Rudý posuv v úloze z Fyzikální olympiády
|
|
- Josef Tábor
- před 6 lety
- Počet zobrazení:
Transkript
1 Rudý posuv v úloze z Fyzikální olympiády JAN NOOTNÝ Pedagogiká fakulta Masarykovy univerzity, Brno Příspěvek se zabývá úvahami, k nimž inspiruje zadání úlohy z Fyzikální olympiády a které nás dovádějí až k velmi hlubokým a stále aktuálním problémům. Poukazuje na rozdílné hápání pojmu ryhlost ve speiální teorii relativity a v relativistiké kosmologii a na poučení, které z toho plyne pro zadavatele úloh. Úvod 55. ročníku FO se objevila tato úloha [1]: Rozbor zadání úlohy Na první pohled se zdá, že výhodiskem k řešení úlohy je zodpovězení první otázky. Určíme-li, jakou ryhlostí se od nás vzdaluje objekt s daným rudým posuvem spektra, budeme již moi odpovědět na všehny další otázky na základě vztahů známýh ze speiální teorie relativity. Středoškolák má k dispozii vztah pro nerelativistiký Dopplerův jev a definii rudého posuvu f f f 1 f, z. f 249
2 Odtud vypočteme: z 2,. Protože zbytek zadání se týká speiální teorie relativity, vzniká otázka, zda nebylo třeba užít relativistikého vztahu pro Dopplerův jev [2] 1 f f 1 f 1 Pro z =,2 pak vyjde 2 z z z 22z z 2 55, 2, 18, Rozdíl mezi nerelativistikým a relativistikým výsledkem není z hlediska přesnýh měření zela zanedbatelný, a aby úloha splnila svůj účel, měl by si toho řešitel být vědom a umět oenit nepřesnost, které se dopouští užitím nerelativistikého výsledku v relativistikýh vztazíh. Název úlohy však vyvolává ještě další problém. Kdy je možno označit rudý posuv spojený se vzdalováním objektu za kosmologiký? Patrně jen v případě, že vzdalování je působeno rozpínáním vesmíru. To je ovšem záležitost obené teorie relativity a můžeme se pak spokojit se vzorem užívaným ve speiální teorii relativity? Rudý posuv v kosmologii I. Rozpínání vesmíru je vyjádřeno vztahem k r r R t, kde veličina r k je vzdálenost kosmologikého objektu od místa pozorování v kosmologikém čase t k, v němž se děje pozorování, r je vzdálenost tohoto objektu v čase t, R(t) se nazývá škálový faktor. Pro t = t k klademe R(t k ) = 1. Z předhozího plyne dr v = Hr H 1, dt R dt. 25
3 ož představuje Hubbleův lineární vztah mezi ryhlostí v, kterou se vzdaluje kosmologiký objekt, a jeho kosmologikou vzdáleností r. Koefiient H v tomto vztahu se nazývá Hubbleova konstanta. Jde ovšem o veličinu, která se s časem mění. II. Frekvene záření f přijímaná pozorovatelem souvisí s frekvení vysílanou kosmologikým objektem vztahem f f R f R f R, z 1. f R Pro nalezení vztahu mezi z a v užijeme [3] pro nepříliš velké vzdálenosti Taylorův rozvoj a skutečnost, že na této vzdálenosti se záření vyslané objektem pohybuje přibližně ryhlostí světla, takže Platí tedy: dt. dr dr dt r dr R R r R r R dt dt R 1 r 1 z 1 H R 1 z r v z H idíme, že kosmologiká ryhlost v se liší od ryhlosti, kterou byhom určili ze speiálně relativistikého Dopplerova jevu a je v prvním přiblížení rovna ryhlosti, kterou byhom určili z nerelativistikého vztahu. Milneho model esmíru Dalo by se pohybovat o tom, zda má ryhlost určená ze vzore pro Dopplerův jev v zakřiveném kosmologikém prostoročase nějaký fyzikální význam. Existuje však jednoduhý Milneho model [4], v němž je vesmírem rovnoměrně se rozpínajíí soustava v Minkowskiho prostoročase. Jde tu o jakýsi velký třesk bez hmoty. Zde je možno bez obav použít jak dopplerovské ryh- 251
4 losti, tak kosmologiké ryhlosti v, a vzájemně je porovnat. Pro naše účely se můžeme omezit na radiální pohyb. Interval v Minkowskiho souřadniíh T, X je ds dt dx , X T. Přehod k souřadniím Milneho t, χ se děje podle vztahů T t osh, X t sinh. Interval v Milneho souřadniíh t, χ získáme přepočtem jako d s (dt t d ) Kosmologiká vzdálenost objektu je pak a jeho kosmologiká ryhlost r t v. dt Milneho modelu platí kosmologiké vztahy R onst t, H 1. t Přepočtem do Milneho souřadni dostáváme pro kosmologiký objekt tgh a vztah mezi dopplerovskou ryhlostí a kosmologikou ryhlostí v je tedy v tgh, v artgh. 252
5 Závěr a diskuse raťme se k otáze: Jakou ryhlostí by se od nás musel vzdalovat objekt, abyhom v jeho spektru změřili rudý posuv z =,2? Již jsme vypočetli, že relativistiká ryhlost =,18, nyní můžeme určit i kosmologikou ryhlost v:, 18 v artgh artgh, 182 I když rozdíl není velký, jeho existene nás upozorňuje na podstatnou odlišnost mezi nerelativistikou fyzikou, speiální teorií relativity a relativistikou kosmologií, o se týče zavedení pojmu ryhlosti. Zamyšlení nad zdánlivě jednoduhou úlohou z FO nám umožnilo tento problém si uvědomit. Zajímavá je otázka, zda ryhlost, kterou jsme zde nazvali dopplerovskou, má fyzikální význam i v zakřiveném prostoročase. ýznamný relativista J. L. Synge ve své monografii odpovídá na tuto otázku kladně [5]. Dodejme ještě, že v současné době je diskutován názor opírajíí se o nová pozorovaí data, že rozpínání vesmíru se děje způsobem blízkým Milneho modelu [6]. Kontakt: novotny@physis.muni.z Literatura [1] Úloha z FO: [2] Novotný J., Horský J., Štefaník M.: Mehanika ve fyzie, Aademia, Praha 22, s [3] Landau, L. D., Lifši, E. M.: Teorija polja, Nauka, Moskva 1988, s [4] Mukhanov,.: Physial Foundations of Cosmology, Cambridge Univ. Press, 25, p. 27. [5] Synge, J. L.: Obščaja teorija otnositelnosti, IIL, Moskva s [6] Nielsen, J. T., Guffanti A., Sarkar S.: Marginal Evidene for Cosmi Aeleration from Type Ia Supernovae, Sientifi Reports 6,
Speciální teorie relativity IF
Speiální teorie relativity IF Speiální teorie relativity Newtonovy pohybové zákony umožňují popis hování těles pohybujííh se nízkými ryhlostmi. Při ryhlosteh, kterýh dosahují částie v uryhlovačíh, však
VíceFunkce expanze, škálový faktor
Funkce expanze, škálový faktor Astronomové zjistili, že vesmír není statické jeviště. Zjistili, že galaxie jsou unášeny ve všech směrech pryč od nás. A to nejen od nás, ale od všech pozorovatelů ve Vesmíru.
Více, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.
Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení
Vícepohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,
Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,
Více. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.
7.3.5 Obená rovnie přímky Předpoklady: 7303 Př. 1: Jsou dány body A[ 1; 1] a B [ 1;3]. Najdi parametriké vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadni a najdi její další vyjádření.
VíceLorentzovy transformace trochu netradičně
Lorentzovy transformae trohu netradičně Vladimír Majerník, Lukáš Rihterek Katedra teoretiké fyziky Přírodovědeké fakulty Univerzity Palakého, tř. Svobody 26, Olomou, 77 46 2. února 2007 Věnováno 45. výročí
VíceKosmologické kapitoly. Jan Novotný, Jindřiška Svobodová Pedagogická fakulta Masarykova universita, Brno,
Kosmologické kapitoly Jan Novotný, Jindřiška Svobodová Pedagogická fakulta Masarykova universita, Brno, Seminář Vlachovice 2015 Kosmologie - věda o vesmíru jako celku Základní kosmologické otázky: jaká
VíceVY_32_INOVACE_FY.19 VESMÍR
VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie
VíceVýfučtení: Vzdálenosti ve vesmíru
Výfučtení: Vzdálenosti ve vesmíru Není jednotka jako jednotka Na měření rozměrů nebo vzdáleností různých objektů je nutné zavést nějakou jednotku vzdálenosti. Jednou ze základních jednotek soustavy SI
VíceTELMG Modul 10: Základy relativistické elektrodynamiky
Budeme se zabývat výhradně elektromagnetikým polem ve vakuu Nejprve velmi stručně zrekapitulujeme potřebné poznatky ze speiální teorie relativity Einsteinovy postuláty Maxwellovy rovnie elektromagnetikého
VíceSystém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
VícePRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.
Více. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.
735 Obená rovnie přímky I Předpoklady: 070304 Pedagogiká poznámka: Úvodní příklad se nesmí příliš prodlužovat Nemá enu ztráet čas tím, že si většina žáků nepamatuje lineární funke Raději ryhle napíši řešení
VíceI. PRVNÍ POHLED NA PROBLEMATIKU
I. PRVNÍ POHLED NA PROBLEMATIKU Dříve než se pustíme do podrobnějšího výkladu speiální teorie relativity, bude vhodné připomenout některá fakta, popisy a prinipy, z nihž vyhází. Některé důsledky teorie
VíceKosmologické kapitoly. FY2BP_KOS2 Vybrané kapitoly z kosmologie FY2BP_KOSM Kosmologie podzim 2016
Kosmologické kapitoly FY2BP_KOS2 Vybrané kapitoly z kosmologie FY2BP_KOSM Kosmologie podzim 2016 Motivace Nový kurz koncipovaný zejména pro učitelská studia, modernizace obsahu přednášky i formy Studijní
VíceZákladní vlastnosti funkcí
teorie řešené úloh vičení tip k maturitě výsledk Základní vlastnosti funkí Víš, že Tomáš Garrigue Masark zastával funki prezidenta víe než 17 let? rodina plní řadu funkí reprodukční, soiálně ekonomikou,
Více6a. Techniky kosmické geodézie (úvod, Doppler) Aleš Bezděk
6a. ehniky kosmiké geodézie (úvod, Doppler) Aleš Bezděk eoretiká geodézie 4 FSV ČVU 2017/2018 LS 1 Přehled pozorovaíh přístrojů a metod Umělé družie země (UDZ) při pozorování ze zemského povrhu většinou
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Vícec λ v Z T = c f = c λ = f = c f. (1.2) c v Z
ÚlohaN1 Měření Dopplerova jevu 1.1 Úkol měření Proměřte posuv kmitočtu ultrazvukové vlny, pokud pozorovatel(přijímač) či zdroj(vysílač) této vlny budou ve vzájemném pohybu. Porovnejte naměřené hodnoty
VícePRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal
VíceDodatek: Speciální teorie relativity
Dodatek: Speiální teorie relativity V tomto dodatku jsou diskutovány důsledky speiální teorie relativity pro kinematiku a dynamiku, nebot speiální teorie relativity je základem pro všehna měření v prostoročase.
VíceMatematika (a fyzika) schovaná za GPS. Global Positioning system. Michal Bulant. Brno, 2011
Matematika (a fyzika) schovaná za GPS Michal Bulant Masarykova univerzita Přírodovědecká fakulta Ústav matematiky a statistiky Brno, 2011 Michal Bulant (PřF MU) Matematika (a fyzika) schovaná za GPS Brno,
VíceNaše představy o vzniku vesmíru
Naše představy o vzniku vesmíru Prof. Ing. Miroslav Kasal, CSc. Ústav radioelektroniky FEKT VUT v Brně Technická 12, SD6.97 E-mail kasal@feec.vutbr.cz http://www.urel.feec.vutbr.cz/esl/ U3V 1 Kurs U3V
VíceÚloha 5: Spektrometrie záření α
Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.
VíceSPECIÁLNÍ TEORIE RELATIVITY
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ SPECIÁLNÍ TEORIE RELATIVITY DALIBOR DVOŘÁK OSTRAVA Obsah Úvod do problematiky 4 Historiké poznámky 4 Vývoj fyziky v 9 století 4 3 Aberae stáli 5 4 Strhávání světla 6 Lorentzova
VíceGymnázium, Český Krumlov
Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát
VíceVNITŘNÍ ENERGIE, TEPLO A PRÁCE
VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit
VíceSpeciální teorie relativity IF relativistická kinematika
Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,
VíceČas skutečnost známá i záhadná
Čas skutečnost známá i záhadná prof. Jan Novotný Masarykova univerzita 1 ČAS - NEJDÉMONIČTĚJŠÍ FILOSOFICKÁ KATEGORIE Co je vlastně čas? Kdo to může snadno a lehce vysvětlit? Kdo jej může pochopit svými
VíceEKONOMETRIE 10. přednáška Modely zpožděných proměnných
EKONOMERIE 10. přednáška Modely zpožděnýh proměnnýh Časové posuny mezi působením určitýh faktorů (vyvolány např. informačními, rozhodovaími, instituionálními a tehnologikými důvody). Setrvačnost ve vývoji
Více5 Charakteristika odstředivého čerpadla
5 Charakteristika odstředivého čerpadla František Hovorka I Základní vztahy a definie K dopravě kapalin se často používá odstředivýh čerpadel Znalost harakteristiky čerpadla umožňuje posouzení hospodárnosti
VíceT0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
VíceProjekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
VíceŘešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
VíceEINSTEINOVA RELATIVITA
EINSTEINOVA RELATIVITA Pavel Stránský Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta Univerzity Karlovy www.pavelstransky.cz Science to Go! Městská knihovna Praha 21. leden 2016 Pohyb a
VíceNumerická integrace (kvadratura)
Numeriká integrae (kvadratura) Úvod V jedné dimenzi jde o numeriký výpočet integrálu I = b a f(x) dx Tato úloha je ekvivalentní řešení počátečního problému pro obyčejnou difereniální rovnii (ODE) di dx
VíceEXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2
EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU A.Mikš, V.Obr Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:
Více1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
VíceI Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVI Název: Studium Brownova pohybu Pracoval: Pavel Brožek stud. skup. 1 dne 4.4.008
VíceFakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
VíceDůsledky obecné teorie relativity Rozpínání vesmíru podle soudobých poznatků
kosmologie Jiří Jersák Důsledky obecné teorie relativity Rozpínání vesmíru podle soudobých poznatků Rozpínání vesmíru pro nás pravděpodobně bude brzy tak samozřejmé jako skutečnost, že Země obíhá kolem
VíceÁ Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
VíceKosmologie II. Zdeněk Mikulášek, Základy astronomie + U3V, 10. května 2018
Kosmologie II Zdeněk Mikulášek, Základy astronomie + U3V, 10. května 2018 Úspěchy standardního modelu vesmíru Standardní model je založen na současných fyzikálních teoriích obecné teorie relativity, teoriích
VíceÚloha 21: Studium rentgenových spekter
Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte
VíceKLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
VíceZákladní jednotky v astronomii
v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Více1. PROSTOR A ČAS V KLASICKÉ MECHANICE
FYZIKA PRO IV. ROČNÍK GYMNÁZIA SPECIÁLNÍ TEORIE RELATIVITY 1. PROSTOR A ČAS V KLASICKÉ MECHANICE Mgr. Monika Bouhalová Gymnázium, Havířov-Město, Komenského, p.o. III/---01 Zpraováno. ledna 013 Tento digitální
VícePRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
VíceMATEMATIKA. O paradoxech spojených s losováním koulí
MATEMATIKA O paradoxeh spojenýh s losováním koulí PAVEL TLUSTÝ IRENEUSZ KRECH Ekonomiká fakulta JU, České Budějovie Uniwersytet Pedagogizny, Kraków Matematika popisuje a zkoumá různé situae reálného světa.
Více= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621
ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete
VíceQ(y) dy = P(x) dx + C.
Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato
VíceOperace s polem příklady
Equation Chapter 1 Setion 1 1 Gradient Operae s polem příklady Zadání: Nadmořská výška libovolného bodu na povrhu kope je dána formulí h(x y) = A exp [ (x/l 0 ) 9(y/l 0 ) ] kde A = 500 m l 0 = 100 m Nalezněte
VíceVesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009
2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve
Více1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Více( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty
Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,
VíceHistorie objevu Hubbleova zákona Vladimír Štefl, ÚTFA, PřF MU
Historie objevu Hubbleova zákona Vladimír Štefl, ÚTFA, PřF MU Již od dob Williama Herschela (1732 1822) byly na obloze pozorovány a studovány,,mlhoviny. K objasnění jejich podstaty byla vyzdvižena řada
VíceAbsorpční polovrstva pro záření γ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství VUT FSI ÚFI 1ZM-10-ZS Ústav fyzikálního inženýrství Technická 2, Brno 616 69 Laboratoř A2-128 Absorpční polovrstva pro záření γ 12.10.2010 Měření
VíceANOTACE vytvořených/inovovaných materiálů
ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a
VíceRegistrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
VíceStruktura a vývoj vesmíru. Úvod: kosmologie jako věda o vesmíru jako celku
Struktura a vývoj vesmíru aneb základní kosmologická fakta a modely (Jiří Podolský, MFF UK, červenec 2008) Úvod: kosmologie jako věda o vesmíru jako celku základní kosmologické otázky jaká je struktura
VíceNehomogenní vlnová rovnice
Nehomogenní vlnová rovnie Viděli jsme, že ve vakuu lze s použitím Lorentzovy kalibrae soustavu 4 Maxwellovýh rovni převést na soustavu dvou vlnovýh rovni ( 2 ρ( r, t 2 t 2 Φ( r, t = ( ɛ 0 ( 2 A( r, 2 t
Vícef(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
VíceAleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools
Aleš Trojánek MACHŮV PRINCIP A STŘEDOŠKOLSKÁ MECHANIKA Mach s Principle and the Mechanics at Secondary Schools When explaining the inertial forces to secondary school students, one can expect to be asked
VíceElektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI
Elektrodynamika Elektriké a magnetiké veličiny, jednotky SI Elektriký proud I je v systému SI základní veličina, jednotka je Ampere A. Definie: Stejné proudy ve rovnoběžnýh dráteh ve vzdalenosti m mají
VíceFJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě
ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh
VíceM - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceLátka jako soubor kvantových soustav
Opakování pojmů Látka jako soubor kvantovýh soustav - foton - kvantování energie - kvantová soustava systém vázanýh části (atom, molekula, iont), jehož energie je kvantována - základní stav kvantové soustavy
VíceGraf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
VíceÚvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru
Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky
VíceJosef Keder, Lenka Janatová Český hydrometeorologický ústav
ZHODNOENÍ MOŽNOSTI SNÍŽENÍ ČETNOSTI VÝSKYTU PŘEKRAČOVÁNÍ IMISNÍH LIMITŮ ESTOU REGULAE EMISÍ Josef Keder, Lenka Janatová Český hydrometeorologický ústav MOTIVAE Potřeba aplikace vhodných opatření k expozici
VícePRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet
VíceFyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 3
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 3 Zpracoval: Jakub Juránek Naměřeno: 24. duben 2013 Obor: UF Ročník: II Semestr: IV Testováno:
VíceOddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum 1 Úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jan Kotek stud.sk.: 17 dne: 2.3.2012 Odevzdal dne:... možný počet bodů
VíceRadiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice
Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice podzim 2008, pátá přednáška Derivace a tečny aneb matematika libovolně malých změn Nejen velké,
VíceProjekt z volitelné fyziky Výtok kapaliny otvorem ve stěně
Projekt z volitelné fyziky Výtok kapaliny otvorem ve stěně Jonáš Tuček Gymnázium Trutnov 20. 2. 2016 8. Y Obsah 1. Úvod... 3 2. Teoretický rozbor... 3 2.1. Rozbor aparatury... 3 2.2. Odvození vztahů...
VíceKroužek pro přírodovědné talenty při Hvězdárně Valašské Meziříčí Lekce XXX. Kosmologie
Kroužek pro přírodovědné talenty při Hvězdárně Valašské Meziříčí Lekce XXX Kosmologie Kosmologie Petr Kulhánek FEL ČVUT, FJFI ČVUT Univerzita Palackého Hvězdárna a planetárium hl. m. Prahy, Aldebaran Group
VíceUltrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN
Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450
VíceVzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony
Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy
Víceškolní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr.
školní vzdělávací program PLACE HERE Název školy Adresa Palackého 211, Mladá Boleslav 293 80 Název ŠVP Platnost 1.9.2009 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Název RVP Délka studia v
VíceANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
VícePohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
VíceProgram. Einsteinova relativita. Černé díry a gravitační vlny. Původ hmoty a Higgsův boson. Čemu ani částicoví fyzici (zatím) nerozumí.
Program Einsteinova relativita Pavel Stránský Černé díry a gravitační vlny Jakub Juryšek Původ hmoty a Higgsův boson Daniel Scheirich Čemu ani částicoví fyzici (zatím) nerozumí Helena Kolešová /ScienceToGo
VíceExtragalaktická astrofyzika
Extragalaktická astrofyzika Jan Schee Ústav fyziky, Filozoficko-přírodovědecká fakulta, Slezská univerzita v Opavě 1 2 RZ = 6378 km MZ= 5,9742 1024 kg 3 4 RS = 6.955 105 km MS= 1.9891 1030kg 5 6 RG = 15
VícePŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Víceó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď
VíceChyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
VíceÚlohy krajského kola kategorie A
62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,
VíceMechanika - kinematika
Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb
VíceČeské Vysoké Učení Technické v Praze Fakulta Elektrotechnická. Astrofyzika. Petr Kubašta. Vypracované otázky od Milana Červenky (verze z 14.5.
České Vysoké Učení Technické v Praze Fakulta Elektrotechnická Astrofyzika Petr Kubašta Vypracované otázky od Milana Červenky (verze z 14.5.2012) Praha, 2012 Tento soubor vypracovaných otázek vznikl neoficiálně
VíceAstrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny
1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou
VícePraktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.
Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných
VíceFyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III
Více8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule
Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda
VícePRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: IX Název: Charakteristiky termistoru Pracoval: Pavel Brožek stud. skup. 12 dne 31.10.2008
Více6.1.2 Postuláty speciální teorie relativity, relativita současnosti
6.1.2 Postuláty speiální teorie relatiity, relatiita současnosti Předpoklady: 6101 Kone 19. století: Maxwelloy ronie (elektřina a magnetismus) sětlo je elektromagnetiké lnění, šíří se ryhlostí 300 000
VíceStrojírenské výpočty. Technická zpráva č. 2
Strojírenské výpočty Technická zpráva č. 2 Václav Valíček, 2A/5 9.12.2015 Obsah 1 Sinusové pravítko... 2 1.1 Teorie... 2 1.2 Výpočtové vzorce + zadání... 2 1.3 Výpočet... 3 1.4 Sestavení výšky... 3 1.5
VícePRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008
Více