Frekvenční analýzy signálů a přístrojová technika
|
|
- Radomír Moravec
- před 9 lety
- Počet zobrazení:
Transkript
1 Číslicové měřicí sysémy Fevečí lýzy sigálů přísoová echi Úvod: Alýz sigálů e záldem echicé digosiy eboť ždý měřeý sigál se podobue lýze. Alýz sigálů e velmi ozsáhlý obo s učiými specilimi po ůzá odvěví. Uveďme sučý přehled možých vi lýzy sigálů. lýz deemiisicých (scioáích) sigálů cheisiy sigálů v čsové oblsi zpcováí sigálů ve fevečí oblsi, fevečí lýz číslicová filce zpcováí sigálů z příomosi šumu zpcováí sigálů z mechicých sysémů, souběhová filce(ode cig), sychoí filce (ime ehceme), měřeí hodoceí fevečích cheisi, oheečí fuce modulce demodulce sigálů, mpliudová, fevečí fázová cheisi, Hilbeov sfomce, lýz obály zpcováí sochsicých sigálů, z hledis ozložeí mpliud ozděleí pvděpodobosí, čsové oelčí fuce, speálí speálí výoové husoy lýz escioáích sigálů (lýz ychle se měících sigálů, spoeá čsověfevečí lýz), modeí áso, eý se vyvíel zemé po. 985 lieáí Sho ime Fouie sfom (SF) vele sfomce spoié diséí by filů osí elieáí Coheovy řídy fií osí ém, Záldy speálí lýzy s.
2 Číslicové měřicí sysémy ém, Záldy speálí lýzy s. Sigál převedeá fyziálí veliči ( pěí, l.) Záldí úde v čsová oblsi Sředí hodo (ceálí mome. řádu) Efeiví hodo ( mome. řádu) Rozpyl, sředí vdicá odchyl ( ceálí mome. řádu) Čiiel výyvu (ces fco) Koelčí (ovičí) fuce Pvděpodobos ozložeí Fevečí obls Záldem po zoumáí ve fevečí bylo zišěí J.B.Fouie, že éoliv peiodicá fuce () může bý slože z hmoicých fucí o fevecích, eé sou ásobem záldí fevece dé ecipoou hodoou peiody sigálu. ( ) ( ) () si cos b de () () d b d si, cos () e možo é ozeps pomocí smosých osiových ebo siových fucí. () ( ) () ( ) b b F F F b b F F F,, si,, cos ϕ ϕ ϕ ϕ Reálý hmoicý sigál lze vyádři součem dvou ompleě sdužeých epoeciálích fucí: ( ) ( ) ( ) ( ) ( ) ϕ ϕ ϕ A A A ep ep cos Rozld hmoic. sigálu dvoici ouících veoů Souvislos mezi ocí veou homo. sigálem
3 Číslicové měřicí sysémy Reálý hmoicý sigál e souče dvou ouících veoů (fázoů) o polovičí mpliudě eálého sigálu A/ z ichž ede oue ldým duhý zápoým směem. V souču se ob pomíí do eálé osy. o voří záld po pochopeí ldých zápoých fevecí. P lze ps ( Fouieov řd v ompleím vu): c ep, c ep Vzáemá souvislos eálých ompleích defiic: () () d, po, ±, ±, ± 3... c ( b ), c ( b ) c c b ( c c ), Fouieovy řdy - učeé po peiodicé sigály - speum obshue pouze izolové složy s fevecemi, eé sou ásoby záldí (hmoicé) fevece /. Fouieov sfomce obecého sigálu Fouieov sfomce - ozld obecého (peiodicého i epeiodicého) sigálu hmoicé složy - speum e spoiá fuce fevece ( ) F{ ( ) } ( ) ep( ) () F { ( ) } ( ) ep( ) Fouieov sfomce vzoového sigálu y d d ( ) δ ( Δ) ( ) δ ( Δ) Vzoovcí sigál y() e souči () peiodicé fuce obshuící Dicovy pulsy. Jde o posloupos Dicových pulsů posuuých o peiodu vzoováí, fs/. Y ( ), Δ Δ f s s Δ Speum vzoového sigálu Y() e peiodicé s peiodou s (f s ). ém, Záldy speálí lýzy s.3
4 Číslicové měřicí sysémy ém, Záldy speálí lýzy s.4 Diséí Fouieov sfomce lgoimy FF Z předpoldu, že () e peiodicá fuce s peiodou * řd vzoů () e výsledé speum () diséí s odsupem fevečích slože f/ peiodicé s peiodou f s f vz. Záldí vzhy po přímou ivezí sfomci: () e vlsě výsledem oelce vsupích vzoů se záldími osiovými siovými fucemi ( ob. se edá o cos fuce s ulovou imgiáí čási () DF si můžeme předsvi o sousvu pásmových popusí se shodou šířou pásm dou f /. () [] [] [] [] [] 3 3 e e e e Poz.: omlizčí oeficie v defiici DF / e v ěeých publicích uvádě obáceě: [] { } { } { } [] { } IF F,
5 Číslicové měřicí sysémy ém, Záldy speálí lýzy s.5 Předsv DF Je uo mí zřeeli, že speum e ompleí, I dyž čso, zemé v lýze áhodých pocesů eí fáze ompleího spe po lýzu zímvá. [] [], e speum e ompleí, { } { } e im e ϕ s oem f [ ] Δ f f s Obázy uzuí hmoicý sigál posupě posuuý. Mgiud spe e ve všech přípdech seá, měí se e eálá, imgiáí čás edy i fáze ompleího spe. Veo ompleího spe se oáčí po užici. Poz.: Hodoy mgiudy [] býví obvyle vyádřey v efeivích hodoách míso v mpliudách o odmoci výoového spe, (á ). Zvlášě poud používáme půměováí spee.
6 Číslicové měřicí sysémy Vzh mezi DF oeficiey Fouieovy řdy { }, b im{ }, e Plye z ozldu eálého hmoicého sigálu dvě ompleě sdužeé epoeciálí fuce viz. s. Záldí vzhy čsová obls / fevečí obls f s Δf Δ Δ f f f MA f MA.5 Δ f s Δf Kompleí eálá DF, edosá dvousá spe DF e defiová obecě po všechy fevece odpovídící ideům od ž do. Fevece od / do odpovídí zápoým fevecím peiodicého spe s peiodou f vz. o spe se zýví dvousá (double sided ebo full). Obecě může bý vsupí (čsový) sigál eálý i ompleí.. Koeficiey DF mí po eálé vzoové sigály ěeé důležié vlsosi. Po eálé sigály plí sudá symeie ve eálých hodoách e{ } e{ }, lichá v imgiáích im{ } im{ }. Koeficiey v ozshu <f, f s > sou ompleě sdužeé s oeficiey v ozshu <, f >. Po ompleí sigály (př. obiy) o symeie eplí e řeb použív plá dvousá spe. V echicé pi e věšiou vsupí sigál eálý. Vzhledem výše uvedeé symeii e možo po eálé sigály počí zv. edosá (sigle sided) spe. Jedosá spe přiřzuí celou eegii sigálu do ldých fevecí -/. yo fevece odpovídí eálým fevecím z ozshu - yquisov fevece. Hodoy ěcho spee sou dvoásobé opoi hodoám dvousého spe. omo picipu pcue věši FF lyzáoů, oscilosopů s FF. př. MALAB počíá vždy úplá dvousá spe dle defiice FF. LbWidos/CVI má fuce po dvousá spe př. FF, ReFF. i po edosá spe ve složce Mesueme o AuoPoeSpecum, CossPoe Speum. Je vždy řeb vědě ý duh spe de. ém, Záldy speálí lýzy s.6
7 Číslicové měřicí sysémy Shuí: Peiodicý sigál e dá opováím Gusov pulzu. Speum Gusov pulzu e seá fuce o původí čsová fuce. Pozoě pohléděe obázy..peiodicý sigál má diséí speum s oem fevece dým převáceou dobou peiody..iegál s mezemi -, dává po epeiodicý pulz spoié speum. 3.Diséí sigál má peiodicé speum ( op bodu ). 4.DF e iž z memicé defiice peiodicá v oigiálech i obzech. ém, Záldy speálí lýzy s.7
8 Číslicové měřicí sysémy ém, Záldy speálí lýzy s.8 Rychlá Fouieov sfomce, FF Výpoče lsicé Fouieov sfomce e zřemý z ásleduícího výpoču: Klsicá Fouieov sfomce pořebue ompleích ásobeí seý poče ompleích sčíáí. FF lgoimus eduue poče ásobeí (/)log (). FF lgoimus pcue s počem pvů v mociě, m. DF opece FF opece Účios : : : : Pví lgoimus po výpoče FF byl vyvoře Cooleyem ooeyem e zývá lgoimem decimováí v čse eboli lgoimem DI. Picip FF e zlože. symeii. peiodiciě [] [ ] [ ] ( ) ( ) ( ) ( ) ( ) Souče dvou /-bodových DF, liché sudé čley
9 Číslicové měřicí sysémy ( ) ( ) ( ) ( ) ( ),,... Pořebueme (/) / opecí. Posupě dělíme původí -bodovou čyři (/4)- bodové dále ž se doseme záldí dvoici hodo popisuících -bodovou DF. Dvoubodová DF, zv. moýle Posup výpoču DI po 8 e zázoě ásleduícím obázu. Výpoče sesává ze ří supňů. DF /4, DF /. Hoímu blou DF/4 přísluší vzoy se sudým pořdím, dolímu blou DF/4 přísluší vzoy s lichým pořdím. Pořdí vzoů e dáo zv. biovou ivezí,. oočí se biy odpovídící biáě pořdí vzou. Algoimus FF decimováí v čse po 8-mi bodovou FF. Mimo ohoo záldího lgoimu DI eisue dlších ěoli lgoimů. ezáměší e decimováí ve feveci DIF. ém, Záldy speálí lýzy s.9
10 Číslicové měřicí sysémy Fiií Fouieov sfomce, Oé Fiií Fouieov sfomce ese sebou dvě limice: oečý čs elizce oečý poče fevecí f,,, /- s oem Δ f / Diséí Fouieov sfomce e defiová z předpoldu peiodicé fuce v oigiálech, v obzech. Měříme-li () po dobu e sigál vždy hdlová fucí edoového oé g( ) po. Mimo mezí e g ( ). V čs. oblsi () (). g() zmeá, že (f) (f)* G(f) speum e přeměěo ovolucí se speem edoového oé. eo ev e eodsielý, vzhledem měřicímu oéu, eé eisue vždy. ( f ) G( f ) ( f ) G( f ) ( f ) ϕ dϕ G ( f ) g ( ) / ((cos( / si( f f f ) ) e f d si( f )) d si c ( s ) de s f Chyb mgiudy způsobeá ovolucí změěého spe evyšší e po feveci sigálu, eá leží přesě v poloviě diséích fevecí může bý ž 37 %, což e mohem více, ež všechy chyby digilizčího řeězce. Poo e řeb uo chybu přesě zá vědě, i síži!!! Jedoové oéo e implicií emůže bý odsěo. Speum oé e fuce sic(). Obdélíovým oem lze měři přesě pouze spe sigálů, eá obshuí e složy o fevecích ásobů /. Posí lloy mí mlý odsup od hlvího llou v přípdě, že speálí fevece eleží diséí feveci f, e speum zčě ozžeo víc mgiud spe po hlví feveci e zčě zesle. evěší poles ehdy leží li fevece sigálu přesě poloviě mezi diséími fevecemi. o e ve věšiě přípdů evýhodé, poo bylo vymyšleo moho iých oée. Speum ěcho oée má šiší hlví složu věší odsup posích lloů od hlvího. o má výhodu v meší chybě mgiudy, duhé sě vš dochází ozžeí hlvího pásm. Věši oée sou posuué osiusovou s ůzě defiovými osmi. Všech mí pozvolý přechod v ievlu -/ /. ém, Záldy speálí lýzy s.
11 Číslicové měřicí sysémy Kosuce Higov oé Oo Hig e defiováo vzocem H ( ) cos po < H ( ) po <, (3.7) Čsový půběh Higov o Speum Higov o Oé můžeme použí v čsové oblsi, dy sigál ásobíme fucí oé (epeiodici sigálu síže) poé podobíme speálí lýze. Je vš řeb dbá o, by se esížil celová efeiví hodo sigálu ím i velios speálích slože. ěeé pogmy př. MALAB vyžduí při použií oé oeci mgiudy spe. Můžeme e é použí ve fevečí oblsi dy povedeme dodečou ovoluci spe sigálu přeměěého ovolucí se speem edoového oé se speem použiého oé. Speum oée e vzhledem e svým defiicím ěoli posuuých impulsů výpoče eí složiý. př. speum Higov oé, H( f ) G( f ).5G f.5 G f ( poz.: osy v defiicích liší, zde,.5,.5, hoře.5,.5,.5) se sládá se ří pulzů. Kovoluce zmeá, že při použií Higov oé se příslušé speálí čáře připoče polovi předchozí polovi ásledé. Opě musíme omlizov. Poováí vlsosí čsových oe včeě šířy pásm šumu e uvede dále Poováí vlsosí čsových oe ém, Záldy speálí lýzy s.
12 Číslicové měřicí sysémy ečsěi používá oé Obdélíové oéo < < G() <, > G() s si c( s) s f e vesi poles e po s, edy po f si e log log log dB / Higovo oéo H () G() H A A cos, A, A.5 () s G() s A δ ( s ) * H Poles v f/ e.4db ( f ) G( f ).5G f.5g f Flop oéo: H 4 () G() A A cos () s G() s * A ( s ) H δ 4 4 Poles v f/ e.db ém, Záldy speálí lýzy s.
13 Číslicové měřicí sysémy Účie obdélíového oé po sigál ležící diséí feveci f / hoí ob. v poloviě mezi diséími fevecemi f (/)/ odpovídá /, 3/,. ()/ spodí ob.s polesy si( ), po,,. edy.636,. d. ( ) ( ) Přehledě fuce oée po obdélíové Higovo oéo po sigál ehož fevece leží diséí feveci spe e mimo diséí feveci. ém, Záldy speálí lýzy s.3
14 Číslicové měřicí sysémy ém, Záldy speálí lýzy s.4 Oboveí logového sigálu z eho vzoů ( i-imgig fil) m.. mimálí fevece ve speu v f s vzoovcí fevece [] posloupos vzoů []..eosuový logový sigál Pořebueme ze spe vzoového sigálu odsi všech vyšší posí pásm (speum e peiodicé s f v ) ech pouze záldí speum olem počáu do v /. Volíme ideálí logový fil ypu dolí popus s přeosovou fucí H () ( ) > Δ v v H (Poz. Ampliud H e číselě ovo Δ, po memicou spávos) ( ) ( ) ( ) ( ) ( ) ( ) h H D D Δ de e speum eosuového sigálu z původího d () ( ) ( ) ( ) c d e d e H h v v v Δ / si / / si / / () [] ( ) [] ( ) Δ Δ v c h si Oboveý sigál () e supepozicí posuuých fucí sic ásobeých hodomi vzoů; ím sou vyplěy mezey mezi vzoy e obove logový sigál. Po eosuci poo používáme ideálí logovou dolí popus s pásmem, v.
15 Číslicové měřicí sysémy Číslicové zpcováí sigálů Alogový sigál vzoováí, vováí číslicový sigál fs fv Δ Sho-Koeliův eoém f s fm, složy f>f m musí bý meší vovcí úoveň převodíu. Ailisig, přeyí, msováí sává při edodžeí vzoovcího eoému Msováí: Při edodžeí vzoovcího eoému sou suečé fevece z peiodicého spe msováy do oblsi fevecí f. Msováí může bý i přes ěoli () pásem f s. viz. dlší ob. Suečá fevece se vypoče podle vzhu f su f s ± f ms,, př. Su. fevece ozčeá - e f su f s - f ms, Su. fevece ozčeá e f su f s f ms, ém, Záldy speálí lýzy s.5
16 Číslicové měřicí sysémy Sučý přehled přísoové echiy po lýzu sigálů. Dále e uvede sučý přehled fucí dymicého sigálího lyzáou. Jsou uvedey přísoe fimy Hele- Pcd. ( d esou dispozici v češiě) Bloové schém Digiálího sigálového lyzáou hoí obáze deilěší schém spodí obáze. Picip blou digiálí filce. Po filci dolofevečím filem e povede decimce. Posupě e vybíáo pořebé pásmo po lýzu. Picip zoomu v dymicém sigálím lyzáou. ém, Záldy speálí lýzy s.6
17 Číslicové měřicí sysémy Příchozí diséí sigál A-A, eý má bý zvěše olem f c,e miovám s ompleí epoeciálou o feveci f c dé sředem oblsi zvěšeí ( zoomu ). ím e sředí fevece oblsi f c posuu ule B-B. Reálé ompleí složy sigálů sou p digiálě filováy C-C převzoováy D-D. ím e síže eich fevece á zvýšeo ozlišeí v dém pásmu. ém, Záldy speálí lýzy s.7
18 Číslicové měřicí sysémy Dlší sudií meiály: [] M.Sedláče, Zpcováí sigálů v měřící echice, sip ČVU FEL [] Uhlíř, J, Sov, P.: číslicové zpcováí sigálů, ČVU, Ph, 995 [3] Alog Device, Hele Pcd, oes, uoils, echicl icles ec. ém, Záldy speálí lýzy s.8
TECHNICKÁ UNIVERZITA V LIBERCI
ECHICKÁ UIVERZIA V LIBERCI Faula mechaoiy, ifomaiy a mezioboových sudií echicá diagosia Zálady fevečí aalýzy sigálů Učebí e Iva Jasch Libeec Maeiál vzil v ámci poeu ESF (CZ..7/../7.47) Reflee požadavů
=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy:
3 předáš INTEGRAE RAIONÁLNÍ LOMENÉ FUNKE Důležiou supiu fucí, eré můžeme (spoň eoreicy) iegrov v možiě elemeárích fucí, voří rcioálí lomeé fuce Kždou rcioálí lomeou fuci vru P( ) f ( ) =, de P() Q() jsou
Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský
Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového
asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :
Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:
Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze
Řešení soustav lineárních rovnic
Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí
Křivočarý pohyb bodu.
Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,
Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou
Souhrn vzorců z finanční matematiky
ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý
P Poznámka: Odpřednášená témata obarvuji žlutě. Přednášky jsou každý pátek, cvičení tedy vždy předcházejí přednášky.
ýde ozám: Odpředášeá ém obrvuji žluě ředášy jsou ždý páe, cvičeí edy vždy předcházejí předášy ) ojmy: Difereciálí rovice, obyčejá dif rovice, řád rovice, řešeí rovice ( eprázdé možiě, iervlu), iegrálí
8.2.6 Geometrická posloupnost
8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího
ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE
ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí
Přehled modelů viskoelastických těles a materiálů
Přehled modelů vskoelsckých ěles merálů Klscké reologcké modely Klscké reologcké modely vycházejí z předsvy, že chováí ěles lze hrd chováím sysému složeého z pruž písů, edy z ookeových ewoových ěles. ookeovo
Mechanismy s konstantním převodem
Mechanismy s konsanním přeodem Obsah přednášky : eičina - přeod mechanismu, aié soukoí, ozubené soukoí, předohoé a paneoé soukoí, kadkosoje a aiáoy. Doba sudia : asi hodina Cí přednášky : seznámi sudeny
Křivky 2D. Klasifikace křivek (1) Klasifikace křivek (2) Navazování a spojitost křivek. Přednáška 8
Předáš 8 Křv D Žár, J., Beeš, B., Felel, P. Moderí počíčová grf. Compuer Press, Bro, 998. ISBN 8-76-49-9. Cee, P. Počíčová grf. Srp Uverz Prdubce, 999. ISBN 8-794-9-4. Klsfce řve ( Podle prosoru D D Podle
Ortogonalita ORTOGONALITA, KOEFICIENTY FOURIEROVY ŘADY, GIBBSŮV JEV X31EO2
OROGONALIA, KOEFICIENY FOURIEROVY ŘADY, GIBBSŮV JEV Orogoni X3EO Orogonání znmená omý. Orogoni e široý poem, používá se v různých oorech, nás ude zím memi. V memice zřemě nesnáze předsviený příd e omos
PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online
Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05
ě ž í ě ř ší é í í ý ě í ř ý Č íč ář ší ě ší ž ů ě á é é í č ý ů ž á íé ěř ó í í á ě á í é í ž ě š ž ů é ý ž ší ř Ú č Č Š ší ří é ří í á č é é á í ů ž
ě á í é á ý í č ú ž é í ě é ž ř í á í ž ůž ý í ý ě ů č éí í ý ů í í ý é ř ý Ž í á ž ž ř ě ěř áž ř á í á ý é í á ů ř ř ž ě ý ž é čá á í š ě ší ů ě ň é č č čí í í ě é Ž íá ý žší í ě é é é í ě é á é ěř ů
Analýza světla odraženého tenkým kmitajícím zrcadleěm s použitím MATLABu
Alýz svěl odžeého eký kijící zcdleě s požií MATLAB A.Mikš J.Novák ked fzik Fkl svebí ČVUT v Pze Absk Páce se zbývá eoeicko lýzo vibcí ekého oviého zcdl khového půřez vlive defocí kovéhoo zcdl svělo odžeé
č é á ý á ý í é č á í ůř ž č á í á á é é í Č á ý čí á í á í ý ž á Ý ě š ů á ý č é í ř í í é á í ž ě ě ý í ů č é ů ě č í č á ě Žá í á ý á ý ú ěš ý ý á
č é á ý á ý í é č á í ůř ž č á í á á é é í Č á ý čí á í á í ý ž á Ý ě š ů á ý č é í ř í í é á í ž ě ě ý í ů č é ů ě č í č á ě Žá í á ý á ý ú ěš ý ý á š á á ř ý á á í š í ř ý í á í í ý í č é ř í ěčí áš
á í ý ť é ó Í č é ě é Í Í ú Ž Í é í á á ý á ý ě ť é ť á í č čť š é ť Ě í í č á á á á ě í ě ř ě Í š ů ě ř ů ú í ý Í ý é á í č á á ž é ř ř š š ý ý ú áš
ý ť é ó Í č é ě é Í Í ú Ž Í é ý ý ě ť é ť č čť š é ť Ě č ě ě ě Í š ů ě ů ú ý Í ý é č ž é š š ý ý ú š ě Í č Í Í ú ě Á Í ť Í ě Í š š ň ú č š Ů Í č ď š éí é Č ě ů ý ó ěž š ě ť Í ž ě Č Í ý é Í ÁÉ ň ů Ů ě ú
POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
ě ě í ý ě á ý ů é á í ů á č š í ř í ó ě é á ž ý í ě ýč ář ř š ě ý ář ý á é á í š ě é í ř áž á á ě í ě á í í í á ý ří ě ý ě ší é á á í í ř ř á á í Í áž
Á á í ý á í č é é á í í čí í ý á ů í é á í ř ů ý č é é ř í á é é ě ě í ý ě í é ý á í í í ý á í ž í č ý ý á ů ů řá é é á ý á ý ě í ý ě á ř á ř é š í ží í ě é ě é á á í á á ů ě ší ů á í í ů ě í é é ý š š
é ž ú ú ú ú ý řěč ř ú úč ú š ďá ě č ó ř á úč ě š á žíš řě ě á ó Žíš ě é č é ě ší ěžší ú ě ě ší áč é ž á ý ř š í čě ší č ú ú á é ě é š á ú á á á í ř í
ář ě ě ý ť Í š ý ýť á í í ň á í č í ý ý ý ý č á č áč í á ť ě ě é á í í ý ř á ší ě ě ší í á ý á ě ší á í č ě é šš č í á í ší ř ě ář Í í ň čá í á ř í é á í ěř š ář í é á á é é ů š á í é ě é ý á ý ú á é á
í ě ý ě ý á ů ě ší á ž á ý á ž ý č ě ě á ý ě ě ě á ž é é ě ř á ů š ý ů ě é í í í č í í ě ř ý é ě ě ě é ě á í á č ý í ří ž ě ý á í č í í í ří í ý á í ž
Ě ĚŠŤ É ří á ý í á ý í Í á í ší ý ň í á ý í čí á ě í ěšé á ě ž ě ť á á ú í é ý ý á ž á ý í á í í š ě í í ří á ž ě ší č é šíř í í ě í í é í ďá á í č ě í á í ý á í ř í á á ž ď á á é í ř á ý í č ý ů č š í
Á í ú ý í á ů ř ť ů ž á Ú á ů á á ž í á íž á á á í ěž á ú í á í ě í í é á í í í ý í ří ě é í ž í ě ář í í á í á í ě í á ří á í á í í é é í á ří žá é í ě ý Í ří í á íí Ří í é á ě é í é í í áš í ú á í á
é é Ž í á í ů ěž ší á ě ý ý ů ý š é é á ě á é á é á ě ó á Žá é é í é á ý é í á í ě í ů š ř ší ý čá č í š í š ž í á í á ř í š ě í ž ř é ří á í á í č ý
ří ý ě ší ř é ěř á íč é í ě é á ří š í ě í á ň í š čá á ý ě ý ří íč é ě í é í ř ší í í ť ž í í č é í č í ěř í ž í í ý ě í ý á í ž ů é í í š é ří ří á ě í ř áž ě š é ří č é č í á é á ží ř ř ě é í í ý ř
4. Analytická geometrie v prostoru
. alcá geomee v oso V aalcé geome so geomecé obe chaaeová omocí číselých údaů. Vlasos geomecých obeů so sdová v edom e í osoů: ooměý eledovsý oso, o. E (oso), dvooměý eledovsý oso, o. E (ova), edooměý
Ý áš á í é ť š í
ří ď ě ě é ř ý ří ý é úř á ú ě ě ř ář í ší ž í ř í í Í ř ý áš ě ů é í ď Í ř ý řá óš í áš í ý í ř š í á á ř ří ž ě ž ď š ě í í í á žá ý á Í ÍŽ Š Á Ó ř č í Í é ž é ž á í á á Ž ř ě ž ú á á č ě ě í ěž á í
Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti
Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad
á ó ě ší ú ě ů á č á ó í á ů ž ř í í ší ú í ž é í á á ě á é í č úč ý á í é ž ý ě č ý ě á á ý á ý é ě š š ě í á ů ě é é ž ů ř í ý á í ř í ě á í á ž ú ů
Ó í á ý č é ó á ý á ý í ý í ř í ší á ú í ě ř ů é ř áš ě é ó í ř á í í ó ě á ě ě á ě á ě ší ž ř íž á á é í ů á í š ř áž ě ě č Č á ě ý ší á ý ě ě čí ř ší ž á ří č é ž á í í ě é ó í č á é č á ř ý ř š éý é
ř ě š ý č ů č č ý č ý š č ý ý ž é ž ě š č ř ý ž ž č ě é ý ž ě š ř ů č ř ř ž ř č ř č ě č ě ě ř ž ž ó ň ý é ě ý č š ř ě šš č ř ý úř é č č ř ýš č ř č ě č
š č š ž ř Č ě ý ě ř ě é úč č é ú ý ě ý ů ů č š ř ů Č ě ě š č š ě č ý ě š ž č ř č é ř ě é ě úč ě ý ě č é é č ž ž ě š ě ž ý ě ř ě é ů ž ě š ř š ě š ř ě ě č é č ž ř š ě ý č ú ú ě š ž ý ř š ý ř ČČ Č ý č ý
á í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý
á ě ý ďě ř ě á č ý ů ě ž ě ý ě ý ý ě á ř ě ý š é é á á á ě ů á ě á á š é ó ě é á č ý ďě ě á á ý ý á Í š ě á é Í ř řě ž á ý č é ě á ě ě ůé ý č ů é ž á á ř ž á ň ý á á ě ř ý á ů š č á á ž á é č é ó ě á ů
2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
š É ú Á Á ž ó ú Ť Á
ú Ť ó š Á ú Á ý ó Ů Á Ř ÁÁ š Ť ú Ť š É ú Á Á ž ó ú Ť Á ž ž ý Ť Í Í ž š ž Č š Č Í ó Í ú ú ž š ž š Č ú É ú ú ž ý ú š ž ý ž ž ý š ó ž š ý ž š ý ý ů ú ů ý ů ž ó š ž ž ú ž ž ž ž š š ž Á ů ž š Ž Č š Č ú ů ú
8.2.7 Vzorce pro geometrickou posloupnost
7 Vzoce po geometicou poloupot Předpoldy: 0, 0 Př : Po geometicou poloupot pltí ; q Uči čle, iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup je ložitější
íž ě íž á ť ř ť í ž ě ě á í ň á í á í ů ů íž ď ř ť šíř é ě ě ě ř í ší íř ý ý ů éříš éš ěž ě á í á í ř é šíř ý ěží č ě š é í í ř í á í á í ž ž é ř é í
Í Ý ČÁ Ú ý ší é č ý ůž í š é á é í ř š ř ů ě í í áří ě ž í á é á ě é í ž ě á á ď ří ě č é í í í í ž ě ý á ý ů č í ý ř ě ž í í í í š í í č í ěž ž ž ř é í á ř í í ě í ž í č ě ží ř ž é ř ě š ě ž á í žší é
á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í
á Č ť ó ď ý ř ý ř ě Í č ť á š á ý é ů á ť č Í Í é ď ž é ž ť é éř ů š š ý Í é á É ě é ř Í é ř ě á ó ě š ě ý á ř á ě é Í Ž ý ť ó ř ý Í ů ů ů š Í ý é ý ý ů é ů š é ů ó Žá Í á Íř ě šř ó ř ě é ě é Ě š č á č
OBJEKTOVÁ ALGEBRA. Zdeněk Pezlar. Ústav Informatiky, Provozně-ekonomická fakulta MZLU, Brno, ČR. Abstrakt
OBEKTOVÁ ALGEBRA Zdeěk Pezlar Úsav Iformaiky, Provozě-ekoomická fakula MZLU, Bro, ČR Absrak V objekovém modelu da defiujeme objekové schéma (řídu) jako čveřici skládající se ze jméa řídy, aribuů, domé
č íč ý š íč š í é ř í ě ř é ě í č š í ž í č ě á ří ž é ě é á ě é í č é š ř í é í ě í ý á í ů á í ž ř š ž é ř é ě í á í ý š íč é á í ě ě í ž čá ý é žá
ÍČ Ý č ář ý ý č ě í á í ž č ř á ý ří á č é ž í é í š í š ší ý á í ý ý č ě ř č á é ří íč č é é ář í á í ů ší é é í š ý č ě á í ý ů ří ů í ě á č ř á í á í á í á č é ě í íč č á ž ě č é č ě ě č í á í č ě š
ěží č ú ú á í í í é ř ě í Ž ž ě á ý ť á í é ž á é š ý ý č ý á č š á ří ú ě ž ěť á Ž ž ž ř ž ř é č ě ť á ří č í á ě ž ú ú í é ě ě ž ř ě š ě ž ť ú é ž é
ř čí ř í ě ž ú š í ý ť í ž ý š č áš ů ó ří á ž ž ěš í á ě ř ď í á ý š ý ě áž š ě í ř ř ščí áš ě ř ž ř š ě š ě š ž š č č ý č É ř ě ě ě á í ě ř ú ý á í ý ě ú ď í é ř í č ý ďí ě ší á š ř ýš ě ý á ž í Žá č
Ž ř ě Ž ů š ř š ě ř š ů ř ř ž ř ě ě ř ě É ř š ř ď Í ě ř ž ř ř ř ě š ž ř ě ě ě ž ž ř ž š ž ů ú ř ď ě É ě š ř ú ř ř ě ž ď š Í ď š ř ú ě ň ě ď ž ě ř ř ó
ř Ž É Í ř ř ž ěž ú ď ěž ú É ú ú ě Ú š ž ú ď ž ě ď ě ř ž ě ú ř ě š ž ě ř š ž ě ů š ě ř ě ě ě ř ě ř ě ř š ž ň ě š ž Í š ť ž ř š Ž ř ě Ž ů š ř š ě ř š ů ř ř ž ř ě ě ř ě É ř š ř ď Í ě ř ž ř ř ř ě š ž ř ě ě
β. Potom dopadající výkon bude
Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa
6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:
6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece
é řě ú čí í řě ú ž ě á á í š ýž ž ž á ě č ž ří é ž í á ý ď á číš š í á ě ě řě í ó í ž é ž í ó ř í ě ší ž é ž é é é řě á ý á ě č ž á á řěč í á á Ž ě ž
ž í í á ý š á ž ž ý ř ě ů ž Ží ř ě Ž ří í í ž Í ž é ž Řá á č Ú é úř ší úř í ů ý ž ó á ě í é é š ří Ž í ů ě č Ž ří ří í í é á ě á í í ú ú žď č ž Řá á č ŘÁ Á É ý č ý ž íú ě á úř í á ď í ř ř ří č ž ě ž á
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim
KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x
Ž ž Ž é š í Ť ší í Ďí ě í ř í é č ý í í ž Í ř ší ř ě é í é é é šě Ž é í Í č š čí ě čí í ŤíŽ šč é š é č í í ř š š ý š í ší čí říž ř í ž í ě Ž í š é ůčí
Ž ž Ž é š í Ť ší í Ďí ě í ř í é č ý í í ž Í ř ší ř ě é í é é é šě Ž é í Í č š čí ě čí í ŤíŽ šč é š é č í í ř š š ý š í ší čí říž ř í ž í ě Ž í š é ůčí ů é é Ť í ě ž ý ý Ď ěř ž ě ř í ý ě Íř ž ý ý č ó š
Á Ž č Ž ó ě č ý ž Ž ó ě Č Í ý Á Ž Ž č Ž ó é č ý Ž Ž Ó ě č ý Ž ř ě é š ě é ý č Ž Í ř Í č é ó é é Č é Ž č ž š č č ř ě ě ý ř ž ž é š ě ž ÍŽ é Ž Ž ý Ž ř Ž
ř ě ý ř é č ň ř ú ě é Š ý ž č Í Ž ř Ž Ž ý ě ě ě ě ř ň ř ř ú ě é š Í ř Í Í ů Í č Í Ž ř ř ý ř ě ř ó ř é ň ř ú ě é š č ý ý ř é ř ě é ý ň ý ř Ú ě é ř š ě é é č é ř č Ž é Í ó č ř ů č é é Á Ž č Ž ó ě č ý ž Ž
ů í ž áš ř ř č ě ř š ě ž á š ě ž š é ž á ř ě ž á ý řá í á ř ř í ř ř é ř ý Í Ž ý á ý ý ů ě ě ší ří á ý é ů ě í ě á ž é š ž á ý é ř ůž ž š á á ě ě ť íč
Ž Ý Á á é áš á á ě ž á í ř í ý ý ř ů čá č í ý ý ý áš ř ý š ě č í ě šíčá č í ř ř ť č é ů áš ě á í í Ž á ř Č é á í ř Č á ž ů ě á á ý í č í é é č é í ř ž ý ě áš é á í á á ě á í á čí í á č éě í č ř í š é í
Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2011/2012
řijíí ouš do ujíío iseséo sudi čielsí fi po. supeň Š čielsí fi po SŠ po deiý o 0/0 Koouč o poloěu 0 oosi se ůže oáče ole odooé os. N oouči je iuo eé láo. N oi lá isí áží o oosi. ou á oouč úloou los, uí-li
- 2 -
VYSOKÉ UČENÍ TECHNICKÉ V B R NĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽ E NÝ RSTV Í Ú STAV STROJÍRE NSKÉ TE C HNOLOG IE M M A FA CULTY OF ECHA NICA L ENGINEERING INSTITUTE OF NUFA CTURING TECHNOLOGY
5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:
5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích
Nové symboly pro čísla
Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly
é ě ý ý ř é ř ř é é é ě ř ý é ě ě š ř ů ř ě ě é ý é ý ě Ž ěš ó šř ý ý ý ě é ě é ž é ř ž Ť ě é ř é ě Ž ěš é Žď ěš ž ů é Ž ěš ž é é ě ř ě é ě ěř é ů ý ř
ř é ě Ž ěš ě ý ý ý Ž šé Ž ě Č Č ý ě Č Č ú ř é ý Ú ž ěř ý ě ý š ý ř ěř ý ě š Á ý ř ěř ý ě ý ů š ž ý ý ě ý ž ý ý ě ý ý ú ř é ě Ž ěš Ž ěš Ž Ž é ě ý ý ř é ř ř é é é ě ř ý é ě ě š ř ů ř ě ě é ý é ý ě Ž ěš ó
Základní elementární funkce.
6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou
0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1
) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze
Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava
Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,
Í ž í í Š ž á ř ž ú ú áš á ě Ž ž ě ř ř Íá Š í ž Š í ž á ž š ž á íš ž á č ý á ř á ž Š ě ž š í í é ú á ž á á ý íš é á ě ě Ž ž ť é á í í á á ý ž é á ě ř
Š Í ž é á ě ž ěž í éč í ě ě ě ě ě í ě ý ě é ě í á á ě ě č š ě í ě ž ř ě é ť ž č ě ší á í é ž ř á í Š í á í ž é íč ě ší ě č ý ž ě í á é í ý ž říč ě ž í ý ř ší á ě š é ý ó č é á ž š ě é Š ě š š é č ě ž ž
č š š ř ř Í ů č Ě Á Š ŠÁ Ř Ď É Í Ě Í Í čí ž ě č é č ě ý Ž ř ě č ý ě ý ý ř ě š ý ě ť ý é é ě ě é ě é ř é ř Ť ě š ě ž ě é ě é é ů ě é ř ú ý ý é ěř ý ý š ý ý ž é é š ý š ě ý ř ř ř ě š ý ě ý ý ř ě é Ž é é
4. LOCK-IN ZESILOVAČE
4. LOCK-IN ZESILOVAČE Záladní princip Fázově cilivý deeor (PSD) s řízeným směrňovačem - vlasnosi Fázově cilivý deeor (PSD) s číslicovým zpracováním signál - vlasnosi Vysoofrevenční Loc-in zesilovač X38SMP
č é í ř í á ý ř á ň š ší í ů á á í á í í é ář š í í ž á ž é á ž ú é ě í ě ě á ě éš ě é ž á ě é á é ě š á í ř í á í č ěř í ě á ř é á š ž é ů á š š á ž
é ří ší ý é í ě á é č ěž š ě ěž ž č ě é í é ý á ž á é ř ý é ě š í í í é á í ě í í ž ě č é ř é ě í ř í í ž á í í é ý í á í č á á ř á ř ší á á ř á í š é ě á í í á í ý ě ší ř ý á í ě é ý á ů ó ří ý ř í ě
Měření na D/A a A/D převodnících
Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte
í é é á š ě í ý ž ď í é žřá čí ř é č í čí á ř á čí é á á á ž ď ř ú ě á í ý ž á ř š í ž ě á š ř ý ř á č í ř á ď ě á á í ě í á ďí é ď ř í č ř ž ř á é č
ť ď ě ý Ž ý Ž ě ř šá ú é ě é žč ě á ó ž á ě č ď ě ž ří šě í á Ž é á ě č é é ě ě é ě ě ž žě ě řě ě ý á í ě ď ě á ž é á ě ý č ě áú ě á ýž ě ý ú í á ž č ř á ěž ěžš ž ó ě é á ř ě ř ě ž ě á ý í ý š ší á ě ší
ř í ň í čí ý Ž ó ř í š č ří í é ě ť ř í í ý ě í Ž í č ó í č é č í í ě í í ě šíší í ř í á Ž í á ó í í á á ó č ě é é Ž é ř í č ó č ů čí č í Ž é é Ž í ý
í ř ó í í ó á ý á á á í č ů íř ó ůžč ůž ů á ž á í é ř í ú í č í ř á á č ň á í ó í ý š ý ú ů í ý ě é Ž ě í ří á é ž ý í á ý č ý ě á ě ý íú Ž Í ý í í ě éý č ě á ě é Ž é ě éíú š ň í í ě í á š í á í č ž ě
č ěř č í č ě ý č é ň á í ě ý š ů á í é Í í ří ě í ě é č é ě í ň ř ě ží ý é ě í ř á í é é č ě ž š ý ří é ř ř í á á ž í á í é á í ý á č é ž í č ř ář í í
Ú Č é í ř ý š ší čá í é ů čí í ší ů é ě í ú ř í á ě čí ž í č ý č ý ř ň á í í á í ž ž á á á ó é í ů ž ě ší á ů á é č é é á á ž ě ň ě í í ě í í á é ě ší á í š ě ší í ě č é ě í ř ý ý ů ř í á í ě ší í é ý
č é é ř á é é č é é á č á ý á é á é Čá é é ř é é Č ý ú Č Č áč ý ď ď Č ř ř Č á ý ř ů ž á ů á á č á ž ó ý ř č ý ý ů á á áč Úč á ž á áč áš ř ů á á áč ů é
á é á á é á é é ý ý ř á úč úč č ř á ž é á ů ř é ý Š ý á é ř é ý é ř Ž á á ý ý ř ý á Č á áš á č Č ř ž ý ž Š é š éč ň á é é ř á ó á é é š é á é š éč ý ř ů á é á é é ř é é ř á é ř ř é ř á á é š é ů ř é ř
FOURIEROVA A LAPLACEOVA TRANSFORMACE,
FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody
íú É í í í ú Ž ě í é ý í š í í í é ě Ž é ě ší é í é ě í Í í í ů í í í í ě í í í í ě ě ě ě ý ě ý ě ý é ě í Ž ý é é Ž Ž ý Ž é š í ý Í ó ž ý ě ý ú ěž ý Í
Í íú É í í í ú Ž ě í é ý í š í í í é ě Ž é ě ší é í é ě í Í í í ů í í í í ě í í í í ě ě ě ě ý ě ý ě ý é ě í Ž ý é é Ž Ž ý Ž é š í ý Í ó ž ý ě ý ú ěž ý Í í ě ý í ě é ěž é Ž í íž Žší ý ě Ž ý ě ě í ší é í
3. Měřicí převodníky, číslicově-analogové převodníky. 4. Analogově-číslicové převodníky
3. Měřicí převodníky, číslicově-analogové převodníky převodníky sřední hodnoy převodníky efekivní hodnoy, analogové násobičky, číslicově-analogové převodníky 4. Analogově-číslicové převodníky pincip kvanování
á í í á í í ž ší ě á ě é á ě á ř í Í ě á ě Č á í á é é é á í ý č ý ě ší ý ž š é č é é ě š ě í í í í á í ý ř č é ř í čá í ř ě é í í ě é ř ě é ěč é ě í
č É Í É Í Á Í Ž Ě Í Á Í čá í í í ě á í í ě é čá í č ý á é í á ř ů ž ěž ě ý í ý á ý íž á ř í ě á ý ž í ě á í říš ě ř ě č í í í ě á ř ě ů á é ř í ř í ě í á ě íč ý á ý š á á ěží ů Č á í č é á í ů č í ř ž
ž é í ě é ř ě í é í é ě ž í é é ě ř í é čí é č ř Š ě ý ě ý íč ý é ř ě í ě í í ě íř é í ě é íř ě í č ě é ř ý í é í ří ěž š ě é ř č é ř ý ě ů é ě ó í í
í ó ď é ď Í ú ů í ří ť ě é é č é ř é ř č š ří š é ě ěří š ě é í ž ů ý é é í č ší ž ě í ší Í ý é č é ě é í ů Č ď í ř ů ě č ý č í Í ř ý ž ř ůž ž í ě ý ů ý ě é ě ě ó ě ě ř ž Í šíě ř ň é í ě ý é ř š ří ý ř
á ř ě í ěž é ší á áš ě ů ů ř í ě á č é íčíž í á á ů č ý č š š ář ž é č é áš ě í ě é á ě ý éříš á čá í š í ž é é á é é ž š ě á ě ší ž ř š ě á ř áší č é
Ó Á Á ó í ě í á é é á ží á é á í í ř á á á č š á á á í č í í ň í ř ší á á í ří á í é á á ě á á á ř ě á í š ě ý í á ří é š ýš ý á é ý ě é ř éž ž ě í í í š ž íš í ř ě ě á í í ž á úč č ě ý á ó ěř ě ů č ů
ě ž ý ř á í í č é í í ší ř í í ě í ř á ý ě á ě é í é é č ěž é á í á č é é á č ň á í í ř á í ů í á áž ě ě č é ý ý ž úč ů ý á é í ž č á é č á á í ě ž š
í ř á í í í í í ě é ě í ý ř č é ž š ž íč ý ř í ó ž á ň í í í ží ě ý í ý á ž é ř č ý á Ú í á í šší č ý ě í é č ýš í í á í čí á č é č ř ě ší ů í š ý ů č ší í Č ří ě í ř í ť ěš č ž ě ě č é č ó í č á č ř í
š É š š É ě ě ž ť ť ť ť ť ť é Ě Ž ťé Í ť ě ě ř ěě ě ě ě ě ě
Í č š ě Í é ěž é é č é ě č ř é é ý č ý ž ě č ř ý é ú é č ě ý ě ř ř ý é ý é č é é Ž š ý ý ě ř é ě ě ý ě š é ř ě é é ě š ž ů ší š ěř é ě ř ě ž š š É š š É ě ě ž ť ť ť ť ť ť é Ě Ž ťé Í ť ě ě ř ěě ě ě ě ě
SP2 01 Charakteristické funkce
SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:
í í á í ě ě ší ě í ě š á á š í á í í á ě á í Ž í ší á í á í ď ň á á Ó í í Ť á ě š ž í Ť ě í á í Ť Ž ě š š Ž š ě í á ě í á š ě Ú ě Ť ší í á á á á ďí ě
Ě Ě í á Ť í ě ň ž í á í ž á í ě ě ší ž á Í í í Ť í á í Ťí á ší í Í í í á í ž í ě á ě í í ě Ť á á á í á Ť ší á í ě ž ě Ťá áť í Í á í Ť á í á ěž ž á á í á í ě í Ť Ž á Ó á í ě í í í ě á í ě ší í í í ě í í
é éž á ó ý ě č ě í ž é é š é í é š ě ě í é í ú úž ú é ž ě ž ď ý ý řě ě ě á š á š ř ý ďá ě ě ě ú Ž ý ť ě ž řěčí ě ž í šě š ž ř ř ěř ďá ó ř š Žá ě í ě ý
Í Í Ý í í í ě ý á é í á ř č é á ý á ý ň ó š á č ě é ř ř čí é ú č ž é š á é á í á ř č Č á č ě š ě á í ď š á ř é í é ě á í čá ď Í ěč é é ěř é ě ší ě á í é žď á á š ř čí é š ě ž ýš á í é ě á ď ř ě í é á ú
í á ě ý ů ý č ář í š éž á ý š á ě č á ý ý č ě ř ří é ě ší ř í ě í á ž ý č á á é é á í á é ář é č é é ě á š á ř í ě ů á á á ž é ě á ž ý ě ě ů ý š é ř š
Á Ď é á á ř š ú í á í í ě í é ě š žá é ě ý ý ů ý é í é í ě é á í é ý é áš é š ž í á ý ž á é á řá ý ý ž é í é ě ší š í ě í á á ý í á í ů ž éú é í í á á í ř á í ř á ý ú í á í ú í á á í á ý č í á á á ě ě
á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř
ě í Íč í é íž ě Č é á ť ž ší ť ř č í á í ž ř ě é ř ž á í ů é ř ě á č é é ě ř Íž á š ěí Í ší Í š Ě ří é é ž í č ý ů á í ě é ř í č ě š Ž ží á í í é í ě š č í í í í á í é é á Í ó í ž ě á íš é é č éé ť á ó
ěř ý ž ů ž ý ž ý ý ě ž č ě ů ř é č ý ú ř é ř ý č ě ÍŽ é č ř é ě ě é é ů č ý ř ě ě č é ý ů ů ř é ě ř Í ůě č é Ž ř ě ž é č ř é ě é é ě ý é ě ř ž é é č ě
ř č č é ě č č úč ý ů ě č ěř ý ž ů ů ě ž ě é ý ž ý ý č ž č ě ů ř ů é ř é č č ž č č úč ý č Ž ř ř ěř ý ž ů ž ý ž ý ý ě ž č ě ů ř é č ý ú ř é ř ý č ě ÍŽ é č ř é ě ě é é ů č ý ř ě ě č é ý ů ů ř é ě ř Í ůě č
ří ěř čí Úč í ú í Ť í á č ě í ě č íř č č Úč í ú í Ť í á ř áš Ří á č íř č č č í č č č š Š š á ý ěčí č č á á ý ěčí č č Š ý áš š č ř ů č íč č č č š č íč
ě ý úř č í úř íř č č Č á Ú ě á úř č ě č íř č č Á Í Í É Ú Í Í ŘÍ Í Í Ú Í Á Í Ř ÁŠ ě č íř č č Žá á í í í ě í á í í í í í í Š Ú č á čí ú í íř á á í ú í č ý í úř ě é úř č í úř ří š ý í á č ú í á á í í řá í
ě é Í ě Í ěí Í š š Š ž ý é ě ě Ú Ú ž ž š Í ě š ň Í Í š ěů ú ě ů ý ě
ž Ť Í ě é Í ě Í ěí Í š š Š ž ý é ě ě Ú Ú ž ž š Í ě š ň Í Í š ěů ú ě ů ý ě š é ý é ž Č Ž ú ý Č ý Í Í ý Č ý Č ú š Š š ě é š Ž ý é Ž š ú ě ý ě ě é š ě š é é éš é ů š ů Í ů Ž ě š ě ě Ž š é é Ž š Žď š ý Ž ý
í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě
ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č
čá é č é é í á č é ď čí ě é í š ě šíč č í Č á á ě í ů í ě ý ý š Í á ů č ě é á í š ě í í č ě í č ě á í á ě ří é é á ž í ý ě č ý á é ý é í č á ě ě ě ší
č é ě é ú í ř á ý á Ž éž ý á ě š é ří é č éž í ý ÍŽ é ř ší é é č ě ě éú é á á ý ů ň ž á í á í ů č í č ě ý š ý é í á é ř á í í í š ý á ý ů ž í Ž ú á é č ě á é ř ř í š ý č é é ý ž é č ě ě é é í š ě í í ř
á á á š á á á š é č éš á Š šš ý č ě á š á Š šš ý č žá ů š ž á Š šš ý č žá š é Ť š ý č ý Š ě ě Ť ý ě š ě á á á é ě ě š é ě Š ě á á ě č ě ý ěž éš á á ě
áš ý á š ň ý á á á é á č š š é Í á é á á Ť č č č č á š á š Í ě á Ť ó ě á á š Í č č á Ž ě č č ě č č č č ě ě é Č áš ě ů š á ň š á ě á á č é á č ý ů Š Š š ě č ě Š žá Š á á á š á á á š é č éš á Š šš ý č ě
p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:
ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá
úč í ář é í áí č ě ě á é č á ě í ů ň é é í áž á á ž í š ě ů ší ý á á Í á š ř í ě ě ěží ě ě í ý ů ě í á ž ý é ě ží ů á é é ř é Č á í á í í é ů ě ý ý é
í ý č é í á í ř ší ý á ě á ě á í í á í á í ě ý ř š í íž ě á á í ě í í š ý ý é Í ý ý č é á í í í š ě ě í ý ě ý ů ž ů ří ě íš á ý ž á í ěšéá ý á é č ě č ž ý ů í á í é ě á ý é š ě í é ř ř ě í á í ř á č é
ý á ů ř á á í č ý á í ž é í ř á á č á á á í á š á í é š á ý š ě ě ň ý ěř á í ě ž á ý é čí ž í í Á č ý ě ý ů č ý á á í ř í á á ý á á é ž ě č é á ě á í
Í Á Ě É Í ů ě í ř á í č á ý ě ě á á ň č é č é ž ř á í í í čí í í í č á ř á ě ů ě ž č ý á á ř í í ý í ě ž ý á í ý á ř ž á ž ů ě ší ž í č ý í ů á í á š ří á í č ř í í ů á í á á ě ž ří í í ří á š á á é ž
Ó í íž á á ř í ž ý á í á č ě ší ž ů é á é ó é í ý ý ů í ří ě á í á í í šší í á ž ýš éú í á č ě ší á ř ý ý á ů ě é š á ž ř á á č ě ší é é ž ó ů ř é ý á
Ó í íž á á ř í ž ý á í á č ě ší ž ů é á é ó é í ý ý ů í ří ě á í á í í šší í á ž ýš éú í á č ě ší á ř ý ý á ů ě é š á ž ř á á č ě ší é é ž ó ů ř é ý á ě é é ú í é í č ý á é ů ří ě é ř ž Ů ž ó ší č ář é
ž Í ú č č ě ó ě ě é ó ů Ú č Č č ý š ú ě ó š ý ě é ó ý ý ř ž ó č ť Č č ř č é ý é ě ř é é č é ý č é č č ř ě ě ř ě ž č ý ó ž ý č ý š ě é ř ý š š č é č č é ě č Í ó ó ý č ó ý Ž č č é ů ů ř ě ě š ř ě é ř ě
2. Matice a determinanty
Mtce deterty Defce : Odélíové sche (řádů) (sloupců) čísel zvee tce typu : [ ] M Je-l luvíe o čtvercové tc Prvy ( ) tvoří hlví dgoálu Zčíe ovyle : [ ] O - všechy prvy ulové - ulová tce I - edotová tce (
íž áží ě í á Ř á á Ž č é é ě í š ě čí á řá í ý ý řá í ě í ř ě č ž á í Ž í ě é ř á ě š í é ě Žá í š ě í č ě ř ů í Ž ý í ů ř á á ý ý á í ý á í ř í ě í é
á ř í ě ž Í ú Íýář č ř ů ě ší ž í á é á ž ž á ú ůž č ú č š ě ě ž á ř í š ě í ž ř č ú í í ú ě č ú š ž č ž ř ě ží ž é š í á Č ý á í ří á ý é í ě é á ě é é á í é ý č é é ó ý ř ř ů é éě í ý í ří é é é í ů
ĚŽ ÉČ Ý Č Í Ě Ě Ě Ž ň ž Ž Ž Ž Ž Ž ó Ž Ž Ž ú Í š Í É Č Č Á ŘÍ É Ě Ť Ý Ď Ž Ě Ž Č Ž Ž š š Č Ž Č Č Č Č ú ó Č É Ž Č Ž Č š Č š ú ú š š Á Ě Ó ú ú Ě Ž Ž ú ž ó Í Č Í É š Á ó Í Č Č ú Í ž š ž Č Ž Č ó Č ž Š Š Í Í
Obr Lineární diskrétní systém
Mtetcé odel Uvžue leárí dsrétí ssté (or.. ). Or.. Leárí dsrétí ssté Steě u spotýc sstéů t u dsrétíc sstéů exstue ěol ožostí půsou věšío popsu cováí, teré vdřuí vt e výstupí velčou ( ) dsrétí vstupí velčou
č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á
í úř úň ž ň ř ř í š ň í ó ř á ů á ň ň á í š ě áš ý ř ó š á á á íó á ň á Ř Á í ří ů á ý á í í řú ů ě í ě š ř ú á á ž ň í í í á á ň ř á í ú á Č ó Čá Ó í Č É řžňá ř ž ň ý á ň ó á ž ó ř ú ň á á ť ú á ěí ú
Í č ď ň ě ě š ř ů č ú ř ě ě š ř ů ř ř ž é ž ř ž é é é é é ž č ý ř ý é é ě č é éč ě ě š ř ů ě ý ř ž ř ú ě ě ě ř š ý é éč ě é éč ě ě š ř ů ě ě ř š ý ř ě
Ě Ý ÚŘ Í Ž Í Ř Í Ú Í Á Á Í Č ÁŠ Ž ě é é č ú ř ě ý ř ž ř ú ě ý ď Ž ě Č š ě é Á é é č é Í č ú ě ř ž é ž Á Í é ř ž ř š ě š ž é ě ž ě ř š ž ú ý é ú ě č ě š ý ů š ř ý ů ý ó ó ě é ě ě š ý ž ý ě ý ý ý ó šé š
Í Í ěč Š ěš ěš ř ř č ěš ř ř č Ů ě ř Ú ř ř ěž Úč ř č ěš ě č č Ž Ž ěš Ž Ž ř Ž ú Ž Ž Š ř č ř ř ěš Ž ří č ř ě ě č Ů ř č úč ř ěš ě Š č ř ě ě ěš ě Ž ř ř ěš
ěš Š č ň ěš Š ň č ř č Ú č č č č Ú ě ě ě ř ě Ú č ž ř ř č ř č ď č Ž Ž ř č Ž čó ú š ú š Í Á Í ř ě Í Š ě Í ě Í š ě č ř ě Úč ě ř č Ú ř ř č č ěší ě č Ú Í ř ěž č Ž ř ě ěš Í Í ěč Š ěš ěš ř ř č ěš ř ř č Ů ě ř Ú
Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í
Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ýň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í ď Í ý ší ř Í é ě ř ó Í š ř Í í ň á ú í ř ě ý ě ší
á š á á ě ř é ÍŽ ě Ž Ď ě á Ď á á á é Ž š Ď ě Í é š ň á á ě č ě Ů š Í Ý á ě ě á Í Í Í ě š š ěň é Ž á é ě ě é ňí š Í é á ě ě é š č č č á é ě é ě ě Ď á ě
áě á á Š Á É Ě čá á č é ě ň ě á Í š č é Ž ě é á á Ů ň Í š ě ň ěž ě é ě á Ů á č é á š ě é é ě á ň š š á Í é š ě ň é ě é ě ě é á Ž ň á á č š Í Č č ě ĎÍ ě ěž á é Í á č é é é ě á š ě é š Ž č ě Ž č ě Ž é Ů