1.1 Shrnutí základních poznatků
|
|
- Stanislava Švecová
- před 8 lety
- Počet zobrazení:
Transkript
1 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i tlakové nádoby pro jadernou energetiku. V technické praxi se setkáváme s případy tlustostěnných nádob s uvážením vlivu rozměrových a tvarových změn, např. nestejnosti tloušťky stěn nebo ovality. Vzhledem ke složitějšímu matematickému popisu těchto úloh a také s přihlédnutím k potřebám technické praxe se těmito úlohami nebudeme zabývat. Zaměříme pozornost pouze na teorii tlustostěnných rotačně symetrických válcových nádob majících značný technický význam. Pomocí této teorie lze například poměrně snadno(za zjednodušujících předpokladů) provádět prvotní rozměrový návrh částí tvarově složitějších součástí strojů a zařízení. Při odvození teorie tlustostěnných rotačně symetrických válcových nádob bereme v úvahu tyto předpoklady: σ t σo σr + dσr σr dϕ σo z dz σ t dr O Obr. 1: Napjatost v elementárním hranolku. Materiál nádoby je lineárně elastický(zatěžování probíhá v oblasti platnosti Hookeova zákona), homogenní a isotropní. Poměrnédeformace,kterémohouvznikatvtělesenádoby,jsoumalé,tj. ε 1. Respektujeme Saint-Venantův princip, při kterém se lokální charakter zatížení projevuje jen v jeho blízkém okolí. Podmínky rovnováhy sil sestavujeme na nepřetvořeném tělese nádoby. Nádoba má dokonale válcový tvar, tlaky na vnitřním a vnějším povrchu jsou rovnoměrně rozložené. Vliv vlastní tíhy tělesa na stav napjatosti a deformace zanedbáváme. Na základě uvedených předpokladů je řešená úloha osově rotačně symetrická vzhledem k podélné ose nádoby. Pro vyšetřování stavu napjatosti u této nádoby je nejvýhodněší použití válcových souřadnic, jednotlivé souřadnice označme dle zvyklostí r, ϕ, z, viz obr. 1. Prvým krokem řešení je vyjmutí elementárního prvku nádoby za dodržení zásad metody řezů. Veďme 6 myšlenýchřezů:rovnoběžnéřezyvedenékolmonapodélnouosunádobyvevzdálenosti za z+dz,souoséválcovéřezyopoloměrech rar+drasoumeznéřezyobsahujícípodélnou osuválce,kteréjsouurčenésouřadnicemi ϕaϕ+dϕ,vizobr.1.na6stěntaktovzniklého r ϕ 1
2 elementárního hranolku připojíme účinky vnitřních sil z odstraněné části nádoby. Přitom využijeme těchto skutečností: Stěnyhranolkumajínekonečněmalouplochu,ataknapětí,naněpůsobící,lzeuvažovat jako rovnoměrně rozložená. Vzhledem k osové rotační symetrii nádoby nemůže při deformaci elementárního prvku dojít ke zkosení. Odtud plyne, že na stěnách hranolku nemohou vznikat smykové složky napětí a hraniční stěny elementu jsou zároveň hlavními rovinami. V elementárním hranolku proto vzniká trojosý stav napjatosti určený hlavními napětími σ r radiální, σ t obvodovéaσ o osové. 1 Protožesmyslynapětínejsou předem známy, uvažují se všechna a priori jako tahová(obr. 1), přičemž jejich skutečná orientace je dána znaménkem řešení konkrétní úlohy. Před uvedením základních rovnic pro řešení problému ještě proveďme následující analýzu. S ohledem na předpoklad rovnoměrného zatížení povrchu válce můžeme prohlásit, že složky napětí nejsou závislé na souřadnici z. Vzhledem k rotační symetrii lze dále konstatovat, že složky napětí nejsou funkcemi ani souřadnice ϕ. Osové napětí lze považovat dokonce zakonstantní,tedy σ o σ o (r),pokudsepředpokládá,žepříslušnýřezvedenýkolmona podélnou osu válce je dostatečně vzdálen od dna nebo víka uzavřené nádoby. Dno nebo víko vyztužuje plášť válce a způsobuje, že příčné řezy válcem nejsou po deformaci rovinné. V dostatečné vzdálenosti od dna nádoby je však vliv zanedbatelný a prakticky platí, že poměrnéprodlouženípodélnýchvlákenvřezunádobyjevšudestejné,nebo-li ε o =konst. Osové napětí potom vypočítáme jako v případě prostého tahu tlaku. Z rozdílu osových silpůsobícíchzvnitřkuazvnějškuuzavřenénádobynavíkoplatí σ o = p 1πr 1 p πr πr πr 1 = p 1r 1 p r r r 1, (1) kde p 1,resp. p,jetlakpůsobícínavnitřním,resp.vnějším,povrchuválcovéčástinádoby napoloměru r 1,resp. r.vpřípadě,ževnější,resp.vnitřní,tlakjenulový,snadnoodvodíme ze vztahu(1) σ o = p 1r1, resp. σ r r1 o = p r. () r r1 Zevztahu(1)jerovněžpatrno,žeuotevřenénádoby,tj.unádobybezden,je σ o =0. (3) Obězbývajícíhlavnínapětí,radiální σ r aobvodové σ t,jsouvtloušťcestěnyrozložena nerovnoměrněamůžemetakpsát: σ r = σ r (r), σ t = σ t (r). Základní rovnice a jejich obecné řešení Abychom dokázali určit úlpný stav napjatosti v rotačně symetrické tlustostěnné válcové nádobě, sestavíme pro elementární hranolek(obr. 1): 1 Napětí σ t a σ o setakéčastoznačídlepříslušnýchsouřadnic,tj. σ ϕ a σ z.
3 jednu podmínku rovnováhy v radiálním směru σ r σ t + r dσ r dr =0, (4) dvě geometricko-deformační rovnice vyjadřující závislost mezi poměrnými deformacemi(prodlouženími) v radiálním a obvodovém směru a posuvem u = u(r) v radiálnímsměru ε r = du (r+ u)dϕ rdϕ a ε t = = u dr rdϕ r, (5) jednu rovnici spojitosti deformací, tzv. rovnici kompatibility, ve tvaru dε t dr =1 r (ε r ε t ), (6) užitím obecného Hookeova zákona dvě fyzikální rovnice pro poměrné deformace v radiálním a obvodovém směru ε r = 1 E [σ r ν(σ t + σ o )] a ε t = 1 E [σ t ν(σ r + σ o )], (7) kde EjeYoungůvmodulpružnostiaνjePoissonovočíslo. Základnísoustavušestirovnic(4)až(7)jemožnévzásaděřešitdvěmazpůsoby.Při hledání neznámých funkcí použijeme buď deformační variantu řešení, kde jsou neznámými posuvy, nebo silovou variantu řešení, kde jsou neznámými napětí. Ať již použijeme jednu čidruhouvariantu,lzeukázat,žesoustavěrovnic(4)až(7)vyhovujídvěobecnářešení 3 σ r = D 1 ± D r a σ t = D 1 D r (8) určujícírozloženíhlavníchnapětí σ r a σ t vestěněnádoby,kde D 1 a D jsouintegrační konstanty.z(8)jezřejmé,žekřivkyzobrazujícíprůběhynapětí σ r a σ t jsouhyperboly. stupně, což určují druhé členy na pravé straně těchto rovnic, zatímco první člen, v obou případech stejný, určuje posunutí křivek ve směru souřadnicové osy, na níž jsou napětí vynášena, viz obr.. Úloha s okrajovými podmínkami Pomocíobecnéhořešení(8)apříslušnýchokrajovýchpodmínek 4 stanovímekonkrétnítvar integračníchkonstant D 1 a D.Potéjižmůžemevyšetřitskutečnýprůběhnapětí σ r a σ t ve stěně válcové nádoby. Z hlediska technické praxe budeme uvažovat pouze případy, kdy je Funkce ujeproměnnépouze r,cožplyneobdobnějakousložeknapětízuvedenýchpředpokladů. 3 Obecněplatí: σ r + σ t =D 1.Dálebudemepracovatsřešením: σ r = D 1 D r a σ t = D 1 + D r. 4 Jednáseostatickéokrajovépodmínky,protoženahranici(povrchu)válcepředepisujemestatické podmíky rovnováhy. 3
4 D r p r p +D r σ r σ t p 1 r 1 r p 1 D r 1 D 1 +D r 1 O σ r, σ t Obr.:Rozloženínapětí σ r a σ t potloušťcestěnynádoby(p 1 r 1 > p r ). nádoba namáhána pouze přetlaky na vnitřním a vnějším povrchu nebo je tam nezatížena. Obecněuvažujmepůsobícítlak p 1 navnitřnímpoloměru r 1 atlak p navnějšímpoloměru r,jakjevidětnaobr..potomjsouokrajovépodmínkydányvztahy σ r (r 1 )= p 1 a σ r (r )= p, (9) kdeskutečnost,žejdeotlaky,jevyjádřenazápornýmiznaménkyasymboly p 1 a p značí pouze velikost těchto tlaků. S využitím(8) upravíme okrajové podmínky(9) na tvar D 1 D r 1 = p 1 a D 1 D r = p. (10) Obdrželijsmetaksoustavudvoulineárníchalgebraickýchrovnicproneznámé D 1 a D. Řešením soustavy dostáváme pro hledané konstanty vztahy D 1 = p 1r 1 p r r r 1 a D = (p 1 p )r 1r r r 1. (11) Vpřípadě,ževnější,resp.vnitřní,tlakjenulový,získámezevztahů(9)a(10),nebopřímo využitím vztahů(11), konstanty D 1 = p 1r 1 r r 1 a D = p 1r 1r, resp. D r r1 1 = p r r r1 a D = p r 1r r r 1. (1) Připorovnánívztahů(11)a(1)sevztahy(1)a()jepotomzřejmé,žeuuzavřených nádob(se dnem) můžeme přímo psát σ o = D 1. (13) Jestliže provádíme analýzu stavu napjatosti nádoby, obvykle nás také zajímá deformace, především změna poloměru r(r). Jednoduchou úvahou dospějeme k závěru, že r u. Prozměnupoloměrutedyplatí,spřihlédnutímk(5)a(7), r=r ε t = r E [σ t ν(σ r + σ o )]. (14) 4
5 V závěru shrnutí je ještě účelné rozlišit pojmy tenkostěnná a tlustostěnná nádoba. Za tenkostěnné považuje takové nádoby, jejichž tlouštka stěny je oproti ostatním charakteristickým rozměrům velmi malá, takže lze uvažovat, že rozložení napětí po tloušťce stěny je rovnoměrné. U uzavřených tlustostěnných nádob navíc vzniká v elementárním hranolku, vyjmutém ze stěny nádoby, trojosý stav napjatosti, na rozdíl od tenkostěnných nádob, kde je dvojosý stav napjatosti. Určení hranice, kdy můžeme nádobu považovat již za tenkostěnnou, závisí na zvolené přípustné chybě ve velikosti napětí, která vznikne při zanedbání tlustostěnnosti. U válcových nádob je v technické praxi běžná hranice: střední poloměr/tloušťka stěny 5. Výpočet potom provádíme dle skořepinové teorie. 5
2.1 Shrnutí základních poznatků
.1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při
Skořepinové konstrukce. tloušťka stěny h a, b, c
Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
TLUSTOSTĚNNÉ ROTAČNĚ SYMETRICKÉ VÁLCOVÉ NÁDOBY. Autoři: M. Zajíček, V. Adámek
1.3 Řešené příklady Příklad 1: Vyšetřete a v měřítku zakreslete napjatost v silnostěnné otevřené válcové nádobě zatížené vnitřním a vnějším přetlakem, viz obr. 1. Na nebezpečném poloměru, z hlediska pevnosti
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
FAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Rotačně symetrická deska
Rotačně symetrická deska je tenkostěnné těleso, jeož střednicová ploca je v nedeformovaném stavu rovinná, kruová nebo mezikruová. Zatížení působí kolmo ke střednicové rovině, takže při deformaci se střednicová
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )
3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =
Nelineární úlohy při výpočtu konstrukcí s využitím MKP
Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,
Výpočet sedání kruhového základu sila
Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
1. Úvod do pružnosti a pevnosti
1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Statika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Tvorba výpočtového modelu MKP
Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59
Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a
Martin NESLÁDEK. 14. listopadu 2017
Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:
Autor: Vladimír Švehla
Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta
Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
13. Prostý ohyb Definice
p13 1 13. Prostý ohyb 13.1. Definice Prostý ohyb je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se vzájemně natáčejí kolem osy ležící v
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
Pružnost a plasticita CD03
Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K
BETONOVÉ KONSTRUKCE B03C +B03K Betonové konstrukce - B03C +B03K SKOŘEPINOVÉ KONSTRUKCE Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Dynamika vázaných soustav těles
Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.
Pružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá
POŽADAVKY KE ZKOUŠCE Z PP I
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
vztažný systém obecné napětí předchozí OBSAH další
p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů
Primární a sekundární napjatost
Primární a sekundární napjatost Horninový tlak = síly, které vznikají v horninovém prostředí vlivem umělého porušení rovnovážného stavu napjatosti. Toto porušení se projevuje deformací nevystrojeného výrubu
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE. ARST - Architektura a statika. ARST - Architektura a statika
SKOŘEPINOVÉ KONSTRUKCE 133 1 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (
7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
Mechanika s Inventorem
Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův
6. Statika rovnováha vázaného tělesa
6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
Diskrétní řešení vzpěru prutu
1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
Kritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Optimalizace vláknového kompozitu
Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního
Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,
3. Způsoby namáhání stavebních konstrukcí
3. Způsoby namáhání stavebních konstrukcí Každému přetvoření stavební konstrukce odpovídá určitý druh namáhání, který poznáme podle výslednice vnitřních sil ve vyšetřovaném průřezu. Lze ji obecně nahradit
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
ANALÝZA KONSTRUKCÍ. 5. přednáška
ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:
Geometricky válcová momentová skořepina
Geometricky válcová momentová skořepina Dalším typem tenkostěnnéo rotačně souměrnéo tělesa je geometricky válcová momentová skořepina. Typický souřadnicový systém je opět systém s osami z, r, a t. Geometricky
Nosné konstrukce AF01 ednáška
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce AF01 3. přednp ednáška Deska působící ve dvou směrech je
Příloha č. 1. Pevnostní výpočty
Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této
Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.
OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti
1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Postup při výpočtu prutové konstrukce obecnou deformační metodou
Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu
10. cvičení z Matematické analýzy 2
. cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y
graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová
Statické řešení zadané rovinné prutové soustavy graficky - užití Cremonova obrazce Zpracovala: Ing. Miroslava Tringelová Určení sil v prutech prutové soustavy - graficky U příkladu viz obr. (1) graficky
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Modelování zatížení tunelů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy
Aproimace posuvů Pro každý prvek se musí nalézt vztahy kde jsou prozatím neznámé transformační matice. Neznámé funkce posuvů se obvykle aproimují ve formě mnohočlenů kartézských souřadnic. Například 1.
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
TECHNIKA VYSOKÝCH NAPĚŤÍ. #4 Elektrické výboje v elektroenergetice
TECHNIKA VYSOKÝCH NAPĚŤÍ #4 Elektrické výboje v elektroenergetice Korónový výboj V homogenním elektrickém poli dochází k celkovému přeskoku mezi elektrodami najednou U nehomogenních uspořádání dochází
Nespojitá vlákna. Nanokompozity
Nespojitá vlákna Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vliv nespojitých vláken Uspořádaná
K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:
OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti
OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T003-00 APLIKOVANÁ MECHANIKA Teorie pružnosti 1. Geometrie polohových změn a deformace tělesa. Tenzor přetvoření Green-Lagrangeův, Cauchyho.
Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny