MATEMATIKA. O paradoxech spojených s losováním koulí
|
|
- Jiří Matějka
- před 9 lety
- Počet zobrazení:
Transkript
1
2
3 MATEMATIKA O paradoxeh spojenýh s losováním koulí PAVEL TLUSTÝ IRENEUSZ KRECH Ekonomiká fakulta JU, České Budějovie Uniwersytet Pedagogizny, Kraków Matematika popisuje a zkoumá různé situae reálného světa. Je přirozené, že někdy řešíme případ, který se ez hlušího rozoru jeví jako paradoxní. Speiálně teorie pravděpodonosti je na paradoxy velmi ohatá. To svědčí o tom, že naše stohastiké intuie nejsou vždy utvářené správně. Jedním takovým paradoxem se zaývá i tento článek. Začneme jednoduhým příkladem. Příklad 1 V pytlíku je ílýh a černýh koulí. Jaká je pravděpodonost, že náhodně vylosovaná koule ude černá? Jaká je pravděpodonost, že náhodně vylosovaná koule ve druhém tahu ude černá, pokud první vylosovanou kouli vrátíme zpět do pytlíku? Snadno si rozmyslíme, že oě otázky řeší stejnou situai, a tedy je zřejmé, že v oou případeh je hledaná pravděpodonost rovna /( + ). Nyní situai změníme. Příklad 2 V pytlíku je ílýh a černýh koulí. Jaká je pravděpodonost, že náhodně vylosovaná koule ve druhém tahu ude černá, pokud první vylosovanou kouli nevrátíme zpět do pytlíku? V tomto případě vidíme, že stav koulí v pytlíku před druhým losováním závisí na výsledku prvního tahu. Jiná situae nastane, pokud v prvním tahu vylosujeme ílou kouli, a jiná, pokud je v prvním tahu tažena koule Matematika fyzika informatika
4 černá. Ovykle se takovýh případeh zavádí pojem podmíněná pravděpodonost a k řešení příkladu 2 se užije věty o elkové pravděpodonosti (viz [1, str. 193]). Tímto postupem dostaneme následujíí řešení: První řešení. Označme P (C n )... pravděpodonost vylosování černé koule v n-tém tahu (n N), P (B 1 )... pravděpodonost vylosování ílé koule v 1. tahu, P (C 2 B 1 )... pravděpodonost vylosování černé koule v 2. tahu, ude-li v prvním tahu vylosována ílá koule, P (C 2 C 1 )... pravděpodonost vylosování černé koule v 2. tahu, ude-li v prvním tahu yla vylosována černá koule. Pak dle věty o elkové pravděpodonosti dostaneme rovnost Víme, že P (C 2 ) = P (C 1 ) P (C 2 C 1 ) + P (B 1 ) P (C 2 B 1 ). P (C 1 ) = Podoně vypočítáme, že +, P (B 1) = +. P (C 2 C 1 ) = 1 1 +, P (C 2 B 1 ) = + 1. Po dosazení dostaneme P (C 2 ) = = +. Uvedený výsledek ukazuje, že pravděpodonost vylosování černé koule ve druhém tahu nezáleží na tom, zdali kouli vylosovanou v prvním tahu vrátíme do pytlíku či nikoli, a je též rovna pravděpodonosti vylosování černé koule v prvním tahu. Tato skutečnost se zdá paradoxní. Užití podmíněné pravděpodonosti znamená, že takové úlohy yhom mohli řešit až se studenty vyššíh ročníků střední školy. Další nevýhodou takovéhoto formalizovaného řešení je jeho malá názornost. Zvolíme-li jiný přístup s užitím tzv. stohastikého stromu (podroně je tato tehnika popsána např. v [1]), můžeme se pojmu podmíněné pravděpodonosti vyhnout, jak ukazuje následujíí řešení: 2 Matematika fyzika informatika
5 Druhé řešení. Náhodný pokus se skládá ze dvou tahů (etap). Na or. 1 je stohastiký strom takového pokusu, čísla přiřazená jednotlivým větvím stromu představují odpovídajíí pravděpodonosti Or. 1 Při použití stohastikého stromu vidíme, že vylosovat černou kouli ve druhém tahu můžeme dvěma různými způsoy (strom má dvě větve). Podle kominatorikého pravidla součtu (viz např. [2]) je výsledná pravděpodonost rovna součtu pravděpodoností jednotlivýh větví. Podle kominatorikého pravidla součinu (viz např. [2]) je pravděpodonost každé z větví dána součinem pravděpodoností jednotlivýh losování. Odtud plyne, že P (C 2 ) = = +. Základní kominatoriké prinipy využívá i následujíí řešení. Třetí řešení Vzhledem k tomu, že všehny možné výsledky vylosování dvou koulí z pytlíku jsou stejně pravděpodoné, je stohastikým modelem takového pokusu klasiký pravděpodonostní prostor. V klasikém pravděpodonostním prostoru se pravděpodonost jevu vypočte jako podíl počtu výsledků příznivýh danému jevu a počtu všeh možnýh výsledků. Počet všeh možnýh výsledků losování: Před prvním tahem je v pytlíku ( + ) koulí, a tedy můžeme získat ( + ) různýh výsledků losování. Před druhým tahem je v pytlíku ( + 1) koulí, a tedy můžeme získat ( + 1) různýh výsledků losování. Podle kominatorikého pravidla součinu je tedy elkem ( + ) ( + 1) různýh výsledků tažení dvou koulí. Počet losování, v nihž je ve druhém tahu vylosována černá koule: V pytlíku je černýh koulí, a tedy ve druhém tahu lze vylosovat černou kouli různými způsoy. V první tahu losujeme liovolnou Matematika fyzika informatika
6 kouli ze zývajííh, ož lze udělat (+ 1) různými způsoy. Podle kominatorikého pravidla součinu je elkem ( + 1) různýh výsledků. Odtud plyne, že P (C 2 ) = ( + 1) ( + ) ( + 1) = +. Tento postup je univerzální, tj. lze ho použít i v situai, kdy nás zajímá, jaká je pravděpodonost, že koule vylosovaná v n-tém tahu ude černá n = 1, 2,..., +. Pak dostáváme P (C n ) = ( + 1)... ( + (n 1)) ( + ) ( + 1)... ( + (n 1)) = +. Vidíme tedy překvapujíí skutečnost, že při losování koulí (po jedné) je pravděpodonost vylosování černé koule ve všeh tazíh stejná. (!) Čtvrté řešení. Do láhve dáme ílýh a černýh koulí. Zamíháme je a orátíme láhev dnem vzhůru. Koule začnou vypadávat z láhve (or. 2). Zajímá nás pořadí, v jakém koule vypadnou. Or. 2 Ze symetrie je zřejmé, že každá z koulí může se stejnou pravděpodoností vypadnout na liovolném z + míst, proto P (C n ) = Situai lze ještě zoenit. + pro n {1, 2,..., + }. 4 Matematika fyzika informatika
7 Příklad 3 V pytlíku je ílýh a černýh koulí. Jaká je pravděpodonost, že náhodně vylosovaná koule ve druhém tahu ude černá, pokud kouli vylosovanou v prvním tahu vrátíme zpět do pytlíku a a) přidáme k koulí téže arvy, ) uereme k koulí téže arvy, kde k min(, )? Řešení. Označme k elé číslo splňujíí zadání příkladu a užijeme stejný postup jako ve 2. řešení příkladu 2. Odpovídajíí stohastiký strom je na or k + k+ + k + k + + k Z or. 3 plyne, že Or. 3 P (C 2 ) = + + k + + k k = +. Uvedené tři příklady poukazují na paradoxní situai. Pravděpodonost vylosování koule nezávisí na způsou losování, tj. zda vylosované koule vraíme do pytlíku či nikoli, je stejná pro všehny tahy, tj. P (C 1 ) = P (C 2 ) =... = P (C + ), nezávisí na přidání neo urání koulí (podle pevně stanovenýh pravidel). L i t e r a t u r a [1] P loki, A. Tlustý, P.: Pravděpodonost a statistika pro začátečníky a mírně pokročilé. Prometheus, Praha, [2] P loki, A. Tlustý, P.: Kominatoryka wokó l nas, Novum, P lok, Matematika fyzika informatika
8
MATEMATIKA. O paradoxech spojených s losováním koulí
MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je
1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;
I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá
Základní vlastnosti funkcí
teorie řešené úloh vičení tip k maturitě výsledk Základní vlastnosti funkí Víš, že Tomáš Garrigue Masark zastával funki prezidenta víe než 17 let? rodina plní řadu funkí reprodukční, soiálně ekonomikou,
V tomto článku popíšeme zajímavou úlohu (inspirovanou reálnou situací),
L i t e r a t u r a [1] Calábek, P. Švrček, J.: Úvod do řešení funkcionálních rovnic. MFI, roč. 10 (2000/01), č. 3. [2] Engel, A.: Problem-Solving Strategies. Springer-Verlag, New York, Inc., 1998. [3]
Diskrétní matematika. DiM /01, zimní semestr 2016/2017
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),
{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.
9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ..07/..00/6.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické funkce Autor: Ondráčková
5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy
Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,
PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev
RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných
EKONOMETRIE 2. přednáška Modely chování výrobce I.
EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke
3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,
KVADRATICKÉ FUNKCE Definice Kvadratická funkce je každá funkce na množině R (tj. o definičním ooru R), daná ve tvaru y = ax + x + c, kde a je reálné číslo různé od nuly,, c, jsou liovolná reálná čísla.
4.4.3 Další trigonometrické věty
443 Další trigonometriké věty Předpoklady: 440 Věty, které ojevíme v této hodině, mohou usnadnit některé výpočty, ale je možné se ez nih (na rozdíl od kosinové a sinové věty) oejít Pedagogiká poznámka:
V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:
Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
2. přednáška - PRAVDĚPODOBNOST
2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Obsah. Metodický list Metodický list Metodický list Metodický list
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti
Tepelný komfort 2.1. Program pro stanovení ukazatelů tepelné pohody PMV a PPD a lokálních kritérií tepelného komfortu podle ČSN EN ISO 7730
Tepelný komfort. Program pro stanovení ukazatelů tepelné pohody PMV a PPD a lokálníh kritérií tepelného komfortu podle ČSN EN ISO 7730 Autor: Ing. Vladimír Zmrhal, Ph.D. ČVUT v Praze, Fakulta strojní Ústav
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.
Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
Pravděpodobnost a statistika (BI-PST) Cvičení č. 2
Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
Konstrukce na základě výpočtu I
.4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli
MATEMATIKA. který byl zveřejněn v našem časopise v roce V tomto navazujícím
MATEMATIKA Abeceda řešení funkcionálních rovnic PAVEL CALÁBEK JAROSLAV ŠVRČEK Přírodovědecká fakulta UP, Olomouc Tento příspěvek lze považovat za volné pokračování článku [1] obou autorů, který byl zveřejněn
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE
3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY
5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5. Rovnoměrné rozdělení R(a,) - má náhodná veličina X, která má stejnou možnost naýt kterékoliv hodnoty z intervalu < a, >; a, R Definice
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Intuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Logaritmické rovnice a nerovnice
Přírodovědecká fakulta Masarykovy univerzity Logaritmické rovnice a nerovnice Bakalářská práce Brno 008 Lenka Balounová Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze z materiálů
62. ročník matematické olympiády III. kolo kategorie A. Jihlava, března 2013
6. ročník matematiké olympiády III. kolo kategorie A Jihlava, 17. 0. března 013 MO 1. Najděte všehny dvojie elýh čísel a, b, pro něž platí rovnost a + 1 b 3 a 1 b 1. Řešení. Zřejmě a 1, proto můžeme danou
Zajímavé matematické úlohy
Poděkování. Tento článek vznikl v rámci projektu SVV 2014-260105. Výzkum byl podpořen Grantovou agenturou Univerzity Karlovy v Praze (projekt č. 1250213). L i t e r a t u r a [1] Hejný, M. a kol.: Teória
Teorie pravěpodobnosti 1
Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako
Konstrukce na základě výpočtu II
3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky
Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
IB112 Základy matematiky
IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.
6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami
pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.
3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.
Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.
Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,
Rovinné nosníkové soustavy Gerberův nosník
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura
Technická dokumentace Ing. Lukáš Procházka
Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím
Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS
Ročník., Číslo IV., listopad VYUŽITÍ FLOYDOVA ALGORITMU NA SITÍCH USE OF FLOYD ALGORITHM IN NETWORKS Denisa Moková Anotae: Článek se zabývá využitím Floydova algoritmu pro výpočet vzdáleností na síti,
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
5.3.6 Ohyb na mřížce. Předpoklady: 5305
5.3.6 Ohy na mřížce Předpoklady: 5305 Optická mřížka = soustava rovnoěžných velmi lízkých štěrin. Realizace: Skleněná destička s rovnoěžnými vrypy, přes vryp světlo neprochází, prochází přes nepoškraaná
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
TEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
Jak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
p ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární
Seznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy
Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale
Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz
PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad
Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1:
Kvadratické rovnice V zadání lineární rovnice se může vyskytovat neznámá ve vyšší než první mocnině. Vždy ale při úpravě tato neznámá ve vyšší než první mocnině zmizí, odečte se, protože se vyskytuje na
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
Extremální úlohy v geometrii
Extremální úlohy v geometrii Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava 30.4. 2013 Petr
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE
3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Zákony elektrického
Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.
Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení
PRAVDĚPODOBNOST A JEJÍ UŽITÍ
PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.
Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =
Předpovídejte snadno a rychle
Předpovídejte snadno a rychle Newsletter Statistica ACADEMY Téma: Časové řady, exponenciální vyrovnávání Typ článku: Příklad Dnes se budeme zabývat situací, kdy chceme předpovídat, jak se bude v čase vyvíjet
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),
KOMBINATORIKA. 1. cvičení
KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU
Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1
1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.
ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ
Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
Graf je ve školské matematice často opomíjen. Je obvykle spojen s geometrií,
South Bohemia Mathematical Letters Volume 20, (2012), No. 1, 40 47. VYUŽITÍ GRAFŮ PŘI ŘEŠENÍ ÚLOH ZE STOCHASTIKY RADKA ŠTĚPÁNKOVÁ Abstrakt. Tento článek se zabývá využitím grafů ve stochastice. Při výuce
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Práce s daty, kombinatorika a pravděpodobnost Gradovaný řetězec úloh Téma: Pravděpodobnost
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropská unie Evropský soiální fon Prh & EU: Investujeme o vší uounosti ávrh čítče jko utomtu Osh ÁVRH ČÍAČE JAKO AUOMAU.... SYCHROÍ A ASYCHROÍ AUOMA..... Výstupy utomtu mohou ýt přímo ity pměti stvu.....
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s
, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.
Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení