ANALÝZA A KLASIFIKACE DAT
|
|
- Zuzana Novotná
- před 6 lety
- Počet zobrazení:
Transkript
1 ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz
2 II. STRUKTURÁLNÍ KLASIFIKACE
3 STRUKTURÁLNÍ POPIS relační struktura je vytvořena z určitých elementárních popisných částí dat, tzv. primitiv a vzájemných vztahů mezi nimi relacemi; relační struktury zpravidla vyjadřujeme pomocí grafů;
4 STRUKTURÁLNÍ POPIS
5 STRUKTURÁLNÍ POPIS
6 TYPY RELAČNÍCH STRUKTUR řetězce (uvuuyzuvw) pole (především pro reprezentaci 2D obrazů) stromy (relační struktura neobsahující cykly a paralelní cesty) obecné grafy
7 STRUKTURÁLNÍ POPIS
8 STRUKTURÁLNÍ POPIS
9 KOMBINOVANÝ STRUKTURÁLNÍ POPIS
10 REPREZENTACE KLASIFIKAČNÍ TŘÍDY výčtem relačních struktur (může být bohužel velký až nekonečný)
11 REPREZENTACE KLASIFIKAČNÍ TŘÍDY výčtem relačních struktur (může být bohužel velký až nekonečný) generátorem relačních struktur gramatika Gramatika je čtveřice G = (V n, V t, P, S), kde V n a V t jsou konečné disjunktní množiny (abecedy), přičemž prvky množiny V n nazývají neteminální pomocné symboly a prvky V t terminální symboly, S V n je tzv. axiom gramatiky nebo také počáteční symbol a P je množina substitučních pravidel tvaru, které definují způsob náhrady dílčí relační struktury novou strukturou.
12 REPREZENTACE KLASIFIKAČNÍ TŘÍDY výčtem relačních struktur (může být bohužel velký až nekonečný) generátorem relačních struktur gramatika Příklad gramatiky: G = ((A,B), (0,1), P, A), P = (A 0B1, 0B 00B, B e ). Příklad generování řetezce: A 0B1 00B1 000B1 0001
13 REPREZENTACE KLASIFIKAČNÍ TŘÍDY výčtem relačních struktur (může být bohužel velký až nekonečný) generátorem relačních struktur gramatika příjemcem relačních struktur automat různé typy automatů podle charakteru relační struktury a substitučních pravidel nejjednodušší konečný automat Konečný stavový automat A je pětice A = (X, S, s 0, S c, Ꮄ), kde X je konečná vstupní abeceda, S je množina vnitřních stavů, s 0 je počáteční stav automatu, S c je množina cílových stavů automatu a Ꮄ: X x S S je přechodová funkce.
14 REPREZENTACE KLASIFIKAČNÍ TŘÍDY výčtem relačních struktur (může být bohužel velký až nekonečný) generátorem relačních struktur gramatika příjemcem relačních struktur automat Příklad konečného stavového automatu
15 REPREZENTACE KLASIFIKAČNÍ TŘÍDY výčtem relačních struktur (může být bohužel velký až nekonečný) generátorem relačních struktur gramatika příjemcem relačních struktur automat ekvivalence gramatiky a automatu gramatika a automat jsou ekvivalentní, pokud množina relačních struktur generovaná gramatikou a množina akceptovaná automatem jsou stejné
16 STRUKTURÁLNÍ KLASIFIKACE nedeformované relační struktury ztotožnění s reprezentativními relačními strukturami; přijetí automatem
17 STRUKTURÁLNÍ KLASIFIKACE deformované relační struktury
18 STRUKTURÁLNÍ POPIS
19 STRUKTURÁLNÍ KLASIFIKACE deformované relační struktury podle vzdálenosti od etalonu jak vzdálenost určíme?
20 STRUKTURÁLNÍ KLASIFIKACE deformované relační struktury podle vzdálenosti od etalonu jak vzdálenost určíme? vzdálenost vs. metrika?
21 METRIKA - VZDÁLENOST Metrika ρ na X je funkce ρ: X X R, kde R je množina reálných čísel, taková, že: Když dále ρ 0 R: - < ρ 0 ρ(x,y) < +, x,y X ρ(x,x) = ρ 0, x X a ρ(x,y) = ρ(y,x), x,y X. (symetrie) ρ(x, y) = ρ 0 když a jen když x = y (totožnost) a ρ(x, z) ρ(x, y) + ρ(y, z), x,y,z X. ( nerovnost) Prostor X, ve kterém metrika ρ definována, nazýváme metrickým prostorem. Vzdálenost je hodnota určená podle metriky.
22 METRIKA PODOBNOSTI - PODOBNOST Metrická míra podobnosti s na X je funkce s: X X R, kde R je množina reálných čísel, taková, že: Když dále s 0 R: - < s(x,y) s 0 < +, x,y X s(x,x) = s 0, x X a s(x,y) = s(y,x), x,y X. (symetrie) s(x,y) = s 0 když a jen když x = y (totožnost) a s(x,y).s(x,y) [s(x,y) + s(y,z)].s(x,z), x,y,z X.
23 STRUKTURÁLNÍ VZDÁLENOST V případě řetězců lze deformační vlivy vyjádřit (na úrovni primitiv) trojicí tzv. elementárních deformačních transformací eliminací, substitucí a inzercí
24 VÁHOVANÁ LEVENŠTEJNOVA METRIKA
25 VÁHOVANÁ LEVENŠTEJNOVA METRIKA
26 DALŠÍ STRUKTURÁLNÍ METRIKY řetězce prostá (neváhovaná) Levenštejnova metrika Hammingova metrika stromy : :
27 KLASIFIKACE DEFORMOVANÝCH STRUKTUR výpočet vzdálenosti mezi reprezentativními strukturami (etalony) klasifikační třídy a klasifikovanou strukturou; začlenění deformačních pravidel do substitučních pravidel gramatiky (resp. automatu);
28 VYTVOŘENÍ STRUKTURÁLNÍHO ETALONU MNOŽINY PÍSMEN
29 VYTVOŘENÍ STRUKTURÁLNÍHO ETALONU MNOŽINY PÍSMEN
30 SHRNUTÍ POKUD MOŽNO CO NEJOBECNĚJI základní klasifikační úloha je zatřídit (z hlediska prostoru i času) (matematický, abstraktní) popis daného klasifikovaného objektu do odpovídající třídy/kategorie; děje se to na základě klasifikačního pravidla, pomocí kterého je definována klasifikační třída; klasifikační třída může být definována: výčtem prvků do ní patřících; vzdáleností/podobností (od) vzorů té které třídy; hranicemi, vymezujícími prostor dané třídy.
31 STRUKTURÁLNÍ KLASIFIKACE DALŠÍ PŘÍKLAD ZE ŽIVOTA
32 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
33 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
34 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
35 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ index řetězec četnost výskytu index řetězec četnost výskytu 1 ABCJEF 6 10 ABCDDEL 1 2 ABCJE 3 11 ACJE 1 3 ACJEFF 1 12 ACDJE 1 4 GBCDDEF 3 13 ABCJFF 1 5 AIDDE 2 14 ABIDDF 2 6 GBCDDE 1 15 ACDDK 1 7 ABCJ 2 16 ABCDDKF 1 8 ACJEF ABCJF 1
36 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
37 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
38 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
39 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ Minimální kostra (minimum spanning tree) graf, který spojuje všechny objekty tak, že se zde nevyskytují žádné smyčky nebo kružnice a zároveň součet délky spojnic mezi uzly (objekty) je minimální
40 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ
41 STRUKTURÁLNÍ KLASIFIKACE AKUSTICKY EVOKOVANÝCH KMENOVÝCH POTENCIÁLŮ etalonové řetězce pro jednotlivé shluky určené iteračními algoritmy jsou: Ia ABCJEF Va ACDDK Ib ABCJEF IIa ACJEF VIa ABIDDF IIb ACDDE IIIa AIDDE VIIa GBCDDEF IIIb ABCDDE IVa GCDDF
42 Příprava nových učebních materiálů oboru Matematická biologie je podporována projektem ESF č. CZ.1.07/2.2.00/ VÍCEOBOROVÁ INOVACE STUDIA MATEMATICKÉ BIOLOGIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných
Strukturální rozpoznávání
Strukturální rozpoznávání 1 Strukturální rozpoznávání obsah hierarchický strukturální popis systém strukturálního rozpoznávání teorie gramatik volba popisu výběr primitiv výběr gramatiky syntaktická analýza
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Vícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Teoretická informatika - Úkol č.1
Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Následující text je součástí učebních textů předmětu Bi0034 Analýza a klasifikace dat a je určen
11. Klasifikace V této kapitole se seznámíme s účelem, principy a jednotlivými metodami klasifikace dat, jež tvoří samostatnou rozsáhlou oblast analýzy dat. Klasifikace umožňuje určit, do které skupiny
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
1 Základní pojmy 2. 2 Měření vzdálenosti, metrický prostor 2. 3 Okolí v metrickém prostoru 3. 4 Zobecněná koule 3
I. Metrické prostory Obsah 1 Základní pojmy 2 2 Měření vzdálenosti, metrický prostor 2 3 Okolí v metrickém prostoru 3 4 Zobecněná koule 3 5 Některé význačné body a množiny metrického prostoru 4 1 Základní
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
1. přednáška 1. října Kapitola 1. Metrické prostory.
1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných
MATEMATIKA A 3 Metodický list č. 1
Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
Jan Pavĺık. FSI VUT v Brně 14.5.2010
Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
Syntaxí řízený překlad
Syntaxí řízený překlad Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Definice Překlad z jazyka L 1 do jazyka L 2 je definován množinou
Vícerozměrné statistické metody
Vícerozměrné statistické metody Vícerozměrné statistické rozdělení a testy, operace s vektory a maticemi Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Vícerozměrné statistické rozdělení
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
i=1 λ ix i,λ i T,x i M}.Množinuvektorů
Velké prostory Anička Doležalová Abstrakt. Budeme si hrát s vektorovými prostory, které mají nekonečnou dimenzi. Cílemjesijetrochuosahatazískatzákladníintuici.Ktomunámposloužíhlavně prostory posloupností.
Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška třetí Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Množiny, relace a funkce úvod Množiny, relace a funkce
Výroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Pracovní list žáka (SŠ)
Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
2 Formální jazyky a gramatiky
2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Množiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík
B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma: Analytická geometrie
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
AJ FolI. ČJ ReiR. Tv BraD. M ReiR
I.E, Reichert Radek ákladní škola Rakovského v Praze : - :0 :0 - : : - :0 :0 - : : - :0 :0 - : GunK ákladní škola Rakovského v Praze I.A (C0), gr. Brožková Blanka : - :0 :0 - : : - :0 :0 - : : - :0 :0
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.44.44 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XI. STABILITA
NÁHODNÝ VEKTOR. 4. cvičení
NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.
Konečný automat Teorie programovacích jazyků
Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Poslední aktualizace: 14. října 2011
Lexikální analýza Překladače, přednáška č. 2 Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz http://fpf.slu.cz/ vav10ui Poslední aktualizace: 14. října 2011 Symboly Co je to
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY.
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE FORMALISMY PRO SYNTAXÍ ŘÍZENÝ PŘEKLAD: PŘEKLADOVÉ A ATRIBUTOVÉ GRAMATIKY. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Formální
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
1 Vektorové prostory a podprostory
Pro nahrazení účasti v jednotlivých cvičeních (resp. pro studenty kombinované formy) je dostačující vypracování a odevzdání tučně vyznačených příkladů. 1 Vektorové prostory a podprostory Definujte vektorový
Algebra - druhý díl. Lenka Zalabová. zima Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita
Algebra - druhý díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Permutace 2 Grupa permutací 3 Více o permutacích
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová
Lineární rovnice pro učební obory
Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice
Metody analýzy dat I. Míry a metriky - pokračování
Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:
Základy tvorby výpočtového modelu
Základy tvorby výpočtového modelu Zpracoval: Jaroslav Beran Pracoviště: Technická univerzita v Liberci katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2,
Domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta
Domény Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 10 1 Typy programů v čistém Prologu je možné uspořádat podle různých pohledů. Zajímavá je charakteristika podle domén,
TGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
Teorie systémů TES 1. Úvod
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Základní vztahy v elektrických
Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
MATEMATICKÁ BIOLOGIE
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita MATEMATICKÁ BIOLOGIE Přírodovědecká fakulta Masarykova univerzita, Brno Studijní obor Matematická biologie Masarykova
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Generování sítě konečných prvků
Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
Metrické prostory a kompaktnost
Metrické prostory a kompaktnost David Hruška Abstrakt. Příspěvek shrnuje vybrané základní poznatky o metrických prostorech. Jeho závěrečná část je věnována kompaktnosti a jejím aplikacím. V reálném světě,
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
Řešení 5. série kategorie Student
Řešení 5 série kategorie Student Řešení S-I-5-1 Aby byl daný trojúhelník (ozn trojúhelník A) pravoúhlý, musí podle rozšířené Pythagorovy věty (pravidelné 9-úhelníky jsou podobné obrazce) platit, že obsah
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)