodobnosť (opakovanie) Metódy riešenia úloh z pravdepodobnosti a štatistiky Cvičenie 1 Beáta Stehlíková, FMFI UK Bratislava www.iam.fmph.uniba.sk/institute/stehlikova Príklad 1: Zhody
7.1 Návrhové zobrazenie dotazu
7.1 Návrhové zobrazenie dotazu Ovládanie návrhového zobrazenia, ktoré je jedným z možností zobrazenia dotazu, je nevyhnutné pri tvorbe zložitejších dotazov, pretože v ňom môžeme definovať akýkoľvek dotaz
11. téma: Zaokrúhľovanie, práca so zaokrúhlenými číslami
11. téma: Zaokrúhľovanie, práca so zaokrúhlenými číslami I. Úlohy na úvod 1. a) Zaokrúhlite nadol, b) zaokrúhlite nahor, c) zaokrúhlite číslo 5,47 na desatiny, číslo 483,203 na jednotky, číslo 2 996 789
RIEŠENIE NIEKTORÝCH ÚLOH LINEÁRNEJ ALGEBRY V PROSTREDÍ MS EXCEL. 1. Zadáme prvky matice A a B do buniek pracovného hárku zošita MS Excel
RIEŠENIE NIEKTORÝCH ÚLOH LINEÁRNEJ ALGEBRY V PROSTREDÍ I. VÝPOČET SÚČINU MATÍC Vypočítajme súčin matíc C = A B, ak existuje, pre dané matice A a B. 1. Zadáme prvky matice A a B do buniek pracovného hárku
8 základné počtové výkony (operácie); základné vedomosti z geometrie
Tematický výchovno-vzdelávací plán: MATEMATIKA Školský rok: 2017/2018 Škola: Súkromné športové gymnázium Trenčianske Teplice Ročník: 4. Trieda 4. OA Týždenne: 4 hodiny (ŠVP) Ročne: 132 hodín (ŠVP) Vypracované
Matematika (platný od )
Matematika (platný od 01.09.2016) 1. ročník A variant Obsah vzdelávania: 4 hodiny/týždenne 132 hodín Triedenie predmetov podľa vlastností (množstvo, veľkosť, farba, tvar) Dvojica. Vzťahy rovnako nie rovnako,
Kombinatorická pravdepodobnosť (opakovanie)
Kombinatorická pravdepodobnosť (opakovanie) Metódy riešenia úloh z pravdepodobnosti a štatistiky Beáta Stehlíková, FMFI UK Bratislava www.iam.fmph.uniba.sk/institute/stehlikova Príklad 1: Zhody kariet
Test. Ktorý valec by ste použili? A. Jednočinný valec B. Dvojčinný valec. Odpoveď:
Test Týmto testom môžete zistiť, či sú Vaše základné znalosti o pneumatickom riadení postačujúce pre nadstavbový seminár P121, alebo je pre Vás lepšie absolvovať základný seminár EP111. Test je rýchly,
RNDr. Daniela Kravecová, PhD. Premonštrátske gymnázium, Kováčska 28, Košice
Redoxné reakcie RNDr. Daniela Kravecová, PhD. Premonštrátske gymnázium, Kováčska 28, Košice Redoxné reakcie Redoxné reakcie sú chemické reakcie, pri ktorých dochádza k zmene oxidačného čísla atómov alebo
3D origami - tučniak. Postup na prípravu jednotlivých kúskov: A) nastrihanie, alebo natrhanie malých papierikov (tie budeme neskôr skladať)
3D origami - tučniak Na výrobu 3D tučniaka potrebujeme: 27 bielych kúskov = 2 biele A4 kancelárske papiere, 85 čiernych (resp. inej farby) kúskov = 6 kancelárskych A4 papierov rovnakej farby, 3 oranžové
( ) ( ) ( ) ( ) Logaritmické rovnice III. Předpoklady: Př. 1: Vyřeš rovnici. Podmínky: Vnitřky logaritmů: x > 0.
.9. Logaritmické rovnice III Předpoklad: 90 Př. : Vřeš rovnici log log. + log + log Podmínk: Vnitřk logaritmů: > 0. Zlomk: + log 0 log 0,00 + log 0 log 0,00 00 Problém: Jednotlivé stran nemůžeme upravit
CVIČENIE 1 : ZÁKLADNÉ VÝPOČTY PRAVDEPODOBNOSTI
CVIČENIE : ZÁKLDNÉ VÝOČTY RVDEODOBNOSTI. KLSICKÁ DEFINÍCI RVDEODOBNOSTI ríklad : ká je pravdepodobnosť, že pri hode kockou padne číslo resp. padne nepárne číslo? jav, kedy padne číslo B jav, že padne nepárne
Pozičné číselné sústavy. Dejiny. Číselná sústava je spôsob, akým sú zapisované čísla pomocou znakov (nazývaných cifry).
Duda, Džima, Mačák Pozičné číselné sústavy Číselná sústava je spôsob, akým sú zapisované čísla pomocou znakov (nazývaných cifry). Podľa spôsobu určenia hodnoty čísla z daného zápisu rozlišujeme dva hlavné
Nerovnice, grafy, monotonie a spojitost
Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
Doplňte na vyznačené miesta chýbajúce číslice a desatinné čiarky tak, aby boli rovnosti správne. a) 3, 2 = 3, 2
1 3 4 5 6 7 8 9 10 Napíšte slovne, ako sa správne prečítajú čísla.,03 104,007 34,00 6 Doplňte na vyznačené miesta chýbajúce číslice a desatinné čiarky tak, aby boli rovnosti správne. a) 3, = 3, b) 5 0,
6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
Funkcionální řady. January 13, 2016
Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ
64 1 TESTOVANIE ŠTATISTICKÝCH HYPOTÉZ OBLASŤ PRIJATIA A ZAMIETNUTIA HYPOTÉZY PRI TESTOVANÍ CHYBY I. A II. DRUHU Chyba I. druhu sa vyskytne vtedy, ak je hypotéza správna, ale napriek tomu je zamietnutá,
Logaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
Množiny, relácie, zobrazenia
Množiny, relácie, zobrazenia Množiny "Množina je súhrn predmetov, vecí, dobre rozlíšiteľných našou mysľou alebo intuíciou" "Množina je súbor rôznych objektov, ktoré sú charakterizované spoločnými vlastnosťami,
6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25
6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N
Podlimitná zákazka Verejný obstarávateľ
Finančné limity platné a účinné po 1. marci 2015 Podlimitná zákazka Verejný obstarávateľ BEŽNE DOSTUPNÉ NA TRHU 1 000 eur < 134 000 eur b) bod 3. alebo c)] Stavebné práce 1 000 eur < 5 186 000 eur b) bod.
Téma : Špecifiká marketingu finančných služieb
Téma : Špecifiká marketingu finančných služieb Marketing predstavuje komplex činností, ktorý zahrňuje všetky činnosti od nápadu až po uvedenie produktu na trh. Cieľom marketingu je potom predať: správny
14. Exponenciální a logaritmické rovnice
@148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic
Osoba podľa 8 zákona finančné limity, pravidlá a postupy platné od
A. Právny rámec Osoba podľa 8 zákona finančné limity, pravidlá a postupy platné od 18. 4. 2016 Podľa 8 ods. 1 zákona č. 343/2015 Z. z. o verejnom obstarávaní a o zmene a doplnení niektorých zákonov v znení
ČÍSELNÉ RADY. a n (1) n=1
ČÍSELNÉ RADY Budeme sa zaoberať výrazmi, ktoré obsahujú nekonečne veľa sčítancov. Takéto výrazy budeme nazývať nekonečné rady. V nasledujúcom príklade je ilustrované, ako môže takýto výraz vzniknúť. Príklad.
Test z matematiky na prijímacie skúšky do 1. ročníka osemročného štúdia
Test z matematiky na prijímacie skúšky do 1. ročníka osemročného štúdia v školskom roku 2014/2015 Skupina A Kód žiaka: dátum: 12. máj 2014 1. Barborka si kupuje v obchode pečivo za centov, dva jogurty
Bezdrôtová sieť s názvom EDU po novom
Bezdrôtová sieť s názvom EDU po novom V priebehu augusta 2011 bolo staré riešenie WiFi (pripojenie k školskej bezdrôtovej sieti cez certifikáty) v plnej miere nahradené novým riešením. Staré riešenie už
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)
Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je
DALI, pomoc a riešenia
DALI, pomoc a riešenia Obsah Úvod do DALI (vecí, ktoré by ste mali vedieť)... 1 Čo je DALI?... 1 Čo je posolstvom DALI?... 1 Základné pravidlá pre DALI a HELVAR výrobky a systémy... 2 Riešenie problémov:
AR, MA a ARMA procesy
Beáta Stehlíková FMFI UK Bratislava Overovanie stacionarity a invertovateľnosti Opakovanie - stacionarita AR procesu Zistite, či je proces x t = 1.2x t 1 + 0.5x t 2 + 0.3x t 3 + u t stacionárny. Napíšte
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Kontrola väzieb výkazu Súvaha a Výkaz ziskov a strát Príručka používateľa
Kontrola Príručka používateľa úroveň: Klient Štátnej pokladnice Verzia 1.0 Január 2013 Autor: Michal Pikus FocusPM Page 1 of 5 Obsah Obsah... 2 1. Úvod... 3 2. Logika porovnania... 3 3. Vykonanie kontroly...
- rysovať rovnobežky, rôznobežky, kolmice; Uč.I.str.36/1; str.38/12; str.41/2 - rysovať obdĺžnik, štvorec a trojuholník. Uč.I.str.
Tézy z matematiky - 5. ročník I. Sčítanie a odčítanie prirodzených čísel - sčítať a odčítať prirodzené čísla; Uč.II.str. 42/2,3,4; str.48/4 - sčítať aj viacej sčítancov; Uč.II. str.44/7; str.51/3, - riešiť
Jednoduchá exponenciální rovnice
Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým
Riešenie nelineárnych rovníc I
Riešenie nelineárnych rovníc I Ako je už zo samotného názvu hodiny parné budeme sa venovať spôsobom výpočtu nelineárnych rovníc. Prečo je riešenie takýchto rovníc nevyhnutné? Nielen v samotnom chemickom
Matematika test. Cesta trvala hodín a minút.
GJH-Prima Test-16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Súčet Matematika test Na tento papier sa nepodpisuj. Na vypracovanie tejto skúšky máš čas 20 minút. Test obsahuje 18 úloh a má 4 strany. Úlohy
Vyhľadávanie a práca so záznamami - CREPČ 2
Centrum vedecko-technických informácií, Odbor pre hodnotenie vedy, Oddelenie pre hodnotenie publikačnej činnosti Vyhľadávanie a práca so záznamami - CREPČ 2 Manuál pre autorov Centrum vedecko-technických
REBRÍČKY. Predaj CD za mesiac 4U2Rock. Počet CD predaných za mesiac. K-Band D. A. R. Metalfolk. Mesiac
Ukážky uvoľnených úloh z matematickej gramotnosti PISA 2012 REBRÍČKY V januári vyšli nové CD skupín 4U2Rock a K-Band. Vo februári nasledovali CD skupín D.A.R. a Metalfolk. V uvedenom grafe je znázornený
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu
GONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
Úplný zápis každého desiatkového čísla môžeme zapísať pomocou polynómu:
1 ČÍSELNÉ SÚSTAVY Systém zobrazeia ľubovoľého čísla pomocou určitého počtu zakov sa azýva číselá sústava. Podľa počtu použitých zakov rozozávame rôze číselé sústavy. V bežom živote sa pri výpočtoch ajčastejšie
Základy algoritmizácie a programovania
Základy algoritmizácie a programovania Pojem algoritmu Algoritmus základný elementárny pojem informatiky, je prepis, návod, realizáciou ktorého získame zo zadaných vstupných údajov požadované výsledky.
Funkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
KFC/SEM, KFC/SEMA Rovnice, nerovnice
KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní
4. Zoradenie a filtrovanie údajov
4. Zoradenie a filtrovanie údajov Ocenil si už niekedy v knižnici usporiadanie diel podľa názvu alebo autora? Bol si už v situácii, že si chcel kúpiť nejakú elektroniku (napr. mobil či mp3 prehrávač) a
Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková
Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
Obr. 1 - názov podpísaného súboru/kontajnera v sivej lište
Zobrazenie dokumentov v elektronickej správe V elektronickej správe sa môžu prenášať autorizované (podpísané/pečatené), ale aj neautorizované súbory, a to buď v hlavnom objekte správy, v prílohách alebo
Učebný plán pre študentov, ktorí začali štúdium 1. septembra 2013
Učebný plán pre študentov, ktorí začali štúdium 1. septembra 2013 Učebný plán A: Gymnázium vetva obsahujúca latinský jazyk Vzdelávacia oblasť Názov predmetu 1.ročník 2. ročník 3. ročník 4. ročník spolu
Funkce. Logaritmická funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, Gymnázium Uherské Hradiště
Funkce Logaritmická funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-1 Obsah Logaritmická funkce 1 Logaritmická funkce předpis funkce a ukázky grafů srovnání grafů
Gymnázium P.O.Hviezdoslava Dolný Kubín Hviezdoslavovo nám. č. 18, Dolný Kubín
Gymnázium P.O.Hviezdoslava Dolný Kubín Hviezdoslavovo nám. č. 18, 026 24 Dolný Kubín Kritériá pre prijatie do prvého ročníka štvorročného štúdia pre školský rok 2016/2017 Podľa zákona č.245/2008 Z.z. o
Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto
Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat
NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P
NEVLASTNÁ VODIVOSŤ POLOVODIČOVÉHO MATERIÁLU TYPU P 1. VLASTNÉ POLOVODIČE Vlastnými polovodičmi nazývame polovodiče chemicky čisté, bez prímesí iných prvkov. V súčasnosti je najpoužívanejším polovodičovým
Pracovný list č Pracovný list č Pracovný list č Pracovný list č Pracovný list č Pracovný list č.
Obsah 1 Úvod... 7 2 Aké môžu byť príčiny malého úspechu žiakov v matematike... 8 2.1 Špecifické poruchy učenia... 8 2.2 Príčiny spôsobené ďalšími vplyvmi... 8 2.3 Vplyv osobnostných vlastností žiaka...
Skákalka. Otvoríme si program Zoner Callisto, cesta je Programy Aplikácie Grafika Zoner Callisto.
Skákalka Otvoríme si program Zoner Callisto, cesta je Programy Aplikácie Grafika Zoner Callisto. Vyberieme si z ponuky tvarov kruh a nakreslíme ho (veľkosť podľa vlastného uváženia). Otvoríme si ponuku
Návod na vkladanie záverečných prác do AIS
Návod na vkladanie záverečných prác do AIS Povinnosti študenta pri odovzdávaní záverečne práce do AIS: Študenti vkladajú záverečné práce do AIS sami a vypĺňajú aj Doplňujúce informácie ZP, vypĺňajú návrh
CENNÍK ELEKTRINY PRE MALÉ PODNIKY NA ROK 2018
CENNÍK ELEKTRINY PRE MALÉ PODNIKY NA ROK 2018 PLATNÝ OD 1. JANUÁRA 2018 KLASIK M (DMP1) je jednotarifný produkt vhodný pre odberné miesta s bežnými elektrickými spotrebičmi, ktoré nemajú elektrické vykurovanie