6.1 Vektorový prostor
|
|
- Denis Špringl
- před 8 lety
- Počet zobrazení:
Transkript
1 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána pravidla, jak s prvky operovat a manipulovat. Takový soubor tvoří často základ k dalšímu matematickému zkoumání a nazývá se pak prostor. Tento termín má svůj původ v geometrickém modelu, ve kterém prvky jsou tvořeny body. Budeme nyní definovat vektorový prostor. Definice 1. Množina prvků V se nazývá vektorový (lineární) prostor, jestliže 1) každým dvěma prvkům u V a v V je přiřazen prvek u + v V, který se nazývá součet prvků u a v (V je uzavřená vzhledem ke sčítání), 2) každému prvku u V a číslu λ R je přiřazen prvek λu V, který se nazývá násobek (vnější součin) prvku u a čísla λ (V je uzavřená vzhledem kvnějšímusoučinu), 3) tyto operace mají následující vlastnosti 1 u + v = v + u pro každé u, v V (komutativní zákon); 2 (u + v)+w = u +(v + w) prokaždéu, v, w V (asociativní zákon); 3 existuje právě jeden prvek o V takový, že u + o = u pro každé u V. Prvek o se nazývá nulový prvek; 4 pro každý prvek u V existuje ve V prvek označený u takový, že u +( u) =o; 5 1 u = u pro každé u V; 6 α(βu) =(αβ)u pro každý prvek u V a α, β R; 7 (α + β)u = αu + βu pro každý prvek u V a α, β R; 8 α(u + v) =αu + αv pro každé dva prvky u, v V a α R, kde = je relace ekvivalence (rovnost, býti stejný jako ). Prvky vektorového prostoru V se nazývají vektory. Poznámka 1. V této definici se neříká, jak se definují operace sčítání vektorů a násobení vektoru reálným číslem. Je třeba, aby byly splněny uvedené vlastnosti těchto operací. 3
2 Ukázka 1. Příklady vektorových prostorů: 1. Nejjednodušším důležitým příkladem vektorového prostoru je množina všech uspořádaných n-tic reálných čísel x =(x 1,...,x n ). Sčítání a násobení reálným číslem je v tomto prostoru definováno takto: Je-li x =(x 1,...,x n ), y =(y 1,...,y n ), α R, pakx + y = z, kdez =(x 1 + y 1,...,x n + y n )a αx =(αx 1,...,αx n ). Položme o =(0,...,0) a x =( x 1,..., x n ), pak snadno ověříme, že je splněno všech osm axiomů vektorového prostoru. Rovnost = pak chápeme jako totožnost, tj. (x 1,...,x n )=(y 1,...,y n ), právě když x 1 = y 1,...,x n = y n. Tento prostor budeme značit R n. Speciálně pro n = 3 uspořádané trojice reálných čísel (x, y, z) tvoří vektorový prostor R 3. Součet dvou vektorů a 1 =(x 1,y 1,z 1 )aa 2 =(x 2,y 2,z 2 )se definuje a 1 + a 2 =(x 1 + x 2,y 1 + y 2,z 1 + z 2 ) a násobek reálným číslem se definuje λa 1 =(λx 1,λy 1,λz 1 ). 2. Orientovanou úsečkou je úsečka, jejíž jeden krajní bod je definován jako počáteční a druhý jako koncový. Dvě úsečky definujeme souhlasně orientované, jestliže jsou rovnoběžné (tj. mají stejný směr), mají stejnou délku a jejich koncové body leží ve stejné polorovině, jejíž hraniční přímkou je spojnice jejich počátečních bodů. Množina orientovaných úseček v rovině tvoří vektorový prostor. Vektor v rovině je množina souhlasně orientovaných úseček. Znázorňuje se vhodně umístěnou orientovanou úsečkou. Obr. 1: Několik souhlasně orientovaných úseček v rovině. Dva vektory u a v se rovnají, mohou-li být reprezentovány stejnou orientovanou úsečkou. Součtem dvou vektorů u a v je vektor w reprezentovaný orientovanou úsečkou získanou takto: Libovolně vybereme orientovanou úsečku reprezentující vektor u a orientovanou úsečku reprezentující vektor v zvolíme tak, aby její počáteční bod splýval s koncovým bodem úsečky reprezentující u. Orientovaná úsečka spojující počáteční bod úsečky reprezentující u akoncovýbod úsečky reprezentující v reprezentuje součet vektorů w = u + v. 4
3 w = u + v v u Obr. 2: Sčítání vektorů. Součinem vektoru u a čísla λ je vektor λu reprezentovaný orientovanou úsečkou téhož směru jako úsečka reprezentující u, jejíž délka je λ násobkem délky této úsečky a jejíž orientace je pro λ>0 shodná a pro λ<0opačná. Λ2,5u λ 2 u, λ 2 < 0 u λ 1 u, λ 1 > 0 Obr. 3: Násobení vektoru číslem. 3. Množina všech polynomů stupně nejvýše n tvoří vektorový prostor. Součet dvou polynomů je polynom stupně nejvýše n P (x) =a n x n + a n 1 x n a 1 x + a 0, Q(x) =b n x n + b n 1 x n b 1 x + b 0 P (x)+q(x) =(a n + b n )x n +(a n 1 + b n 1 )x n 1 + +(a 1 + b 1 )x +(a 0 + b 0 ) a násobek reálným číslem λp (x) =λa n x n + λa n 1 x n λa 1 x + λa 0 je opět polynom stupně nejvýše n. Množina všech polynomů stupně n netvoří vektorový prostor, protože součtem dvou polynomů stupně n může být i polynom nižšího stupně, např. součtem polynomů třetího stupně P (x) = x 3 + x a Q(x) = x 3 + x je polynom prvního stupně P (x)+ Q(x) = 2x. 5
4 6.2 Lineární závislost a nezávislost vektorů Definice 2. Nechť V je vektorový prostor a n N. Nechťu 1, u 2,...,u n V a λ 1,λ 2,...,λ n R. Vektor n λ i u i = λ 1 u 1 + λ 2 u λ n u n (6.1) i=1 se nazývá lineární kombinace vektorů u 1,...,u n skoeficientyλ 1,...,λ n.jsouli všechna čísla λ 1,...,λ n rovna nule, pak se lineární kombinace (6.1) nazývá triviální, je-li aspoň jedno z čísel λ 1,...,λ n různé od nuly, nazývá se lineární kombinace (6.1) netriviální. Definice 3. Vektory u 1, u 2,...,u n V se nazývají lineárně závislé, jestliže existuje jejich netriviální lineární kombinace, která je rovna nulovému vektoru, tj. existují λ 1...,λ n,kde n i=1 λ i 0 (tj. aspoň jeden koeficient λ i, i =1,...,n, je různý od nuly), tak že n λ i u i = o. i=1 Vektory, které nejsou lineárně závislé, se nazývají lineárně nezávislé, tj. rovnost n λ i u i = o i=1 je splněna pouze pro λ 1 = λ 2 =... = λ n = 0, existuje tedy pouze triviální lineární kombinace rovna nulovému vektoru. Věta 1. Vektory u 1, u 2,...,u n V (n >1) jsou lineárně závislé, právě když aspoň jeden z nich je lineární kombinací ostatních. Speciálně: Dva vektory jsou lineárně závislé, je-li jeden násobkem druhého. Ukázka 2. Rozhodněte, zda následující vektory z R 2 jsou lineárně závislé nebo nezávislé: 1. u =(1, 2), v =(2, 4). Na první pohled je vidět, že 2u = v, vektory u a v jsou lineárně závislé. 2. u =(1, 0), v =(1, 1). Zjistíme, pro jaké λ 1,λ 2 je lineární kombinace λ 1 u + λ 2 v rovna nulovému vektoru, tedy λ 1 (1, 0) + λ 2 (1, 1) = (λ 1, 0) + (λ 2,λ 2 )=(λ 1 + λ 2,λ 2 )=(0, 0). Porovnáním jednotlivých složek dostaneme soustavu rovnic λ 1 + λ 2 =0, λ 2 =0, 6
5 to znamená, že λ 1 = λ 2 =0,avektoryu a v jsou lineárně nezávislé. (Můžeme také zkoumat, zda je u násobkem v, tj.zdaexistujeλ tak, aby u = λv, (1, 0) = λ(1, 1). Je zřejmé, že takové λ neexistuje, a vektory u a v jsou tedy lineárně nezávislé.) 3. u =(1, 2, 0), v =(1, 1, 1), w =(1, 1, 2). Zjistíme, pro jaké λ 1,λ 2,λ 3 je lineární kombinace λ 1 u+λ 2 v+λ 3 w rovna o,tj. λ 1 (1, 2, 0)+λ 2 (1, 1, 1)+λ 3 (1, 1, 2) = (λ 1 +λ 2 +λ 3, 2λ 1 +λ 2 +λ 3, λ 2 +2λ 3 )= =(0, 0, 0). Porovnáním jednotlivých složek dostaneme soustavu rovnic λ 1 + λ 2 + λ 3 =0, 2λ 1 + λ 2 + λ 3 =0, λ 2 +2λ 3 =0, jejímž řešením je λ 1 = λ 2 = λ 3 = 0, vektory u, v a w jsou lineárně nezávislé. 4. u =(1, 2, 0), v =(1, 1, 1), w =(0, 1, 1). Zjistíme, pro jaké λ 1,λ 2,λ 3 je lineární kombinace λ 1 u + λ 2 v + λ 3 w rovna o, tj. λ 1 (1, 2, 0)+λ 2 (1, 1, 1)+λ 3 (0, 1, 1) = (λ 1 +λ 2, 2λ 1 +λ 2 +λ 3, λ 2 +λ 3 )= =(0, 0, 0). Porovnáním jednotlivých složek dostaneme soustavu rovnic λ 1 + λ 2 =0, 2λ 1 + λ 2 + λ 3 =0, λ 2 + λ 3 =0, odkud po úpravě dostaneme λ 1 = λ 2 a λ 3 = λ 2. Řešením soustavy jsou tedy všechny uspořádané trojice [ p, p, p], p R, tj. soustava má i netriviální řešení. Vektory u, v a w jsou lineárně závislé. 6.3 Dimenze prostoru Definice 4. Vektorový prostor V se nazývá n-rozměrný neboli dimenze n, n N, existuje-li v něm n lineárně nezávislých vektorů a každých n +1vektorů je lineárně závislých, značíme dim V = n. Označení 1. Vektorový prostor V dimenze n budeme značit V n. Definice 5. Každá množina n lineárně nezávislých vektorů prostoru V n se nazývá báze prostoru V n. Věta 2. Každý vektor u V n lze jednoznačně vyjádřit jako lineární kombinaci vektorů báze V n. Koeficienty této lineární kombinace se nazývají souřadnice vektoru v této bázi. 7
6 Ukázka R 2 : množina všech uspořádaných dvojic reálných čísel je prostor dimenze 2. Báze R 2 jsou např. a) soustava vektorů e 1 =(1, 0), e 2 =(0, 1). b) soustava vektorů e 1 =(1, 1), e 2 =(3, 2). Vektor u, který má souřadnice (3, 5) v bázi e 1, e 2,tzn. u =3e 1 +5e 2 =(3, 5) má v bázi e 1, e 2 souřadnice (9, 2), protože u =9e 1 +( 2)e 2 =(3, 5). 2. R n : množina všech uspořádaných n-tic reálných čísel je prostor dimenze n, má např. bázi e 1,...,e n,kdevektore i má všechny souřadnice kromě i-té souřadnice rovny nule a i-tá souřadnice je rovna jedné. Např.: (0, 5, 4, 3) = 0 (1, 0, 0, 0) + 5 (0, 1, 0, 0) + 4 (0, 0, 1, 0) 3 (0, 0, 0, 1) 3. P n (x): prostor všech polynomů stupně nejvýše n je prostor dimenze n +1, má např. bázi e 1 =1,e 2 = x, e 3 = x 2,... e n = x n 1, e n+1 = x n.každý polynom stupně nejvýše n lze vyjádřit jako lineární kombinaci této báze se souřadnicemi a 0,a 1,...,a n,tedyp (x) =a n x n + a n 1 x n a 1 x + a Podprostory vektorového prostoru Definice 6. Řekneme, že W je podprostor vektorového prostoru V, je-liw V a množina W tvoří vektorový prostor vzhledem k operacím sčítání vektorů a násobení vektorů čísly, které byly definovány v prostoru V. Ukázka Nulový vektor o V tvoří tzv. nulový podprostor prostoru V. Nulovýpodprostor a celý prostor V se nazývají nevlastní podprostory prostoru V. 2. Nechť V 3 je trojrozměrný prostor množina orientovaných úseček v trojrozměrném euklidovském prostoru. Je-li S libovolná rovina ve V 3 procházející počátkem souřadného systému, pak množina V 2 všech orientovaných úseček, ležících v rovině S, je podprostor vektorového prostoru V Množina všech polynomů stupně nejvýše 2 tvoří podprostor prostoru všech polynomů stupně nejvýše n, n 2. Poznámka 2. Protože libovolný podprostor W prostoru V je sám o sobě vektorový prostor, mají smysl pojmy báze W a dimenze W. Protože ve W nemůže existovat více lineárně nezávislých vektorů než ve V, platí, že dim W dim V; báze W má tedy nejvýše tolik vektorů jako báze V. 8
7 6.5 Vektorové prostory se skalárním součinem Definice 7. Říkáme, že ve vektorovém prostoru V je definován skalární součin, jestliže každé dvojici vektorů u, v V je přiřazeno reálné číslo (u, v) takové, že platí 1 (u, v) =(v, u) prokaždéu, v V; 2 (αu, v) =α(u, v) prokaždéu, v V a α R; 3 (u + v, w) =(u, w)+(v, w) prokaždéu, v, w V; 4 (u, u) 0prokaždéu V; (u, u) =0 u = o. Vektorový prostor V, ve kterém je definován skalární součin, se nazývá vektorový prostor se skalárním součinem. Poznámka 3. Nechť R 3 je množina uspořádaných trojic reálných čísel, pak skalární součin dvou vektorů u =(x 1,y 1,z 1 )av =(x 2,y 2,z 2 ) můžeme definovat: (u, v) =u v = x 1 x 2 + y 1 y 2 + z 1 z 2 Skalární součin lze ve výše uvedených případech definovat i jiným způsobem, v každém případě ale musí být podmínky 1 4 z definice 7 splněny. Lze např. definovat (u, v) =x 1 x 2 +2y 1 y 2 +3z 1 z 2 (ověřte platnost podmínek 1 4 ). Úmluva 1. Dále bude V, resp.v n, znamenat vektorový prostor se skalárním součinem. V R n (tj. množiné uspořádaných n-tic reálných čísel) budeme skalární součin dvou vektorů u =(u 1,u 2,...,u n )av =(v 1,v 2,...,v n ) definovat: (u, v) =u 1 v 1 + u 2 v u n v n 6.6 Norma vektoru a úhel dvou vektorů Definice 8. Nechť u V. Číslo (u, u) senazývánorma (délka) vektoru u a značí se u. Definice 9. Úhel (odchylka) dvou nenulových vektorů u V a v V je úhel ϕ, pro který platí (u, v) cos ϕ =, u v 0 ϕ<π. (6.2) Věta 3. Pro každé u V a v V platí Cauchyova Buňakovského nerovnost (u, v) u v (6.3) 9
8 Minkowského (trojúhelníková) nerovnost u + v u + v (6.4) Ukázka 5. Nechť u =(1, 2) a v =(2, 1) jsou vektory z R 2,pak u = (u, u) = =5, v = 5, (u, v) = =4, cos ϕ = 4 5. Cauchyova Buňakovského nerovnost (u, v) = 4 5 = u v. Minkowského nerovnost u + v = (3, 3) = = u + v. Definice 10. Vektory u V a v V se nazývají ortogonální (kolmé), platí-li (u, v) =0. Věta 4. Nechť vektory u V, v V jsou ortogonální, pak platí u + v 2 = u 2 + v 2. (6.5) Poznámka 4. Vztahy (6.3) (6.5) plynou z vlastností skalárního součinu a ortogonality vektorů, (6.5) je vlastně Pythagorova věta. Definice 11. Vzdálenost dvou vektorů u V a v V je číslo d(u, v) = u v. Poznámka 5. Z nerovnosti (6.4) plyne trojúhelníková nerovnost pro vzdálenost tří vektorů u, v, w V d(u, w) d(u, v)+d(v, w). (6.6) Definice 12. Podmnožina M V se nazývá ortogonální, je-li(u, v) =0pro každé u, v M, u v, tj. každé dva vektory z množiny M jsou ortogonální. Je-li navíc u = 1 pro každý vektor u M, nazývásem ortonormální. Věta 5. Nechť M je ortogonální podmnožina v prostoru V taková, která neobsahuje nulový vektor. Pak M je množina lineárně nezávislých vektorů z V. Důsledek V každém prostoru V n (konečné dimenze) existuje ortogonální, a tedy i ortonormální, báze. 2. Vektory e 1, e 2,...,e n tvoří ortonormální bázi V n, jestliže platí (e i, e k )= { 1, pro i = k, 0, pro i k. (6.7) 10
9 Příklad 1. Najděte v R 2 nějakou ortogonální a ortonormální bázi. Řešení: Bázi R 2 tvoří dva lineárně nezávislé vektory. Zvolme např. u =(1, 1) a najděme k němu ortogonální vektor v =(v 1,v 2 ). Aby byly vektory u a v ortogonální, musí platit pro jejich skalární součin (u, v) =0,atedyv 1 + v 2 =0.Této rovnici vyhovuje nekonečně mnoho dvojic čísel (v 1,v 2 ), zvolíme-li např. v 1 =1, je v 2 = 1 av =(1, 1). Ortogonální bázi v R 2 tvoří vektory u =(1, 1), v =(1, 1). Ortonormální bázi pak tvoří takové násobky vektorů u a v, které mají normu rovnu 1, a to jsou zřejmě vektory u u, v v,tedy ( ) 1 2, 1 2, ( 1 2, 1 ). 2 Poznámka 6. Báze prostoru R n z příkladu 3 2., str. 8, je ortonormální. 6.7 Ortogonalita vektoru k podprostoru Definice 13. Nechť V m je podprostor prostoru V n,tedym n. Říkáme, že vektor u V n je ortogonální (kolmý) k prostoru V m, je-li ortogonální ke každému vektoru x V m,značímeu V m. Je-li vektor u ortogonální k vektorům e 1, e 2,...,e m, je ortogonální i ke každému vektoru, který je jejich lineární kombinací. Skutečně z rovnic (u, e i )=0, i =1,...,m, plyne, že pro libovolná λ 1,...,λ m R je (u,λ 1 e λ m e m )=λ 1 (u, e 1 )+ + λ m (u, e m )=0. Proto k tomu, aby byl vektor kolmý k prostoru stačí, aby byl vektor kolmý k vektorům nějaké jeho báze. 11
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
2. kapitola: Euklidovské prostory
2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru
Necht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Lineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...
[1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.
VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem
Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Matematika 2 pro PEF PaE
Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT
Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ]
1. část 1. (u 1, u 2, u, u 4 ) je kladná báze orientovaného vektorového prostoru V 4. Rozhodněte, zda vektory (u, 2u 1 + u 4, u 4 u, u 2 ) tvoří kladnou, resp. zápornou bázi V 4. 0 2 0 0 0 0 0 1 0 2 0
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Základy matematiky pro FEK
Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
11. Skalární součin a ortogonalita p. 1/16
11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
M - Příprava na 1. čtvrtletku pro třídu 4ODK
M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Lingebraické kapitolky - Analytická geometrie
Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V
Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008
Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní