Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
|
|
- Božena Jarošová
- před 6 lety
- Počet zobrazení:
Transkript
1 Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových stránkách přednášejícího.
2 OPAKOVÁNÍ: Normy komplexních vektorů a reálných matic x 1 = n x i (oktaedrická norma),, i=1 ( n ) 1/2 x 2 = x i 2 x = i=1 max x i i {1,2,...,n} (euklidovská norma), (max-norma),. Norma matice generovaná normami vektorů A YmX n = Ax Ym max. {x X n: x 0} x Xn Jestliže y = Ax, kde x X n a y Y m, pak y Ym A YmX n x Xn.
3 Některé generované normy matice lze počítat jednodušeji (A je reálná matice): m A 1 = a ik, A = max k {1,2,...,n} max i=1 i {1,2,...,m} k=1 n a ik, A 2 = ( (A T A)) 1/2 = ( (AA T )) 1/2 (spektrální norma), kde A T je transponovaná matice. A reálná a symetrická: A 2 =( (A T A)) 1/2 = ( (A 2 )) 1/2 = (A). ( m ) 1/2 n A F = a ik 2 Frobeniova norma, není generovaná. i=1 k=1 Platí (A) A pro Frobeniovu i každou generovanou normu. Všechny normy NLP konečné dimenze jsou ekvivalentní. Např. c 1, c 2 > 0 x R n c 1 x 1 x 2 c 2 x 1
4 Skalární součin reálných vektorů x = (x 1,..., x n ) a y = (y 1,..., y n ) je číslo (x, y) = Řada vlastností, připomeňme jen n x k y k, k=1 (x, x) = x 2 2 0, (1) (x, y) x 2 y 2. Schwarzova nerovnost (2) Důkaz (2): y = 0 (2) platí. Jestliže y 0, pak (x, y) 0 x y 2 y 2 = x (x, y)2 y 2 2 = + ( x (x, y)2 y 2 2 (x, y) y 2 y, x 2 = x 2 2 ) (x, y) y 2 y 2 (x, y)2 y 2 2
5 Pozitivně definitní matice Matice A = (a ij ) typu (n, n) se nazývá pozitivně definitní, platí-li pro každý nenulový n-rozměrný reálný vektor x (Ax, x) > 0, tj. n n a ij x i x j > 0. j=1 j=1 Důležité: Lze ukázat, že symetrická (!) matice A je pozitivně definitní právě tehdy, když všechna vlastní čísla matice A jsou kladná.
6 OPAKOVÁNÍ: Číslo podmíněnosti Necht je nějaká generovaná norma a necht A je regulární matice. Pak číslo κ(a) = A A 1 se nazývá číslo podmíněnosti matice A vzhledem k normě. Je-li A symetrická a pozitivně definitní a použijeme-li normu 2, je κ(a) = λ max /λ min. Necht Ax 0 = b 0 a Ax 1 = b 1, kde b 0 b 1, pak platí x 1 x 0 x 0 κ(a) b 1 b 0. (3) b 0 K A existují b 0 0 a b 0 b 1 takové, že v (3) nastane rovnost.
7 Iterační metody pro řešení soustav lineárních algebraických rovnic vytvářejí posloupnost vektorů {x k } k=1, která konverguje k řešení soustavy Ax = b. Obecně potřebují nekonečný počet kroků, ale prakticky je stačí ukončit po konečném počtu kroků při dosažení dostatečně přesné aproximace přesného řešení.
8 Motivační příklad: Iterační výpočet a, kde a > 0 Myšlenka (M. Fiedler: Speciální matice): x 2 = a, x = a x, 2x = x + a x, x = 1 2 ( x + a x ). Metoda: zvolit počáteční hodnotu x 0, x k+1 = 1 ) (x k + axk, k = 0, 1,..., 2 zastavit iterace, pokud x k+1 x k ε, kde ε je předem zadané malé číslo, např. ε =
9 Konvergence posloupnosti {x k } k=1 není náhodná. Užitím středoškolské algebry snadno odvodíme x k+2 x k+1 = 1 2 x xk 2 k+1 x k a xk 2 + a, x k+2 x k x k+1 x k, ( ) 1 k+1 x k+2 x k+1 x 1 x 0 = 2 ( ) 1 k+2 a 2 x 0 x. 0
10 Odvodili jsme nerovnost ( ) 1 k+1 a x k+1 x k x 0 2 x. 0 Z ní pro přirozené č. m > 1 získáme x k+m x k = x k+m x k+m 1 + x k+m 1 + x k+1 x k x k+m x k+m 1 + x k+m 1 x k+m x k+1 x k [ 1 2 m m ] a 2 k+1 x 0 x a 2 k+1 x 0 x = 1 a 0 2 k x 0 x. 0 Vidíme, že posloupnost {x k } k=1 je cauchyovská. Tudíž má limitu x, která splňuje x = 1 ( x + a ), tj. x = a. 2 x
11 Ukázali jsme, že lim k x k = a a že pro libovolné přirozené m platí x k+m x k 1 a 2 k x 0 x. 0 Otdud a x k = a x k+m + x k+m x k a x k+m + x k+m x k a x k+m + 1 a 2 k x 0 x. 0 S použitím lim m x k+m = a se odvodí ( ) 1 k a a x k x 0 2 x. 0 To je hrubý odhad, skutečná konvergence je rychlejší.
12 Soustavy lineárních algebraických rovnic Soustava (I A)x = b. Předpoklad (A) < 1 (k tomu stačí A < 1 pro nějakou generovanou normu). Pak pro b, x 0 posloupnost vektorů {x k } k=0,1,2,... daná x k+1 = Ax k + b, k = 0, 1, 2,..., konverguje (po souřadnicích) k vektoru x, jenž je řešením soustavy (I A)x = b. Platí odhady (důkaz (5) je jednoduchý) x x k A k x 0 + A k b, 1 A (4) x x k A 1 A x k x k 1. (5)
13 V praxi Cx = y. Nutno od Cx = y přejít k (I A)x = b. Napíšeme C = (c ij ) jako D Ĉ, kde D = diag{c 11, c 22,..., c nn } a Ĉ = (ĉ ij ) je matice s prvky ĉ ii = 0, ĉ ij = c ij pro i j. Jsou-li všechny diagonální prvky c ii nenulové, položíme A = D 1 Ĉ, b = D 1 y. Iterační metoda x k+1 = Ax k + b se nazývá Jacobiova a lze ji zapsat i takto x k+1 = D 1 Ĉx k + D 1 y, k = 0, 1,..., x 0 R n zvolíme, postupně vypočítáváme x 1, x 2,...
14 Podmínka (D 1Ĉ) < 1 zaručuje konvergenci Jacobiovy metody pro každou pravou stranu y a při libovolné volbě počátečního vektoru x 0. Dvě jednodušší podmínky: (a) C = (c ij ) má převládající diagonálu, tj. existují kladná čísla h 1, h 2,...,h n tak, že c ii h i > k i c ik h k, i = 1,...,n. Pak Jacobiova metoda pro řešení soustavy Cx = y konverguje pro y, x 0. Poznámka: Často stačí volit h 1 = h 2 = = h n = 1.
15 (b) Má-li reálná symetrická matice C všechny prvky na hlavní diagonále kladné, konverguje Jacobiova metoda pro y, x 0, právě když C i 2D C jsou pozitivně definitní matice.
16 Jiný rozklad matice C vede na jinou metodu. Pišme C = D L U, kde D je opět diagonální část matice C, matice L (resp. U) je dolní (resp. horní) trojúhelníková matice, matice L a U mají nulové hlavní diagonály. Definujme A = (D L) 1 U, b = (D L) 1 y. Iterační metoda x k+1 = (D L) 1 Ux k + (D L) 1 y, k = 0, 1,..., se nazývá Gaussova-Seidelova metoda. Vektor x k+1 řeší soustavu (D L)x k+1 = Ux k + y. V praxi se nepočítají inverzní matice, ale dosazuje se do explicitních vztahů pro x (i) k, kde i = 1, 2,...,n a n je řád matice C.
17 Konvergence G-S metody (a) Má-li matice C převládající diagonálu, je ((D L) 1 U) < 1, tj. metoda konverguje pro každou volbu počátečního vektoru a každou pravou stranu. (b) Gaussova-Seidelova metoda konverguje pro y, x 0, je-li matice C pozitivně definitní.
18 Metoda sdružených gradientů A s.p.d. matice typu (n, n). x 0 počáteční aproximace, Ax 0 b. Položme p 0 = r 0 = b Ax 0 a počítejme pro k = 0, 1,...,n 1 a k = (r k, r k ) (Ap k, p k ), x k+1 = x k + a k p k, r k+1 = r k a k Ap k, b k = (r k+1, r k+1 ), (r k, r k ) p k+1 = r k+1 + b k p k. Není-li pro žádné k < n vektor r k nulový, je x n řešení. Nastane-li (poprvé) pro nějaké k < n, že vektor r k je nulový, je x k řešení. (Metoda přímá/iterační.)
19 Konvergence: odhad x x k A 2 ( κ(a) 1 κ(a) + 1 ) k x x 0 A, k = 0, 1, 2,..., kde κ(a) je číslo podmíněnosti definované jako podíl největšího vlastního čísla matice A k nejmenšímu vl. číslu matice A a x A = x T Ax je (energetická) norma (že jde o normu, to plyne z pozitivní definitnosti matice A).
20 Předpodmínění Vlastnosti matice C v soustavě Cx = b (snížení čísla podmíněnosti, tj. rozložení vlastních čísel) můžeme zlepšit předpodmíněním, tj. vynásobením vhodnou maticí M a řešením upravené soustavy se součinem MC nebo CM: MCx = Mb nebo CMy = b, kde My = x. Ideální volbou by bylo M = C 1, výpočet inverzní matice je však časově náročný (delší než řešení soustavy rovnic), proto volba matice M musí být kompromisem mezi kvalitou a výpočetními nároky.
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
VícePřipomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Více0 0 a 2,n. JACOBIOVA ITERAČNÍ METODA. Ax = b (D + L + U)x = b Dx = (L + U)x + b x = D 1 (L + U)x + D 1 b. (i) + T J
6 Jacobiova a Gaussova-Seidelova iterační metoda pro řešení systémů lin rovnic Kateřina Konečná/ ITERAČNÍ METODY PRO ŘEŠENÍ SYSTÉMŮ LINEÁRNÍCH ROVNIC Budeme se zabývat řešením soustavy lineárních rovnic
VíceVYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
VíceCo je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
VíceFP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
VíceAplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
VíceIterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceNumerické řešení soustav lineárních rovnic
Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení
VíceNumerické řešení soustav lineárních rovnic
Numerické řešení soustav lineárních rovnic Mirko Navara http://cmpfelkcvutcz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 04a http://mathfeldcvutcz/nemecek/nummethtml
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceDRN: Soustavy linárních rovnic numericky, norma
DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j
VíceMaticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Vícea vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceNumerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
VíceÚlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceSOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.
VícePROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
VíceSoustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
VíceSymetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
VíceUčební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
VíceAVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
VíceNumerické metody lineární algebry
Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran
VíceVĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
VíceSOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené
VíceLineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
VíceSoustavy lineárních rovnic-numerické řešení
Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22
VíceNumerické metody lineární algebry
Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet
VíceProgram SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
VíceEUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Více1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VíceLineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceOperace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Více15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
VíceSVD rozklad a pseudoinverse
SVD rozklad a pseudoinverse Odpřednesenou látku naleznete v kapitole 12 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 19.12.2016: SVD rozklad a pseudoinverse 1/21 Cíle
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Více4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
VíceArnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
VíceSoustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Více2. Schurova věta. Petr Tichý. 3. října 2012
2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci
VíceDnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Více2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro
Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:
Více2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceDnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
VíceMatice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
VíceMetoda sdružených gradientů
Metoda sdružených gradientů 1 Poznámka A-skalární součin, A-norma (energetická norma) Standardní euklidovský skalární součin vektorů n x, y = y T x = y i x i. i=1 A R n n je symetrická, pozitivně definitní,
VíceJedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
VíceDEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
VíceNumerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
VíceZákladní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceKapitola 5. SLAR - gradientní metody
23.3.2o7 Kapitola 5. SLAR - gradientní metody Metody na řešení SLAR přímé (GEM, metoda LU-rozkladu) iterační (Jacobiova m., Gauss-Seidelova m., metoda SOR) gradientní X X Motivace Uvažujme kvadratickou
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceLineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 65 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 2 3 4 5 6 7 8 Super-relaxační 9 2 / 65 2 / 65 Budeme se zabývat mi pro řešení úlohy A x = b s regulární
VíceDefinice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
VíceVšechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Více11. Skalární součin a ortogonalita p. 1/16
11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.
VíceMETRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Vícevyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
VíceSingulární rozklad. Petr Tichý. 31. října 2013
Singulární rozklad Petr Tichý 31. října 2013 1 Outline 1 Úvod a motivace 2 Zavedení singulárního rozkladu a jeho vlastnosti 3 Výpočet a náklady na výpočet singulárního rozkladu 4 Moor-Penroseova pseudoinverze
VíceLinearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
VíceKapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 73 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 2 3 4 5 6 7 8 Super-relaxační 9 2 / 73 2 / 73 Budeme se zabývat mi pro řešení úlohy A x = b s regulární
VíceDefinice : Definice :
KAPITOLA 7: Spektrální analýza operátorů a matic [PAN16-K7-1] Definice : Necht H je komplexní Hilbertův prostor. Řekneme, že operátor T B(H) je normální, jestliže T T = T T. Operátor T B(H) je normální
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Více8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Více12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
VíceBAKALÁŘSKÁ PRÁCE. Iterační metody pro řešení systémů lineárních rovnic UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Iterační metody pro řešení systémů lineárních rovnic Vedoucí bakalářské práce:
VíceKapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
VíceVlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
VíceFREDHOLMOVA ALTERNATIVA
FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro
VíceSoustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
VíceUčební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
Vícepříkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
VícePodobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,
Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace
VíceHisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
VíceVI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 38 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 2 3 4 5 6 2 / 38 2 / 38 čárkou Definition 1 Bud základ β N pevně dané číslo β 2, x bud reálné číslo s
VíceZdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
VíceCo jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceNumerické metody I. Jaro Normy vektorů a matic 1. 2 Nelineární rovnice Metoda bisekce (půlení intervalu) Iterační metody...
Poznámky k přednášce 1 Numerické metody I Jaro 2010 Tomáš Řiháček Obsah 1 Normy vektorů a matic 1 2 Nelineární rovnice 3 2.1 Metoda bisekce (půlení intervalu).............................. 3 2.2 Iterační
VíceFAKULTA STAVEBNÍ MATEMATIKA NUMERICKÉ METODY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ doc RNDr Josef Dalík, CSc MATEMATIKA NUMERICKÉ METODY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε c Josef Dalík
Více