6. Lineární (ne)rovnice s odmocninou

Rozměr: px
Začít zobrazení ze stránky:

Download "6. Lineární (ne)rovnice s odmocninou"

Transkript

1 @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou je (ne)rovnice s absolutní hodnotou x - 7 = 0 x 5 0 x - 7 = 0 x x Na co si dát pozor? u rovnic i nerovnic je to stejné: pod odmocninou nesmí být záporné číslo Poznámka: Neznámá pod odmocninou - to dává nepřeberně variant, vezmeme-li v úvahu ještě různé stupně odmocnin. V tomto kurzu se omezíme na případy, kdy je v zadání druhá odmocnina a po úpravách vyjde lineární rovnice. S dalšími typy se budeme zabývat v kurzu "Rovnice a nerovnice II". K řešení vymezeného okruhu (ne)rovnic potřebujeme tyto znalosti: známý vzorec (A + B) = A + AB + B pod odmocninou musí být nezáporné číslo a má smysl jen když a 0 výsledek odmocniny je vždycky kladné číslo b 0 neboli odmocnina je vždy nezáporná ( c) = c aby c mohlo být pod odmocninou, musí být nezáporné ale pozor!!! ( d ) = d d 0 i pro záporné d, proto musíme při úpravě dát d do absolutní hodnoty Musíme rozlišovat, jestli se nejprve odmocňuje a pak umocňuje, nebo jestli se nejprve umocňuje a teprve pak odmocňuje. U nerovnic při umocňování (odmocňování) výrazu A > B musíme zkoumat, jestli platí, že menší strana B je nezáporná B 0. Jinak umocňovat (odmocňovat) nemůžeme. Symbolicky: platí-li pro A, B reálné A > B a zároveň B 0 pak platí A > B (resp A > B ) protipříklad platí > -7 ale neplatí > (-7) tj >

2 chyba je v tom, že menší strana není nezáporná!!! Typ A. Zadaná rovnice obsahuje jedinou druhou odmocninu. Příklad: Řešte v R rovnici x x rozbor Vždycky se snažíme (ne)rovnici upravit tak, aby odmocnina byla na jedné straně a všechny ostatní členy na druhé. x x Až se nám to podaří, umocníme celou rovnici (u nerovnic musíme ještě zkoumat další podmínku, viz dále) na druhou, tj. levou stranu zvlášť a pravou stranu zvlášť. ( x ) (x ) Na levé straně se druhá odmocnina a druhá mocnina vyruší podle pravidel (viz výše). Na pravé straně použijeme vzorec dvojčlen na druhou (též viz výše). x + = x + x = x kandidát řešení x = -/ Zkouška: musí být provedena zásadně do zadané (ne)rovnice L ( / ) P(-/) = ( ) Odpověď: Zadaná rovnice má jeden kořen x = -/; řešením je množina S = {-/} Úkol: Řešte v R rovnici x x pokračování výsledek

3 @066 Správně Řešte v R nerovnici x 0 rozbor x protože menší strana je kladná 0 můžeme nerovnici umocnit x + x 0 Poslední nerovnice je pravdivá pro každé reálné číslo x, tedy kandidátem řešení jsou všechna reálná čísla. zkoušku musíme udělat obrácením postupu. Všechny kroky jsou jasné, jen připomeneme jediný. x + 0 Protože menší strana je větší než nula, lze nerovnici odmocnit a znaménko nerovnosti se nezmění. Tak dostaneme (x +) a nakonec původní nerovnici x 0 pokračování

4 @06 Řešte v R rovnici x x x x rozbor x + = x - x + = - x + x = kandidát x = / zkouška L (/ ) ( ) P (/ ) P(/) L(/) Odpověď: Zadaná rovnice nemá v R žádný kořen; množina řešení je prázdná S = Ø Úkol: Řešte v R nerovnici x 0 Řešením je S = {-; } S = Ø S = R

5 @067 Typ B. Rovnice obsahuje dvě druhé odmocniny a úpravami lze dosáhnout toho, že každá z nich bude na jedné straně a kromě nich, již nebude v součtu (rozdílu) žádný další člen. Příklad: Řešte v R rovnici x x 0 rozbor Rovnici snadno upravíme do tvaru x x Nyní celou rovnici umocníme na druhou, tj. levou stranu zvlášť a pravou stranu zvlášť. (x-) = (-x) x- = -x+8 5x = x = /5 zkouška L(/5) = (/5-) - (-/5) = (/5) - (/5) = (/5) - (/5) = 0 P(/5) = 0 Úkol: Řešte v R nerovnici x x 0 pokračování - výsledek

6 @065 Bohužel znovu prostudujte

7 @06 Řešte v R nerovnici x x 0 Poznámka: Tato nerovnice ukazuje, že jasné postupy návodů nemusí vždycky vést k cíli. Převedeme-li jednu odmocninu na pravou stranu, dostaneme x x Tuto nerovnici nemůžeme umocnit!!! Menší strana (pravá) totiž není nezáporná díky mínusu před odmocninou. rozbor: Víme, že odmocnina je vždy nezáporné číslo. Levá strana zadané nerovnice je tedy součet dvou nezáporných čísel a to je opět nezáporné číslo. Zadaná nerovnice tedy platí pro všechna x R, pro která mají odmocniny smysl. První odmocnina je platná pro x - 0 => x / Druhá - x 0 => x Podmínky musí platit současně, což představuje interval </; >. zkouška: Pro x </; > mají obě odmocniny smysl a levá strana představuje součet dvou nezáporných čísel. Tedy levá strana je přinejhorším rovna nule. Spodní hranice určená pravou stranou proto nebude nikdy překročena. odpověď: Řešením jsou všechna reálná čísla z intervalu </; > KONEC LEKCE

4. Lineární (ne)rovnice s racionalitou

4. Lineární (ne)rovnice s racionalitou @04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je

Více

Z těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků

Z těchto kurzů shrneme poznatky, které budeme potřebovat: výčtem prvků @00. Základní poznatky Umět řešit rovnice a nerovnice je jedna ze stěžejních úloh středoškolské matematiky. Řešit bez problémů základní rovnice by měl umět každý středoškolák, který získal maturitu (jakoukoli,

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

Rovnice s neznámou pod odmocninou I

Rovnice s neznámou pod odmocninou I .7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte, můžete obětovat hodiny dvě a nechat

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

Logaritmická rovnice

Logaritmická rovnice Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,

Více

Iracionální nerovnice a nerovnice s absolutní hodnotou ( lekce)

Iracionální nerovnice a nerovnice s absolutní hodnotou ( lekce) Iracionální nerovnice a nerovnice s absolutní hodnotou (15. - 16. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října

Více

Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou

Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou Šablona 10 VY_32_INOVACE_0106_0110 Rovnice s absolutní hodnotou 1 Identifikační údaje školy Číslo projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace VÝUKOVÝ MATERIÁL

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Variace. Lineární rovnice

Variace. Lineární rovnice Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je

Více

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1:

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1: Kvadratické rovnice V zadání lineární rovnice se může vyskytovat neznámá ve vyšší než první mocnině. Vždy ale při úpravě tato neznámá ve vyšší než první mocnině zmizí, odečte se, protože se vyskytuje na

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

10. Soustava lineárních rovnic - substituční metoda

10. Soustava lineárních rovnic - substituční metoda @112 10. Soustava lineárních rovnic - substituční metoda Jedna z metod, která se používá při řešení soustavy lineárních rovnic, se nazývá substituční. Nejlépe si metodu ukážeme na příkladech. Příklad:

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná

Více

Použití substituce pro řešení nerovnic II

Použití substituce pro řešení nerovnic II .7. Použití substituce pro řešení nerovnic II Předpoklad: 7, 7, 7 Pedagogická poznámka: Platí to samé, co pro předchozí hodinu. Skvělé cvičení na orientaci v příkladu, přehledný zápis a schopnost řešit

Více

11. Soustava lineárních rovnic - adiční metoda

11. Soustava lineárních rovnic - adiční metoda @127 11. Soustava lineárních rovnic - adiční metoda Adiční neboli sčítací metoda spočívá ve dvou vlastnostech řešení soustavy rovnic: vynásobením libovolné rovnice nenulovým číslem se řešení nezmění, součtem

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem 4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly

Více

2. Řešení algebraické

2. Řešení algebraické @016 2. Řešení algebraické Definice: Nechť a, c jsou reálná čísla. Rovnice v R (s neznámou x) daná formulí se nazývá lineární rovnice a ax + c = 0 se nazývají lineární nerovnice. ax + c 0 ax + c < 0 ax

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

Nerovnice, grafy, monotonie a spojitost

Nerovnice, grafy, monotonie a spojitost Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni

Více

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel. Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Jsou tři druhy výrazů, které jsou fuj a u kterých je třeba jisté ostražitosti. Jsou to:

Jsou tři druhy výrazů, které jsou fuj a u kterých je třeba jisté ostražitosti. Jsou to: Podmínky u výrazů Jsou tři druhy výrazů, které jsou fuj a u kterých je třeba jisté ostražitosti. Jsou to: lomené výrazy výrazy se sudými odmocninami výrazy s logaritmy Lomené výrazy Lomené výrazy jsou

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924

( ) ( ) Logaritmické nerovnice II. Předpoklady: 2924 5 Logaritmické nerovnice II Předpoklad: Pedagogická poznámka: Většina studentů spočítá pouze první tři příklad, nejlepší se dostanou až k pátému Pedagogická poznámka: U následujících dvou příkladů je opět

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108

ROVNICE A NEROVNICE. Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec. VY_32_INOVACE_M1r0108 ROVNICE A NEROVNICE Kvadratické rovnice Algebraické způsoby řešení I. Mgr. Jakub Němec VY_32_INOVACE_M1r0108 KVADRATICKÁ ROVNICE V rámci našeho poznávání rovnic a jejich řešení jsme narazili pouze na lineární

Více

KFC/SEM, KFC/SEMA Rovnice, nerovnice

KFC/SEM, KFC/SEMA Rovnice, nerovnice KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní

Více

ROVNICE A NEROVNICE. Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec. VY_32_INOVACE_M1r0107

ROVNICE A NEROVNICE. Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec. VY_32_INOVACE_M1r0107 ROVNICE A NEROVNICE Lineární rovnice s absolutní hodnotou II. Mgr. Jakub Němec VY_32_INOVACE_M1r0107 LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU V této lekci rozšíříme naše znalosti o počítání lineárních rovnic,

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Rovnice s absolutní hodnotou

Rovnice s absolutní hodnotou Rovnice s absolutní hodnotou Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období vytvoření VM: prosinec

Více

3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE

3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE 3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Nerovnice. Vypracovala: Ing. Stanislava Kaděrková

Nerovnice. Vypracovala: Ing. Stanislava Kaděrková Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

( ) Absolutní hodnota. π = π. Předpoklady: základní početní operace. 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá

( ) Absolutní hodnota. π = π. Předpoklady: základní početní operace. 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá 1..9 Absolutní hodnota Předpoklady: základní početní operace = 0 = 0 S nezápornými čísly absolutní hodnota nic nedělá π = π = 3 3 = Záporná čísla absolutní hodnota změní na kladná (vynásobí je 1) 5 5 3

Více

Rovnice a nerovnice v podílovém tvaru

Rovnice a nerovnice v podílovém tvaru Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

5. Na množině R řeš rovnici: 5 x 2 2 x Urči všechna reálná čísla n vyhovující nerovnostem: 3 5

5. Na množině R řeš rovnici: 5 x 2 2 x Urči všechna reálná čísla n vyhovující nerovnostem: 3 5 I 16 VADRO (váha 80) E 1. Na obrázku vpravo je graf funkce g dané předpisem: y = a + b + c. Urči koeficienty a, b, c.. Zapiš definiční obor a obor hodnot funkce f na obrázku vpravo. f: y = 0,5 4 + 3. Na

Více

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Počítání rovnic za pomoci ekvivalentních úprav. Pravidla zacházení s rovnicemi

Svobodná chebská škola, základní škola a gymnázium s.r.o. Počítání rovnic za pomoci ekvivalentních úprav. Pravidla zacházení s rovnicemi METODICKÝ LIST DA61 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Rovnice I. - základ Astaloš Dušan Matematika šestý/sedmý frontální, fixační

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 40, 4, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli (nejlépe tak, aby se zápis mohl otočit nebo jinak schovat

Více

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

ROVNICE, NEROVNICE A JEJICH SOUSTAVY Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]

Více

2.6.5 Další použití lineárních lomených funkcí

2.6.5 Další použití lineárních lomených funkcí .6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:

Více

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je

Více

( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 :

( ) ( ) Lineární nerovnice II. Předpoklady: Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < 3 : .. Lineární nerovnice II Předpoklady: 00 Jak je to s problémem z minulé hodiny? Získali jsme dvě řešení nerovnice x < : Správné řešení. x < / + x 0 < + x / < x K = ( ; ) Test možné správnosti: x = :

Více

2.7.17 Nerovnice s neznámou pod odmocninou

2.7.17 Nerovnice s neznámou pod odmocninou .7.7 Nerovnice s neznámou pod odmocninou Předpoklady: 05, 75 Pedagogická poznámka: Tato hodina patří mezi největší masakry během celého studia. Její obtížnost spočítává hlavně ve dvou věcech: a) Je nutné,

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919

( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919 .. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0).

x + 6 2x 8 0. (6 x 0) & (2x 8 > 0) nebo (6 x 0) & (2x 8 < 0). Opáčko - Řešení. a) Podíl vlevo není definovaný pro x 8 = 0, a tedy dostáváme podmínku na řešení x. Jedničku převedeme na levou stranu nerovnosti, převedeme na společný jmenovatel a dostáváme Nerovnost

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

Logaritmické a exponenciální funkce

Logaritmické a exponenciální funkce Kapitola 4 Logaritmické a exponenciální funkce V této kapitole se budeme zabývat exponenciálními a logaritmickými funkcemi. Uvedeme si definice vlastnosti a vztah mezi nimi. 4.1 Exponenciální funkce Exponenciální

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Lineární rovnice o jedné neznámé a jejich užití

Lineární rovnice o jedné neznámé a jejich užití Lineární rovnice o jedné neznámé a jejich užití Určeno studentům středního vzdělávání s maturitní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní list vytvořil: Mgr. Helena Korejtková Období

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

Výfučtení: Mocniny a kvadratické rovnice

Výfučtení: Mocniny a kvadratické rovnice Výfučtení: Mocniny a kvadratické rovnice S čísly a základními operacemi, tedy se sčítáním, odčítáním, násobením a dělením, jsme se seznámili už dávno během prvních let naší školní docházky. Každý z nás

Více

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

x 0; x = x (s kladným číslem nic nedělá)

x 0; x = x (s kladným číslem nic nedělá) .. Funkce absolutní hodnota Předpoklady: 08, 07 x - zničí znaménko čísla, všechna čísla změní na nezáporná Jak vyjádřit matematicky? Pomocí číselné osy: x je vzdálenost obrazu čísla na číselné ose od počátku.

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

7.1.3 Vzdálenost bodů

7.1.3 Vzdálenost bodů 7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z

Více

Řešené příklady ze starých zápočtových písemek

Řešené příklady ze starých zápočtových písemek Řešené příklady ze starých zápočtových písemek Úloha. Najděte všechna reálná řešení rovnice log x log x 3 = log 6. Řešení. Nebot logaritmus je definovaný pouze pro kladné hodnoty dostáváme ihned podmínku

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x

Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x .. Nerovnice v podílovém tvaru II Předpoklady: 0, 04 Př. : ( x )( x + ) ( x + )( x)( x) 0. Podmínky: x + 0 x, x 0 x, x 0 x x + je vždy kladný nebudeme se s ním dále zabývat, znaménko neovlivňuje. Člen

Více