Křivočarý pohyb bodu.

Rozměr: px
Začít zobrazení ze stránky:

Download "Křivočarý pohyb bodu."

Transkript

1 Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm křočého pohbu bodu

2 Pohb bodu posou Všeřueme-l pohb bodu po křočé eko, musíme se bý ee elkosí le směem kemckých elč - chlos chleí. Poloh bodu posou e uče polohoý ekoem. Počáečí bod polohoého ekou leží počáku souřdého ssému (e peý, ehbý), kocoý bod leží bodě, ehož polohu učue (pohbue se). chlos chleí sou ekooé elč (podobě ko př. síl ebo e elekosckého pole). To meá že mí elkos smě.

3 chlos s ekoe A () Pohb bodu posou Δs Δ A ( ssk kláesc s -dáh polohoý eko ) ( ) Δ lm 0 Δ d () ) Δ A () A ( O polohoý eko čse ( eď ) polohoý eko čse ( chíl ) mě polohoého ekou bod A čse ( eď ) bod A čse ( chíl ) Okmžá chlos má smě eč k eko. elkos chlos ds s lm Δs lm Δ 0 0 D bod křce učuí seču. Jsou-l o bod ekoečě blíko u sebe ( soumeé bod ), seč přecháí eču.

4 chleí ssk kláesc ekoe A () Pohb bodu posou Δ A ( ( ) ( ) Δ lm 0 Δ d ( Δ ) Δ O chlos čse ( eď ) chlos čse ( chíl ) mě chlos ) Δ Zchleí dřue měu chlos. Př om musíme lášť bá úhu měu elkos chlos měu směu chlos.

5 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ lm 0 Δ d ( Δ ) Δ Δ el Δ sm O chlos čse ( eď ) chlos čse ( chíl ) mě chlos mě elkos chlos mě směu chlos Δ Δ el Δ sm Zchleí dřue měu chlos. Př om musíme lášť bá úhu měu elkos chlos měu směu chlos. Obě složk ekou mě chlos Δ pobeeme lášť. ) Δ sm Δ el Δ

6 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ lm 0 Δ K d O ( Δ ) Δ el Měí se poue elkos chlos, smě ůsáá bee mě. Zchleí má seý smě ko chlos - smě eč. Velkos ečého chleí e : Δ el lm 0 d Zchleí dřue měu chlos. Př om musíme lášť bá úhu měu elkos chlos měu směu chlos. Obě složk ekou mě chlos Δ pobeeme lášť.

7 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ Δ lm 0 d O ( Δ ) Δ el Měí se poue elkos chlos, smě ůsáá bee mě. Zchleí má seý smě ko chlos - smě eč. Velkos ečého chleí e : Δ Δ Měí se poue smě chlos, elkos ůsáá bee mě. sm Zchleí má smě kolmý k chlos - smě omál. Velkos omáloého chleí Δsm ( Δ ) lm bude uče lášť. 0 Po. Je řeb mí pmě, že úhel, keý spolu síí eko () (, e ekoečě mlý. el lm 0 d

8 chleí Pohb bodu posou A () A ( ( Δ ekoe O π l α 360 l α [ s] ) [ d] α V kemce budeme čso použí ádřeí délk kuhoého oblouku o poloměu choloém úhlu α ko souču poloměu úhlu, ádřeého dáech (. obloukoé míře ). l α 1 d (180/π)º 57,3 º

9 chleí Pohb bodu posou Δ ekoe O ( Δ ) A () A ( ( Δ Δ sm délk oblouku polomě úhel Δ sm Δ Δ Δ Δs Δs ekoe 1 A () Δs Δs 1 sm Δs Δ Δ Δs Δ S A ( polomě křos

10 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ Δ lm 0 d O ( Δ ) ( Δ ) Δ el Δ sm d - polomě křos ekoe ečé chleí má smě eč k eko, dřue měu elkos chlos omáloé chleí má smě omál k eko, m dřue měu odsř směu chlos F odsředá síl F odsř m

11 eč, omál, bomál přoeý souřdý ssém ekoe Teč e přímk, dá děm soumeým bod ekoe. Nomál e kolmce k ečě, ležící oskulčí oě. Oskulčí o e dá řem soumeým bod ekoe. Bomál b e přímk, kolmá k ečě omále. eč - omál oskulčí o omál - bomál omáloá o eč - bomál ekfkčí o. půodí oh

12 eč, omál, bomál přoeý souřdý ssém ekoe S ekoe oskulčí kužce sřed oskulčí kužce S e sřed křos ekoe polomě oskulčí kužce e polomě křos ekoe Teč e přímk, dá děm soumeým bod ekoe. Nomál e kolmce k ečě, ležící oskulčí oě. Oskulčí o e dá řem soumeým bod ekoe. Bomál b e přímk, kolmá k ečě omále. eč - omál oskulčí o omál - bomál omáloá o eč - bomál ekfkčí o Oskulčí kužce e dá řem soumeým bod ekoe.. půodí oh

13 Souřdé ssém késký (poúhlý) souřdý ssém,,, k A d d d směoé úhl, směoé cos : cos α úhel ekou od os cosβ d úhel ekou od os k d ( k) k cos γ úhel ekou od os k

14 Souřdé ssém k A k () () () ( ) k d d k k d d d k ( ) k k d d késký (poúhlý) souřdý ssém,,,

15 Souřdé ssém cldcký (álcoý) souřdý ssém,,, k A A A A k () () () cos s c

16 Souřdé ssém cldcký (álcoý) souřdý ssém,,, k A A A A A A k () () k k

17 Souřdé ssém sfécký (kuloý) souřdý ssém,,, k A () () () A s cos s s c cos c

18 Souřdé ssém sfécký (kuloý) souřdý ssém,,, k A A () () () s k A k A ( ) s s cos s cos s

19 A Pohb bodu po kužc poláí souřdý ssém,, (oá cldckého souřdého ssému) Késký souřdý ssém - eí po řešeí pohbu po kužc moc hodý. Késké souřdce - býí hodo omeeém, oshu (elu).,,, Késké souřdce - esou sobě eáslé. Musí žd splňo oc kužce. Jedé hodoě odpoídí žd dě možé hodo. ± Vhoděší e poláí souřdý ssém -. kos () 0 0

20 Pohb bodu po kužc poláí souřdý ssém,, (oá cldckého souřdého ssému) ω, ε úhel [d, º] s dáh [m] A s d ω úhloá chlos [d/s] ω obodoá chlos [m/s] ε dω ω d ω d ω d 1 ( ω ) d d úhloé chleí [d/s ] (ěkd éž očeé α) omáloé chleí [m/s ] ω ε ω ečé chleí [m/s ] 0

21 Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia : Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

2. ZÁKLADY KINEMATIKY

2. ZÁKLADY KINEMATIKY . ZÁKLDY KINEMTIKY Kinemaika se zabýá popisem pohbu čásice nebo ělesa, aniž sleduje příčinné souislosi. Jedním ze základních lasnosí pohbu je, že jeho popis záleží na olbě zažného ělesa ( souřadnicoého

Více

č Ž ž ž Č Ť ž Ž é Ž éž Ť Č Ť ž ž Ť é Ť é Č é Ť ď ň ť é č č é é é ďé é č ž é é Č ž ž é é é ť ň é é éť Ť é č Ť Ť Ť Ť ň ú é éť č č Ť ď ú é ú Ž é Í Č Ť Ž

č Ž ž ž Č Ť ž Ž é Ž éž Ť Č Ť ž ž Ť é Ť é Č é Ť ď ň ť é č č é é é ďé é č ž é é Č ž ž é é é ť ň é é éť Ť é č Ť Ť Ť Ť ň ú é éť č č Ť ď ú é ú Ž é Í Č Ť Ž č ž Ť ž ť Ť č Ť Š č č ď Ú č é Č é Í č Č é č ť Ž é é é é é Í Ť Ť Č č ž ž ť č č Č é é Ť Č Ž č Ť č č é Ť č ž Ť ž úž Ť Ž Ž č Ť Č č Ť é é ž é Č č Ž ž ž Č Ť ž Ž é Ž éž Ť Č Ť ž ž Ť é Ť é Č é Ť ď ň ť é č č é é

Více

( ) Kinematika a dynamika bodu. s( t) ( )

( ) Kinematika a dynamika bodu. s( t) ( ) Kineika a ynamika bou Kineika bou Bo se pohybuje posou po křice, keá se nazýá ajekoie nebo áha bou. Tajekoie je učena půoičem (polohoým ekoem), keý je funkcí času ( ) V záislosi na ypu ajekoie ozlišujeme:

Více

Dynamika pohybu po kružnici III

Dynamika pohybu po kružnici III Dynamika pohybu po kužnici III Předpoklady: 00 Pedaoická poznámka: Hodinu můžee překoči, ale minimálně pní da příklady jou důležiým opakoáním Newonoých zákonů a yému nakeli obázek, uči ýlednou ílu a dopočíej,

Více

ů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť

Více

š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý

Více

ž ž š ě Ž ě é ě ě ž ď Ť ž Ž é ě ě Í š Ť č č ň é š ě é é ž é é é é éž Ť ě Ť č ú ě ž ž é Ť é č ě é ě é ě é Ť é Ť Ť č ž ň č ě é š Ťš é é ď ž ž ň ě Ť ž ě

ž ž š ě Ž ě é ě ě ž ď Ť ž Ž é ě ě Í š Ť č č ň é š ě é é ž é é é é éž Ť ě Ť č ú ě ž ž é Ť é č ě é ě é ě é Ť é Ť Ť č ž ň č ě é š Ťš é é ď ž ž ň ě Ť ž ě š é é é ě č ě ň ú č Ť Šš é ě é é é ě ě é š é ž Ť é ě č é č é Ť ž é é ž ě ě é é é ž Ž č č š ě ž é Ť é ě Ž Ž ě ž Ťš ž Ž ě Ž š š ě é ě š š č é š Ť Ď éí ž Ť é ě é Ť é ž š é é ž Ť š č é š ě é ď é é ě ě š é

Více

brzdná dráha poměrné zpomalení, brzdné síly ideální brzdné síly skutečné brzdné síly

brzdná dráha poměrné zpomalení, brzdné síly ideální brzdné síly skutečné brzdné síly děí Oh ředášky : dá dáh oměé omleí, dé íly ideálí dé íly kečé dé íly odooý ohy oidl ohyoé oice měoé loi emik model řídícího úojí lieáí oiý model děí děí : ) ooí ) ooé c) kocí d) odlehčocí děí dá dáh lieáí

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

ĚŽ ÉČ Ý Č Í Ě Ě Ě Ž ň ž Ž Ž Ž Ž Ž ó Ž Ž Ž ú Í š Í É Č Č Á ŘÍ É Ě Ť Ý Ď Ž Ě Ž Č Ž Ž š š Č Ž Č Č Č Č ú ó Č É Ž Č Ž Č š Č š ú ú š š Á Ě Ó ú ú Ě Ž Ž ú ž ó Í Č Í É š Á ó Í Č Č ú Í ž š ž Č Ž Č ó Č ž Š Š Í Í

Více

mechanika Statika se zabývá působením sil na tělesa, která jsou v klidu.

mechanika Statika se zabývá působením sil na tělesa, která jsou v klidu. Aplkoná echnk,. přednášk Předě Dnk je součásí ěšího předěu Mechnk. I soný předě Mechnk ůžee cháp šší ác děl jej n echnku nějších sl nebo éž echnku uhých ěles (sk dnk) echnku nřních sl nebol echnku poddjných

Více

Předmět studia klasické fyziky

Předmět studia klasické fyziky Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elivi sisiká fik kvnová fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hování přío

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stavebí mechaka (K32S) Předáší: doc. Ig. atěj Lepš, Ph.D. Kateda mechak K32 místost D234 koutace Čt 9:3-: e-ma: matej.eps@fsv.cvut.c http://mech.fsv.cvut.c/~eps/teachg/de.htm 4. Soustav s a statckých mometů

Více

ťť š ď ž ú ý š é é ř é ž é ř š ý ž é ž č ů ž ž š é ž ů č ůž ů ř š ž Ž ž é č č Ž Ž é ž č č ý é é ž ž Ž ů é č ř ž ž ž ď Ž č ř ý č ř š é ž ýš é ř š é ž ď

ťť š ď ž ú ý š é é ř é ž é ř š ý ž é ž č ů ž ž š é ž ů č ůž ů ř š ž Ž ž é č č Ž Ž é ž č č ý é é ž ž Ž ů é č ř ž ž ž ď Ž č ř ý č ř š é ž ýš é ř š é ž ď Ý Í č ž é č š Č š Č Ž é ř ř é ď č Ž ď Č Č ý é Ž č Č Ž é š č č úč ď é ď é š ř ů ťť š ď ž ú ý š é é ř é ž é ř š ý ž é ž č ů ž ž š é ž ů č ůž ů ř š ž Ž ž é č č Ž Ž é ž č č ý é é ž ž Ž ů é č ř ž ž ž ď Ž č

Více

29. OBJEMY A POVRCHY TĚLES

29. OBJEMY A POVRCHY TĚLES 9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinemaika Základní pojmy Ronoměný přímočaý pohyb Ronoměně zychlený přímočaý pohyb Ronoměný pohyb po kužnici Základní pojmy Kinemaika - popiuje pohyb ělea, neuduje jeho příčiny Klid (pohyb) - učujeme zhledem

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

ě ě ř ú ř Ů Ě Í ě ě úř ě ú ú úř ě ě ě ů š ř ů Č ř ž ř ř ů ř ů ř úř ď ě ř ú ř ů ř ú ř ě ě ř ř š ě ř ě ů ř ě š ú ů ě š ě ú ú ě ě ř ň ú Í ř š ú ř ďě ú Í

ě ě ř ú ř Ů Ě Í ě ě úř ě ú ú úř ě ě ě ů š ř ů Č ř ž ř ř ů ř ů ř úř ď ě ř ú ř ů ř ú ř ě ě ř ř š ě ř ě ů ř ě š ú ů ě š ě ú ú ě ě ř ň ú Í ř š ú ř ďě ú Í úř úř Č ř ě Ú ě ě ř ú úř ě ě ú ě ů ě ě ě ě ě š ř ů ě ď ě ě š ř ů ú ě ě ř ř ě ě ú ú úř úř ú ě ě ě ř ú ř Ů Ě Í ě ě úř ě ú ú úř ě ě ě ů š ř ů Č ř ž ř ř ů ř ů ř úř ď ě ř ú ř ů ř ú ř ě ě ř ř š ě ř ě ů ř ě š

Více

áš á á Š É Í Ě Č É á í á é ňí ě š á á é ě č é á í á č ě é á ňí č í í á í á ěž é š š é Ů í ň ň ě ě ě á Ží ňí č í é Í éň í á í í Ů čí í ňí ě á é ň é í í

áš á á Š É Í Ě Č É á í á é ňí ě š á á é ě č é á í á č ě é á ňí č í í á í á ěž é š š é Ů í ň ň ě ě ě á Ží ňí č í é Í éň í á í í Ů čí í ňí ě á é ň é í í š Š É Í Ě Č É í é ňí ě š é ě č é í č ě é ňí č í í í ěž é š š é Ů í ň ň ě ě ě Ží ňí č í é Í éň í í í Ů čí í ňí ě é ň é í í ě é ň Ž ě é ňí ě ě ň í í í í Ú ň č í í é ě ě é é é Ó í Ý Ě í é í é š é ě ě é í

Více

ř ě š ý č ů č č ý č ý š č ý ý ž é ž ě š č ř ý ž ž č ě é ý ž ě š ř ů č ř ř ž ř č ř č ě č ě ě ř ž ž ó ň ý é ě ý č š ř ě šš č ř ý úř é č č ř ýš č ř č ě č

ř ě š ý č ů č č ý č ý š č ý ý ž é ž ě š č ř ý ž ž č ě é ý ž ě š ř ů č ř ř ž ř č ř č ě č ě ě ř ž ž ó ň ý é ě ý č š ř ě šš č ř ý úř é č č ř ýš č ř č ě č š č š ž ř Č ě ý ě ř ě é úč č é ú ý ě ý ů ů č š ř ů Č ě ě š č š ě č ý ě š ž č ř č é ř ě é ě úč ě ý ě č é é č ž ž ě š ě ž ý ě ř ě é ů ž ě š ř š ě š ř ě ě č é č ž ř š ě ý č ú ú ě š ž ý ř š ý ř ČČ Č ý č ý

Více

období: duben květen - červen

období: duben květen - červen období: duben květen - červen U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 2 8. 4. 2 0 1 1 Z O s c h v á l i l o z á v ^ r e X

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

ď

ď č č č Ť č ň č ž č Ť ž Ě Ň ě ž Í ť Í ě č ť č ž č Í č Ť ě ě É ě ž Ó Í É ž ž č č Š č Ť ď ě Š ť ž Ý ď Š č č č Í ě ž č č Ú Í ž ě ž Ť ž Š ď Ď Š ŤÚ ď ž č Š Š ť ď Š č Ú Ú ž Í ť ď Í č ď ě Í ě ě Í Š ď Ú ž Í Í Š

Více

é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é Š ý ú ř Ť ž ž ř ř Ť é Í š ý Ž ý é ř Ť š ř ř ř š ý ř Ž ď ř ř ž ř ž é

é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é Š ý ú ř Ť ž ž ř ř Ť é Í š ý Ž ý é ř Ť š ř ř ř š ý ř Ž ď ř ř ž ř ž é ř ý ú ď Š Í Á É ř ú ř ř é ů é ř ř š ř é ž é Ž š é š ý é Ť é ř ů ý ž Ž Á ý ř é ř ů é é ž é ž ř é é ř ž é ř ú ý é é ž Ť ž é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é

Více

Předmět studia klasické fyziky

Předmět studia klasické fyziky Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elii sisiká fik knoá fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hoání přío se

Více

Kinematika hmotného bodu. Petr Šidlof

Kinematika hmotného bodu. Petr Šidlof et Šilof Úo Kinemtik popis pohybu (nezkoumá příčiny pohybu) Šiší souislosti: mechnik tuhých těles sttik kinemtik ynmik Mechnik mechnik poných těles sttik kinemtik ynmik mechnik tekutin hyosttik ynmik tekutin

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem

Více

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e

Více

Ú ř É ý á Ú ý É É Ť Ú ÚÉ Ú Ú Ú É Ť ř á Ú Ú č

Ú ř É ý á Ú ý É É Ť Ú ÚÉ Ú Ú Ú É Ť ř á Ú Ú č É ý á ž ř áě ó ě ó é á á ý Ú ř É ý á Ú ý É É Ť Ú ÚÉ Ú Ú Ú É Ť ř á Ú Ú č Ý ř ý ý ř É ó ú É ř é ě ě č ě á ď ý á ř ó ě ě ó á ý ě ÉĚ ě ú É ě á ě ý Ě ě é ž é č ě ó ž á á ž á ó ý č ý é š ě Ž ě Ě ě ě ž ě ó ě

Více

č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ Ř Ř Ř š ě č č Ř š ě š

č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ Ř Ř Ř š ě č č Ř š ě š Ý Í Í Í Í č č ě Í č č č č č č č Š ě ě Š ě č č účí Í č č ě ě ě č ě Ř č úč ě č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ

Více

Dynamika hmotného bodu - rekapitulace.

Dynamika hmotného bodu - rekapitulace. Dnmik hmoného bodu - ekpiulce. Dnmik II,. přednášk Kinemik bodu, ákldní eličin h, lášní přípd pohbu. Křiočý pohb bodu, chlo chlení jko eko, ouřdné ém. Pohb bodu po kužnici. Dnmik hmoného bodu, pohboá onice,

Více

é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý ěř ě ú ř é ú č č Ž ě ř ě ř č ř ř ď čč ř ě č ýš é ř ěž č ř é ě š Ú ř š ě

é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý ěř ě ú ř é ú č č Ž ě ř ě ř č ř ř ď čč ř ě č ýš é ř ěž č ř é ě š Ú ř š ě č ř é řš ř řš č ř ě Š é č ěř é ý š ř ř ý ěř é š ř č ěř é é č ý ěř č ý ěř Í ě ř řš ř č ř č é ě ě č ř ý é é é č řš é é ě ě Ž é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

ř ř é ř ě Ž ě ř ý ě č ř č úč

ř ř é ř ě Ž ě ř ý ě č ř č úč ř ý ě č č ž Á Á É Á č č Á Á É Á ř ž ř ř é ř ě Ž ě ř ý ě č ř č úč ř Č Á Á É Á ř ž š š Úč ř ř ě é ě ř ý ž ř úč é č ý ě é ř é ř ě ž ř ě é ř é ř ř ě ž ř ř ř é š č ř ě ř é ž é č ě ř ž č ě ť ř ř ěž ř ý ř ř č

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,

Více

přednáška 3 Základní pojmy - trajektorie, proudnice Trocha matematiky Rovnice kontinuity Pohybové rovnice

přednáška 3 Základní pojmy - trajektorie, proudnice Trocha matematiky Rovnice kontinuity Pohybové rovnice 3 HYDROMECHANIKA HYDRODYNAMIKA ákldní once ákon řednášk 3 Leu : Ok Mšoský; HYDROMECHANIKA Jomí Noskeč, MECHANIKA TEKUTIN Fnšek Šob; HYDROMECHANIKA 3 Hdodnmk Úod: Meod osu konnu loo úodem Rodělení oudění

Více

á í ý ť é ó Í č é ě é Í Í ú Ž Í é í á á ý á ý ě ť é ť á í č čť š é ť Ě í í č á á á á ě í ě ř ě Í š ů ě ř ů ú í ý Í ý é á í č á á ž é ř ř š š ý ý ú áš

á í ý ť é ó Í č é ě é Í Í ú Ž Í é í á á ý á ý ě ť é ť á í č čť š é ť Ě í í č á á á á ě í ě ř ě Í š ů ě ř ů ú í ý Í ý é á í č á á ž é ř ř š š ý ý ú áš ý ť é ó Í č é ě é Í Í ú Ž Í é ý ý ě ť é ť č čť š é ť Ě č ě ě ě Í š ů ě ů ú ý Í ý é č ž é š š ý ý ú š ě Í č Í Í ú ě Á Í ť Í ě Í š š ň ú č š Ů Í č ď š éí é Č ě ů ý ó ěž š ě ť Í ž ě Č Í ý é Í ÁÉ ň ů Ů ě ú

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

ů ů ď

ů ů ď ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě

Více

ě ž ž Ž Š Ť ť ě ň ť Ž č Ď č č Ď Ž ě ě Č ě Ž Í ěč ěč Ž Ž ě ě č Ž ž ě ž ž ž ž ě žď ě ě Ž Ť Í ě ě č ě ě ě ď Ť ť Ť ň ě ž ě ňí Ť ě ž ě ž ě ň ě ž ě č ž Í č

ě ž ž Ž Š Ť ť ě ň ť Ž č Ď č č Ď Ž ě ě Č ě Ž Í ěč ěč Ž Ž ě ě č Ž ž ě ž ž ž ž ě žď ě ě Ž Ť Í ě ě č ě ě ě ď Ť ť Ť ň ě ž ě ňí Ť ě ž ě ž ě ň ě ž ě č ž Í č ě Ú ě ě Ž Ť č ň ě Ť č č č ě ž ě ž ň ě Ž č ě ů ž Ž Í Ťž ú ž č Ť ě Ť ť ě ž ž ť ž ě ž ě Ž ě ž Ť č Ť ě ě ž ě č ž ě ě ě Ť č Ť Ž ě ť ě ě ž ě ž ž Ž č ž Ť ž Ť ž ě ž Ť žď Ť ž Ť Ť ě č Ť ž Ť Í ě č Ť ě ě ž ž ě Ť č

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

ř ý ý ř é Ť š ř ř é ř ě ž ě č č č é ů é š ř é Ť é ř é ř ě Č ě ě úč ě ě ě č ů č ů ř ř é ě ž č é Ž ěř ý é ř é ý é ž č š úč č é ů ů č é ů ř ž é ěř é ě ř ž ř č é ů é ě č č ý ů š č é ů ř ž é ěř č ů é ž ě ř

Více

é éž á ó ý ě č ě í ž é é š é í é š ě ě í é í ú úž ú é ž ě ž ď ý ý řě ě ě á š á š ř ý ďá ě ě ě ú Ž ý ť ě ž řěčí ě ž í šě š ž ř ř ěř ďá ó ř š Žá ě í ě ý

é éž á ó ý ě č ě í ž é é š é í é š ě ě í é í ú úž ú é ž ě ž ď ý ý řě ě ě á š á š ř ý ďá ě ě ě ú Ž ý ť ě ž řěčí ě ž í šě š ž ř ř ěř ďá ó ř š Žá ě í ě ý Í Í Ý í í í ě ý á é í á ř č é á ý á ý ň ó š á č ě é ř ř čí é ú č ž é š á é á í á ř č Č á č ě š ě á í ď š á ř é í é ě á í čá ď Í ěč é é ěř é ě ší ě á í é žď á á š ř čí é š ě ž ýš á í é ě á ď ř ě í é á ú

Více

é ě ž Í ě ěž Í Ť ě é ě Ž ě é ě ěš ě ž é ě ž Ť ň ě é é é Ž Í é Í ě ě é ň é Í ď ě ě š š é ď ě é ě ě é é ž é é ď ě Ž š é ě š ť ě ž é Ž Č ž ě ž ť ě Š ě Í

é ě ž Í ě ěž Í Ť ě é ě Ž ě é ě ěš ě ž é ě ž Ť ň ě é é é Ž Í é Í ě ě é ň é Í ď ě ě š š é ď ě é ě ě é é ž é é ď ě Ž š é ě š ť ě ž é Ž Č ž ě ž ť ě Š ě Í š ňě é é ž Ó é Í š éě é ě Í ě š ž Í ň ě ž ě é é ť ě ď ď ě ď ě é ě š ě žšď é é é ě ě é ě š ě š é ě é ě ě ě š ž é é ď é ě é ě š é ž Š ď š š š ď ďé ě ď é ě é é ť Ď ď ě ě é ž ě ď ě ž ž š é ě Í Í ď ě ž Ť ě

Více

3.1.3 Vzájemná poloha přímek

3.1.3 Vzájemná poloha přímek 3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné

Více

Ť ž í ž í Ť š í ž í íč ž Ť ě í Č š š Ť Ž š Ť š ě í š Ť Ťí š í č Č í í ě č ě Ť š í í í í í ě Ť š č í ňí í í í Ť ň š š ě í í č š í í í č ěš š í Ť š Ť ě

Ť ž í ž í Ť š í ž í íč ž Ť ě í Č š š Ť Ž š Ť š ě í š Ť Ťí š í č Č í í ě č ě Ť š í í í í í ě Ť š č í ňí í í í Ť ň š š ě í í č š í í í č ěš š í Ť š Ť ě É É Ř Í č É Í Ň É ř ž Ť í í í í í š č í í í í í Ť Ě ě č Í Ť ě í ž ě ž í Ť Í č š Ó í íž í í ě ě š ě č š í Ťí ž ě í č í ě í í č í í Ť ě ě í Ý ě Ť í Ť Ť š Ťíš ě č ě ě ž ě Ď č ě íž í í ě č í ž ž Ť í Ť ž Ž

Více

Í ž é é é é ž é š ů š š é ú é ůž Ú Ú š é é ž ž ž Í ž š Ú Ž é ď é ť é Í é š éů ů ť Š ů Í é Í Í š š ů ú é ž ž

Í ž é é é é ž é š ů š š é ú é ůž Ú Ú š é é ž ž ž Í ž š Ú Ž é ď é ť é Í é š éů ů ť Š ů Í é Í Í š š ů ú é ž ž š é Ž é ť ť é ž ž é é ú ú ž é Č Ž é é Í Ž Ž é ž ů ť é ú ů š ú š š ď ů ž ž é ú ž š é ž é ú š š Š š Ž Ž é ů ž Í Í é šť é ž ť š Š š ů é š š ť ů ů š ž Í Č ť é ť ž ž Š Š ů ů ů é ť ů é ů Ž š é Í Í ž ž ť é Í

Více

é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž

é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž Ě Ě ů ř Ž ř Ů Ú Ě ú Ž ř ř Ž ř é úč ř ú Í ř Ž Í ř ů š ř é ů ů é é Í é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž ř ř ý ý ž é ř ů ů é ř ž ů ž ý ž č ý é Ž ů Í

Více

Ě Č ě Š Í Č Ě ě č ň

Ě Č ě Š Í Č Ě ě č ň Ť É Í Ě Č ě Š Í Č Ě ě č ň Í č č č Á Ť č Ť Í ť č Ť č č ě ě ž ě Ť Í ě Ž č ě ě ě ž Ž Í š ť Ď ž č ě ě š Ť ě ě Ě ě š ě ě č Í ž ě ě š Ž šš ž Í Ť Ž ž ě ž Ť Ť ž ď č š ž ž Í Ť š ě Ť ě ž č ď č č ž Í č š Ž Ž Í č

Více

č íč ý š íč š í é ř í ě ř é ě í č š í ž í č ě á ří ž é ě é á ě é í č é š ř í é í ě í ý á í ů á í ž ř š ž é ř é ě í á í ý š íč é á í ě ě í ž čá ý é žá

č íč ý š íč š í é ř í ě ř é ě í č š í ž í č ě á ří ž é ě é á ě é í č é š ř í é í ě í ý á í ů á í ž ř š ž é ř é ě í á í ý š íč é á í ě ě í ž čá ý é žá ÍČ Ý č ář ý ý č ě í á í ž č ř á ý ří á č é ž í é í š í š ší ý á í ý ý č ě ř č á é ří íč č é é ář í á í ů ší é é í š ý č ě á í ý ů ří ů í ě á č ř á í á í á í á č é ě í íč č á ž ě č é č ě ě č í á í č ě š

Více

á é á á ž š áí ť ě ů ž š ř ě ů ř ě ž š ž ě é ýš á á ý ář ě ů ř ě ě é ý ď ž á ď ě á ě é ě ě ř š é á á ř ý á á á ž ř ú á á ř ž ý ář ě é á š ž á á é é ů

á é á á ž š áí ť ě ů ž š ř ě ů ř ě ž š ž ě é ýš á á ý ář ě ů ř ě ě é ý ď ž á ď ě á ě é ě ě ř š é á á ř ý á á á ž ř ú á á ř ž ý ář ě é á š ž á á é é ů ě á á áš é ě á é é ě ě š ř ů á Ť ě ě š ř ů ě á áš á áš ď Á Í Ň Ú á áš ý á ů é žď á ě ř ř ě ž á ň á ů ň á á úř á á Á Ů ř ě ů ď ž Ž á á á ď á á ý ý ě ů ů š ě ů á ě ě š ř ů á á á á é á á ž š áí ť ě ů ž š

Více

č Ó š í é í é í ž íč é Í é Ť č ž é Ž ě Š š é é čí í í ě í Óč é í Ó íč č í í ě ší íč í š í í í č ě í í č ě í ň ě í ě í ě ší í š í Š Í í é Í ě Ó Ťí ěě ě

č Ó š í é í é í ž íč é Í é Ť č ž é Ž ě Š š é é čí í í ě í Óč é í Ó íč č í í ě ší íč í š í í í č ě í í č ě í ň ě í ě í ě ší í š í Š Í í é Í ě Ó Ťí ěě ě í Š ě čž ť č í í é ž í č í íč í č ě Ž í ě č Ž Ž š é ě ší Ží č íž š ěží é Ží č ě č é Í ňí é č é é Č Í Í Ž Ů Ž í Ť ň í č Ť Ťí Í í ž č í í š Š ň ě í í Ťí č č Ž Ť š š í č ř í íž í Ž í Ó í í í č í í í ě í Ť

Více

š é ě é é č ě é é ž é č ž é é ě ý é é ý č Í č č ů ý ě ň é ů é ů ů š ě š ě ě ň ě ů š ý ý č č ů Ú Ú ý ě ů ý ě ž é ž č č Ú ž ž ě ě ě Š ů ě ý ě ň ý ě ý Ť

š é ě é é č ě é é ž é č ž é é ě ý é é ý č Í č č ů ý ě ň é ů é ů ů š ě š ě ě ň ě ů š ý ý č č ů Ú Ú ý ě ů ý ě ž é ž č č Ú ž ž ě ě ě Š ů ě ý ě ň ý ě ý Ť ě ýú Č š š ě ě Č ž ě ú Č ú č ě ě š ů ú é ú Č Ř š é č é Ú Č ž ě é ů ý Ú Č š ž Ú ž č é é š ý č ě ý č é éč Ú ž š é é ý é č ě Č č ý ť éč ý ů ž č ť ý ý č ě é ď č Ť š č ě š ú šť é č ě ě ě š ů ú Č č é ě é ú é

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é

é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é Á ž č é ž ě Č é ě ě ó Í č ý č č ý ú č ý ž Í ý ú ž ý š ý ý é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é é š é ž ě č ý ý ě é ž ě Í ý ě ý č

Více

é ě é ň é Ž Ž ě é Ž Ž ě Í ú Í é ů ů ú ě é Š é ěž Í ě Č ď Ž ě ě Ť Č ú Č ů Č Č Č Č Č ú Č é ě Í Í Í Ť ž é ě ě ůž ě Í Č é ť Ó ě

é ě é ň é Ž Ž ě é Ž Ž ě Í ú Í é ů ů ú ě é Š é ěž Í ě Č ď Ž ě ě Ť Č ú Č ů Č Č Č Č Č ú Č é ě Í Í Í Ť ž é ě ě ůž ě Í Č é ť Ó ě Ě Ý Í Č ě é ě é ě ě é ě ů ů é Ž ů ě ě ů ú ů ůž Ž ů Ž ě é é Ž é Ž Ó é ů Ž ě é Ž ě ů é ě ů é Ž é ť ě ěž Ž Ž é Ž ě ě ů é ěž é é é ů é Ž ěí é Ž ě Ž Ž ě ě ě ě ě ů é é ů ě ě é ť é ě Š ě é ě é ň é Ž Ž ě é Ž Ž

Více

Ú Ř ř é ř š ě ě č Ř ř é ř š ě ř šť ě ň ř ý ě č ř š É é č š ě ů ř šť š č ř ř ř š ě ě ě ň ě ů ř é ř š ě ř š ě ř ř é ř š ě ř č ř é ě é ř é ř š ě ř é ř š

Ú Ř ř é ř š ě ě č Ř ř é ř š ě ř šť ě ň ř ý ě č ř š É é č š ě ů ř šť š č ř ř ř š ě ě ě ň ě ů ř é ř š ě ř š ě ř ř é ř š ě ř č ř é ě é ř é ř š ě ř é ř š ř š ě ě ň ř ě ř é ř š ě č Ť é ě ě ý ě č é řó ř š ě ě ň ř Ú Ř ř é ř š ě ě č Ř ř é ř š ě ř šť ě ň ř ý ě č ř š É é č š ě ů ř šť š č ř ř ř š ě ě ě ň ě ů ř é ř š ě ř š ě ř ř é ř š ě ř č ř é ě é ř é ř š ě ř

Více

MATEMATIKA III. Program - Křivkový integrál

MATEMATIKA III. Program - Křivkový integrál Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

ď š Ú Ž é š š ě ě ě ě ě Ž š Ž ě ě š ť Ú ěš ě ě é š ě Ž ěš ě š é ě š š š ě ěš š Ž Ž é ě ě ě ě é é ě ě é ě Ú ě é ě é ě ť é É Š ě é š ě Ž é é é é ě ě Č é š Ž š š é é Ž š é ě Č š ě ě š ě ěž é é š é ěž é Ž

Více

Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í

Více

Í ř č č ř ý š ř ů é ý ž č č ý é úč é č č Úč Úč é ž č é ř č Č ý ř č ř ý Č ý Č ř š ý é ž č é ž ý é ř č é ř é ř ř č ř é č č č é č ů š č ý ý ý ř č é úč ř

Í ř č č ř ý š ř ů é ý ž č č ý é úč é č č Úč Úč é ž č é ř č Č ý ř č ř ý Č ý Č ř š ý é ž č é ž ý é ř č é ř é ř ř č ř é č č č é č ů š č ý ý ý ř č é úč ř č Í č č ý ý ú ř é é ž Č Č Č ř ý ý ú š ý Ú Č š é Č Š ř š é č úč ý ý ý ř ú ý č ý ý ú š ý Ú é š Č ř é é ž Č Č Č úč ý ř ý č č Í ř č č ř ý š ř ů é ý ž č č ý é úč é č č Úč Úč é ž č é ř č Č ý ř č ř ý Č ý Č ř

Více

č é é ů č č č č Ř č é č ů č é š ž ž é é ž é Ž é č é é Ž é ř é ž ř ž š é š Í é č é ř š Č š č Ť š ž é é Í š ž é ž ř č é ď č ž É Ú Ž č č č č ů č é č éč č

č é é ů č č č č Ř č é č ů č é š ž ž é é ž é Ž é č é é Ž é ř é ž ř ž š é š Í é č é ř š Č š č Ť š ž é é Í š ž é ž ř č é ď č ž É Ú Ž č č č č ů č é č éč č úř ž ř úř Č ř ř Ú Í Ú Í Í Ř Á ÁŠ Í Í úř ž ž é ú ů é Ř ú Ř Ř š úř úř ř š ú ř š ř ů ř š ř ů ř ř ž ž Í ú ř š Ž é Ř č ú Ř š č šú ú ř ž č ú Ř č č ž š é ó š óž ř ů é é ó ó ó Úš č é é ů č č č č Ř č é č ů č é

Více

Ý áš á í é ť š í

Ý áš á í é ť š í ří ď ě ě é ř ý ří ý é úř á ú ě ě ř ář í ší ž í ř í í Í ř ý áš ě ů é í ď Í ř ý řá óš í áš í ý í ř š í á á ř ří ž ě ž ď š ě í í í á žá ý á Í ÍŽ Š Á Ó ř č í Í é ž é ž á í á á Ž ř ě ž ú á á č ě ě í ěž á í

Více

... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š...

... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š... 2 0 1 2 / 2 01 V ý r o č n í z p r á v a o č i n n o s t i š š k o l n í k r2o0 1 2 / 2 01 Z p r a c o v a l : I n g. P e t r a M a n s f e l d o v á D o k u m e n t : I I V O S / I / S M 9 8 8 S c h v

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř

ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř Í Ř Á Ý Š Á Ý ě ě ě ě Ř ě ě Í Í ů ň ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř ě ě ž ě ň Š ě ň Š ů ž ž Š ž ů ž ů ž ž ó Ř Ř ž ě ž ě ě Č ě ž ž ž ž ě ó ú ě Š Č ě ň óž ó ě ě ž

Více

Á č ý ě š ě š č é ě š č ř é ý ů ž ě ž ě é ě ě ý ů é ó é ž ů ý ý ř ý é č ě Ž řč ě š č ý é ě š ě é é ě č č ř řňč ý ý č ý řň ů ř ý ý ř č ě ý č ý ř řň ě ř

Á č ý ě š ě š č é ě š č ř é ý ů ž ě ž ě é ě ě ý ů é ó é ž ů ý ý ř ý é č ě Ž řč ě š č ý é ě š ě é é ě č č ř řňč ý ý č ý řň ů ř ý ý ř č ě ý č ý ř řň ě ř Ě Ý Č ě ř Á Č ř č é č č ň ý č š ř ě ú ýř ě ů ř š ů é ě č č é é šř ě ú ů ý ě é ě é ú ě ž č é é ř č č ě ě Á ĚČ ů č ě ř é ř é ů ř ž ř ě ý č ě ě ř ýž ěž Č š ý ů ž é ř š ě č ž č ě ž č č ě é Á č ý ě š ě š č

Více

č é ž Ý č é ž é é ž é é č Ú ž č é ž é Ž é é ť č ť ž ť ž é č é é ž é é é č é ž ť č ž é ž ž ž é č č č č ž é é č é é ž č é ž é ž é ž é č é č č č é é é ž ž é č č č č ž ž é ž é é é é é č č é ž Ž č Ž ž č ž ž

Více

é ě Č Í ě ě š ě ě é č ě ě ž č ě Č ě é ě ě é Í Č ě á ě ě ě á č Š ě č é Č č ě č ě ě é č ě č ě ž é ě Š á ě á á č á á Ů š á šš é ě ě á á á Á č á á á č ě á

é ě Č Í ě ě š ě ě é č ě ě ž č ě Č ě é ě ě é Í Č ě á ě ě ě á č Š ě č é Č č ě č ě ě é č ě č ě ž é ě Š á ě á á č á á Ů š á šš é ě ě á á á Á č á á á č ě á Ě Ý úř č é á ě ú á ž č á č č č Ř Á Áš é ú ě ý ú č š ý č á Ú á č ě á ě ý ů é ě š ů á á ě é ó á á ě á á ě ů á á á é á žáď š Č Šě á ú ě éúč é á á ú Š č é á ú é é š Ň á é č á č á č á ě Ú ě á ě ě č ú ě é úč

Více

é ž é č ž ř ě úř ě ů č č é č ř š ě ě ě ř ě ř ů ě é ě ě ř ř š ď ř ě ý é ť č ě ž ý ě ý ř ů ě ý é ě ú ř ě ě š ř ů š ě ř ž ř š úč š ň š ě ý úř ř ý é č é ý

é ž é č ž ř ě úř ě ů č č é č ř š ě ě ě ř ě ř ů ě é ě ě ř ř š ď ř ě ý é ť č ě ž ý ě ý ř ů ě ý é ě ú ř ě ě š ř ů š ě ř ž ř š úč š ň š ě ý úř ř ý é č é ý Á É é č č Ž ť ř Á ž Č É Í Ř ž ř ť ť ř ť ý ť č ý é Č ý ý úč č ě Č ř ř ř č ě é ř Č úč ř ř ž é ě ř Ú ř ž ž ý ž é ř ú ž é č ř ř ě ř ě ř ě ž ý č ý é é ě č ř é úč ř č é č é é ěř Ž ý ž ů ý é é ž ý ý ř Ů ž ý ř

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE. k bakalářské zkoušce

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE. k bakalářské zkoušce VYOKÁ ŠKOLA EKONOMCKÁ V RAZE FAKULTA NFORMATKY A TATTKY Kaeda a a avděodobo TATTKA VZORCE baalářé zošce veze 3. oledí aalzace: 3.9.7 KT 7 oá aa Rozděleí čeoí,,..., Kval % z ůmě H H H G... Rozěí R ma -

Více

č š š ř ř Í ů č Ě Á Š ŠÁ Ř Ď É Í Ě Í Í čí ž ě č é č ě ý Ž ř ě č ý ě ý ý ř ě š ý ě ť ý é é ě ě é ě é ř é ř Ť ě š ě ž ě é ě é é ů ě é ř ú ý ý é ěř ý ý š ý ý ž é é š ý š ě ý ř ř ř ě š ý ě ý ý ř ě é Ž é é

Více

č ý č í ó č éš í í Č čš í š ě č ý é ž é ž ů íž ž š ě ý č Ž ů č ý é š ší ů č í ý ž é č ž ů é í í é ěš ě č ž ů é Ť é í íí í Ž ě é í ě ýš ý Í ě ý ě ů ů č

č ý č í ó č éš í í Č čš í š ě č ý é ž é ž ů íž ž š ě ý č Ž ů č ý é š ší ů č í ý ž é č ž ů é í í é ěš ě č ž ů é Ť é í íí í Ž ě é í ě ýš ý Í ě ý ě ů ů č Č š í č ý č čš é í íč š í č í Í í č íč í č íč ó ó ý š í é íš ý ý ý í ě é ý ě í ý ó í ěý ý č Í ě í óí ý š ě č č í í ě Ú ů ě í ý é íš í í ě š í ď íí šší é é ě í š ý ě ě ší ů č íč é ě ě í š é í š ě í í š

Více

1.4.7 Trojúhelník. Předpoklady:

1.4.7 Trojúhelník. Předpoklady: 1.4.7 Trojúhelník Předpoklady: 010406 Př. 1: Narýsuj tři body,,, které neleží na přímce. Narýsuj všechny úsečky určené těmito třemi body. Jaký útvar vznikne? Získali jsme trojúhelník. Jak přišel trojúhelník

Více

Kopie z www.dsagro-kostalov.cz

Kopie z www.dsagro-kostalov.cz é š š é ó ú Č é ř ěž é ú ó ó ú é ě ó ÚČ Ý éž é ú ň é ú é ě ě ž š Ý Á š é šť úě ó Ý É úě ž řé š ěž ó óš ú š řé é ě ě ž Ý éž ř ó ú Á Ě Éú é šť š š ř ě š ř ó š ň ó Ý š ě ě ž é ř ž ž é ř Ů ě ě ů ě ú š ů é

Více

ý č é ž é č š é é Í č ý ž Š ť ž é č ě ě š ě ý ů ě Í š č ě ý Š č é ě č é č é č ě é é č ě ý úč č é é ů ý č Úč ů ě ú č č Ť ý ů ů ž ůž ěť é é š š ů ý ě ů

ý č é ž é č š é é Í č ý ž Š ť ž é č ě ě š ě ý ů ě Í š č ě ý Š č é ě č é č é č ě é é č ě ý úč č é é ů ý č Úč ů ě ú č č Ť ý ů ů ž ůž ěť é é š š ů ý ě ů é č ů ěš é Š ň č č Ú č č Č é č Ú ě ě ě ů Ú č é ž é é č é ž ý č é ž é č š é é Í č ý ž Š ť ž é č ě ě š ě ý ů ě Í š č ě ý Š č é ě č é č é č ě é é č ě ý úč č é é ů ý č Úč ů ě ú č č Ť ý ů ů ž ůž ěť é é š š

Více

Ť Š č č ž ď č Ž ů Á č ž č ž č ůž č č č č č č ž č ž ůž č ž ď ů Í č č č ž Ž ť Í č ž Š Í Í ó č ď ú ůž č ž ž ž č Š Š ď ť ž ž č ž ž č ž ž ú č ú ú č ž Ť Í č č č č ů ž č č ňč ů ů č č č ž Ť ž č Ž č ž č č č ž

Více

ů ůč ě ř ř č ž ý ů ň č ě ř ě ě ř š ř ů ž ž ú š č ř ý š ú ě č š ž ě ě ž šů š ř ý ř š š ř š ý ě ř ž ý ž ž ý š ř č ž ý ů š ě š č š š ň ě ř šý ř ř ě ř ž ě

ů ůč ě ř ř č ž ý ů ň č ě ř ě ě ř š ř ů ž ž ú š č ř ý š ú ě č š ž ě ě ž šů š ř ý ř š š ř š ý ě ř ž ý ž ž ý š ř č ž ý ů š ě š č š š ň ě ř šý ř ř ě ř ž ě č ě ž ř ý ž ř ě ý š ů ě ý ť ě ž č ž ě ř ů ě Á ě ý šř ů ř ů č ů č š ě ř ý ů ěč č š Ť ž š ý ž ěň ř š Ž ň š ě ý Ď š š ó ň Ď ň ž ň ě ž č ě ý ě ů Ť ř ů ň ň ň óř ň Ž ů ůč ě ř ř č ž ý ů ň č ě ř ě ě ř š ř ů ž

Více

á č é ů é ž Á é áří í á í Š á š í í í í í ů ě ů á í á í ů ě č é ů ů á ř í í á ž áň č řá úč í á ě řá ě ěš á ě á ý ý á ž ů á é ů ě Žá é ř í ů ří á é ř á

á č é ů é ž Á é áří í á í Š á š í í í í í ů ě ů á í á í ů ě č é ů ů á ř í í á ž áň č řá úč í á ě řá ě ěš á ě á ý ý á ž ů á é ů ě Žá é ř í ů ří á é ř á é é ž Á é í í í Š š í í í í í ě í í ě é í í ž Ň ú í ě ě ěš ě ž é ě Ž é í í é š é í í ší ě Ů í í Č ž Č ž é Č í ž í ú ě í í í ě Č ž í í Ž í í í Č ě í í ě š í ě í Ž í ž ě ě í Č ě í ě í š í ě í é ú í é í é

Více

Souhrn vzorců z finanční matematiky

Souhrn vzorců z finanční matematiky ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý

Více

ž Í ú č č ě ó ě ě é ó ů Ú č Č č ý š ú ě ó š ý ě é ó ý ý ř ž ó č ť Č č ř č é ý é ě ř é é č é ý č é č č ř ě ě ř ě ž č ý ó ž ý č ý š ě é ř ý š š č é č č é ě č Í ó ó ý č ó ý Ž č č é ů ů ř ě ě š ř ě é ř ě

Více

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x

Více

ď ž ě ž š ě ň í ž č š í Ť š í Ť ě ě í Í í ě í Ď ť í í č ť ě íš ň ď ě ž ě š č í ě š í ě čí š í ž í ž í ě ž Ť ž ď č ď ě ší í í č ě ž í í Š ď šíč Š š č í

ď ž ě ž š ě ň í ž č š í Ť š í Ť ě ě í Í í ě í Ď ť í í č ť ě íš ň ď ě ž ě š č í ě š í ě čí š í ž í ž í ě ž Ť ž ď č ď ě ší í í č ě ž í í Š ď šíč Š š č í Íí ě í č í ť ž ě ť ě ě ě í čí š í í í ě č š ž ě ž í í í í í Ý í í í Í í ě Ť í í ž č ě ď ě č íž ě ě ď í š í š í í č Ťíš í í í ě č ž š č ž ě í ž ž č ží ě ší Ť í Ž í číš ě ž í ě ě Ž č č ňí í čí Ťí í š í í

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č

ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č ž ž č Ý ť ž ž Ó š á ď č č č ž Ó á ě é ě ž á ě š á ěč ě á ť ž á ď áš Ť ď Ž ď á š é é é á ž ď ď ďč á ž š ď á á é č č é é á ť ž ň ěď á é Ž á ž ď á ě Ť á ž é é é ě ě á žá žď é ě áť é á Ž č č é Ý ď ě é é ě

Více

š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š

š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š ý ú ť ťť ú č š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š é š ř ř ž ň é ť š é ň š ýř ů ě ě é ň š ď ý ů č ž ř ž č ř ř ě ě č

Více

é žď ě ř ř ě ž ň ů é ě é ř ě ě š ř ů ó ě ě ě š ů ě ě š ř ů ě ó š óš ř ě ů š š é žď ě ř ř ě ž ň é ú ě ě ě ř ěř ú é é é é é é é ú ě ú é š š ú ě ř ů ů ě é é ů ú ž é é ů é ž é ř ě ě ě ě ř ř é é ž š ž é ř š

Více

Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í

Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í ú ÉČ Ě Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í Ý ÍÝ ÍÝ Ý Ý Ý Ý ť ó ó Ě Ě Ť ť É Ě Ě ť ť Ť Ě ÉÉ ĚĚÉŤ É ň ó Ť É É Ž ó Ě Ě Ť Ě Ě É Ě Ě Ě Ě Í Ě Ě ĚĚĚ Ě Ě Ě Ě É É Ě É Ě Ě ť Ý Č ů ó ů ů ú Ž ů ů ů Č ů ů Č

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Í Í ř ť é č é Č é é č é Ť Ť č é Ť Ť é Í ť Ť Š é č é é Í Ě č č é é Ť č Ó ň é é Ť Í Í Ť é é Í ň č é é Ž é é č č é Ó č Ó é č Ú é é Ť é Ť Ť Ť Ť é ť ňč ň é

Í Í ř ť é č é Č é é č é Ť Ť č é Ť Ť é Í ť Ť Š é č é é Í Ě č č é é Ť č Ó ň é é Ť Í Í Ť é é Í ň č é é Ž é é č č é Ó č Ó é č Ú é é Ť é Ť Ť Ť Ť é ť ňč ň é Ů ú é Ť Ť Ť č č Ť é Í Ť č é č é é č Á Í Í é ň ú Ó č é Ť č Ť Ť č č é č é č ň č é é Ý Ě Ů Ť Ť Č Ť é Ť é č Ť Ť Ť Ť ů č Ť č Ť é č é ť č é Ť Ť Ý č é Ť č é Ť é é č éť é Ť Ť é Ť é č é é é č é é é é é Ť ň Ť é

Více

š á Ž í ěž ě šíť í á Ž é ž ž í ě í á á ž á é ě í ě ší í é é é é ž é á č á ň ě ší í é é é ě é ě á á Ť í ž á é í Ť é í Ť č ží ěť á Ť ší é í é í é ř í í

š á Ž í ěž ě šíť í á Ž é ž ž í ě í á á ž á é ě í ě ší í é é é é ž é á č á ň ě ší í é é é ě é ě á á Ť í ž á é í Ť é í Ť č ží ěť á Ť ší é í é í é ř í í š Ž ěž ě šť Ž ž ž ě ž ě ě š ž č ň ě š ě ě Ť ž Ť Ť č ž ěť Ť š ř č ě ě ě š Ť ž ě ěť ž Ž Ť š Ť Í ž Ť ě č ěž Ť Ť Ý ě ě ž Ť Ť ž ň ú ě š ž ěž ě šť Ž ž ž Í Í ě ž Ů ě ě š Ž č Ť ě š ě ě Ť Ť ž Ť Ť č ž ěť Ť š ř

Více

ě ž ů ř ě ě ě ěš Č ů ě ě ě ě é ž ě ěš ě ě ě é ě ěš ý ě ě ě ě ý ě ě š ř ů é Ž ě ěš ú ě ěš é ě ěšť ě Č ě Č Č ř Č é ě ř Č é ě ř Č Č ě ů Č š Ř ě ř Č ěš Č

ě ž ů ř ě ě ě ěš Č ů ě ě ě ě é ž ě ěš ě ě ě é ě ěš ý ě ě ě ě ý ě ě š ř ů é Ž ě ěš ú ě ěš é ě ěšť ě Č ě Č Č ř Č é ě ř Č é ě ř Č Č ě ů Č š Ř ě ř Č ěš Č ř ř ě Ú ď é ř ý ý ě ř ř ě é ě é ř ř é ů ěš ó Č ů é Ž ř ě ý ř ř é ž ů é ž ř ě š ě ě ý é ř ř ř é ř š é Ž é ů ř Ž é ř ř ř é é ř ě ů ř é ů Ž ř é ů ř ů ů ř ý ů ž ř é ů ř ěš ó ř é ř š ě ě ě ěš ě ř ě ěš é é ů

Více