Křivočarý pohyb bodu.
|
|
- Vít Hruda
- před 6 lety
- Počet zobrazení:
Transkript
1 Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm křočého pohbu bodu
2 Pohb bodu posou Všeřueme-l pohb bodu po křočé eko, musíme se bý ee elkosí le směem kemckých elč - chlos chleí. Poloh bodu posou e uče polohoý ekoem. Počáečí bod polohoého ekou leží počáku souřdého ssému (e peý, ehbý), kocoý bod leží bodě, ehož polohu učue (pohbue se). chlos chleí sou ekooé elč (podobě ko př. síl ebo e elekosckého pole). To meá že mí elkos smě.
3 chlos s ekoe A () Pohb bodu posou Δs Δ A ( ssk kláesc s -dáh polohoý eko ) ( ) Δ lm 0 Δ d () ) Δ A () A ( O polohoý eko čse ( eď ) polohoý eko čse ( chíl ) mě polohoého ekou bod A čse ( eď ) bod A čse ( chíl ) Okmžá chlos má smě eč k eko. elkos chlos ds s lm Δs lm Δ 0 0 D bod křce učuí seču. Jsou-l o bod ekoečě blíko u sebe ( soumeé bod ), seč přecháí eču.
4 chleí ssk kláesc ekoe A () Pohb bodu posou Δ A ( ( ) ( ) Δ lm 0 Δ d ( Δ ) Δ O chlos čse ( eď ) chlos čse ( chíl ) mě chlos ) Δ Zchleí dřue měu chlos. Př om musíme lášť bá úhu měu elkos chlos měu směu chlos.
5 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ lm 0 Δ d ( Δ ) Δ Δ el Δ sm O chlos čse ( eď ) chlos čse ( chíl ) mě chlos mě elkos chlos mě směu chlos Δ Δ el Δ sm Zchleí dřue měu chlos. Př om musíme lášť bá úhu měu elkos chlos měu směu chlos. Obě složk ekou mě chlos Δ pobeeme lášť. ) Δ sm Δ el Δ
6 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ lm 0 Δ K d O ( Δ ) Δ el Měí se poue elkos chlos, smě ůsáá bee mě. Zchleí má seý smě ko chlos - smě eč. Velkos ečého chleí e : Δ el lm 0 d Zchleí dřue měu chlos. Př om musíme lášť bá úhu měu elkos chlos měu směu chlos. Obě složk ekou mě chlos Δ pobeeme lášť.
7 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ Δ lm 0 d O ( Δ ) Δ el Měí se poue elkos chlos, smě ůsáá bee mě. Zchleí má seý smě ko chlos - smě eč. Velkos ečého chleí e : Δ Δ Měí se poue smě chlos, elkos ůsáá bee mě. sm Zchleí má smě kolmý k chlos - smě omál. Velkos omáloého chleí Δsm ( Δ ) lm bude uče lášť. 0 Po. Je řeb mí pmě, že úhel, keý spolu síí eko () (, e ekoečě mlý. el lm 0 d
8 chleí Pohb bodu posou A () A ( ( Δ ekoe O π l α 360 l α [ s] ) [ d] α V kemce budeme čso použí ádřeí délk kuhoého oblouku o poloměu choloém úhlu α ko souču poloměu úhlu, ádřeého dáech (. obloukoé míře ). l α 1 d (180/π)º 57,3 º
9 chleí Pohb bodu posou Δ ekoe O ( Δ ) A () A ( ( Δ Δ sm délk oblouku polomě úhel Δ sm Δ Δ Δ Δs Δs ekoe 1 A () Δs Δs 1 sm Δs Δ Δ Δs Δ S A ( polomě křos
10 chleí ekoe A () Pohb bodu posou A ( ( Δ ) ( ) Δ Δ lm 0 d O ( Δ ) ( Δ ) Δ el Δ sm d - polomě křos ekoe ečé chleí má smě eč k eko, dřue měu elkos chlos omáloé chleí má smě omál k eko, m dřue měu odsř směu chlos F odsředá síl F odsř m
11 eč, omál, bomál přoeý souřdý ssém ekoe Teč e přímk, dá děm soumeým bod ekoe. Nomál e kolmce k ečě, ležící oskulčí oě. Oskulčí o e dá řem soumeým bod ekoe. Bomál b e přímk, kolmá k ečě omále. eč - omál oskulčí o omál - bomál omáloá o eč - bomál ekfkčí o. půodí oh
12 eč, omál, bomál přoeý souřdý ssém ekoe S ekoe oskulčí kužce sřed oskulčí kužce S e sřed křos ekoe polomě oskulčí kužce e polomě křos ekoe Teč e přímk, dá děm soumeým bod ekoe. Nomál e kolmce k ečě, ležící oskulčí oě. Oskulčí o e dá řem soumeým bod ekoe. Bomál b e přímk, kolmá k ečě omále. eč - omál oskulčí o omál - bomál omáloá o eč - bomál ekfkčí o Oskulčí kužce e dá řem soumeým bod ekoe.. půodí oh
13 Souřdé ssém késký (poúhlý) souřdý ssém,,, k A d d d směoé úhl, směoé cos : cos α úhel ekou od os cosβ d úhel ekou od os k d ( k) k cos γ úhel ekou od os k
14 Souřdé ssém k A k () () () ( ) k d d k k d d d k ( ) k k d d késký (poúhlý) souřdý ssém,,,
15 Souřdé ssém cldcký (álcoý) souřdý ssém,,, k A A A A k () () () cos s c
16 Souřdé ssém cldcký (álcoý) souřdý ssém,,, k A A A A A A k () () k k
17 Souřdé ssém sfécký (kuloý) souřdý ssém,,, k A () () () A s cos s s c cos c
18 Souřdé ssém sfécký (kuloý) souřdý ssém,,, k A A () () () s k A k A ( ) s s cos s cos s
19 A Pohb bodu po kužc poláí souřdý ssém,, (oá cldckého souřdého ssému) Késký souřdý ssém - eí po řešeí pohbu po kužc moc hodý. Késké souřdce - býí hodo omeeém, oshu (elu).,,, Késké souřdce - esou sobě eáslé. Musí žd splňo oc kužce. Jedé hodoě odpoídí žd dě možé hodo. ± Vhoděší e poláí souřdý ssém -. kos () 0 0
20 Pohb bodu po kužc poláí souřdý ssém,, (oá cldckého souřdého ssému) ω, ε úhel [d, º] s dáh [m] A s d ω úhloá chlos [d/s] ω obodoá chlos [m/s] ε dω ω d ω d ω d 1 ( ω ) d d úhloé chleí [d/s ] (ěkd éž očeé α) omáloé chleí [m/s ] ω ε ω ečé chleí [m/s ] 0
21 Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc
asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :
Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
2. ZÁKLADY KINEMATIKY
. ZÁKLDY KINEMTIKY Kinemaika se zabýá popisem pohbu čásice nebo ělesa, aniž sleduje příčinné souislosi. Jedním ze základních lasnosí pohbu je, že jeho popis záleží na olbě zažného ělesa ( souřadnicoého
č Ž ž ž Č Ť ž Ž é Ž éž Ť Č Ť ž ž Ť é Ť é Č é Ť ď ň ť é č č é é é ďé é č ž é é Č ž ž é é é ť ň é é éť Ť é č Ť Ť Ť Ť ň ú é éť č č Ť ď ú é ú Ž é Í Č Ť Ž
č ž Ť ž ť Ť č Ť Š č č ď Ú č é Č é Í č Č é č ť Ž é é é é é Í Ť Ť Č č ž ž ť č č Č é é Ť Č Ž č Ť č č é Ť č ž Ť ž úž Ť Ž Ž č Ť Č č Ť é é ž é Č č Ž ž ž Č Ť ž Ž é Ž éž Ť Č Ť ž ž Ť é Ť é Č é Ť ď ň ť é č č é é
( ) Kinematika a dynamika bodu. s( t) ( )
Kineika a ynamika bou Kineika bou Bo se pohybuje posou po křice, keá se nazýá ajekoie nebo áha bou. Tajekoie je učena půoičem (polohoým ekoem), keý je funkcí času ( ) V záislosi na ypu ajekoie ozlišujeme:
Dynamika pohybu po kružnici III
Dynamika pohybu po kužnici III Předpoklady: 00 Pedaoická poznámka: Hodinu můžee překoči, ale minimálně pní da příklady jou důležiým opakoáním Newonoých zákonů a yému nakeli obázek, uči ýlednou ílu a dopočíej,
ů ů ž ž ě ě Č ů ů ž ě ě ě ž é ě ě ě ž ž é ť ě ůž é ě é ě ě ž ž ě ě ť Ť ě ž ě ě é ě ů ž ě é é é ě ě ě ž ě é é ť ě é ě ž ě é é ě é ž ě ě Ž ž é ě ž ď Í ě ž ě ž ě ť ď ň ě é é žň ť ť ž é ů ě ň ť Ú ě ě ň ž ť
š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý
ž ž š ě Ž ě é ě ě ž ď Ť ž Ž é ě ě Í š Ť č č ň é š ě é é ž é é é é éž Ť ě Ť č ú ě ž ž é Ť é č ě é ě é ě é Ť é Ť Ť č ž ň č ě é š Ťš é é ď ž ž ň ě Ť ž ě
š é é é ě č ě ň ú č Ť Šš é ě é é é ě ě é š é ž Ť é ě č é č é Ť ž é é ž ě ě é é é ž Ž č č š ě ž é Ť é ě Ž Ž ě ž Ťš ž Ž ě Ž š š ě é ě š š č é š Ť Ď éí ž Ť é ě é Ť é ž š é é ž Ť š č é š ě é ď é é ě ě š é
brzdná dráha poměrné zpomalení, brzdné síly ideální brzdné síly skutečné brzdné síly
děí Oh ředášky : dá dáh oměé omleí, dé íly ideálí dé íly kečé dé íly odooý ohy oidl ohyoé oice měoé loi emik model řídícího úojí lieáí oiý model děí děí : ) ooí ) ooé c) kocí d) odlehčocí děí dá dáh lieáí
ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
ĚŽ ÉČ Ý Č Í Ě Ě Ě Ž ň ž Ž Ž Ž Ž Ž ó Ž Ž Ž ú Í š Í É Č Č Á ŘÍ É Ě Ť Ý Ď Ž Ě Ž Č Ž Ž š š Č Ž Č Č Č Č ú ó Č É Ž Č Ž Č š Č š ú ú š š Á Ě Ó ú ú Ě Ž Ž ú ž ó Í Č Í É š Á ó Í Č Č ú Í ž š ž Č Ž Č ó Č ž Š Š Í Í
mechanika Statika se zabývá působením sil na tělesa, která jsou v klidu.
Aplkoná echnk,. přednášk Předě Dnk je součásí ěšího předěu Mechnk. I soný předě Mechnk ůžee cháp šší ác děl jej n echnku nějších sl nebo éž echnku uhých ěles (sk dnk) echnku nřních sl nebol echnku poddjných
Předmět studia klasické fyziky
Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elivi sisiká fik kvnová fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hování přío
rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová
Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.
Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno
Stavební mechanika 1 (K132SM01)
Stavebí mechaka (K32S) Předáší: doc. Ig. atěj Lepš, Ph.D. Kateda mechak K32 místost D234 koutace Čt 9:3-: e-ma: matej.eps@fsv.cvut.c http://mech.fsv.cvut.c/~eps/teachg/de.htm 4. Soustav s a statckých mometů
ťť š ď ž ú ý š é é ř é ž é ř š ý ž é ž č ů ž ž š é ž ů č ůž ů ř š ž Ž ž é č č Ž Ž é ž č č ý é é ž ž Ž ů é č ř ž ž ž ď Ž č ř ý č ř š é ž ýš é ř š é ž ď
Ý Í č ž é č š Č š Č Ž é ř ř é ď č Ž ď Č Č ý é Ž č Č Ž é š č č úč ď é ď é š ř ů ťť š ď ž ú ý š é é ř é ž é ř š ý ž é ž č ů ž ž š é ž ů č ůž ů ř š ž Ž ž é č č Ž Ž é ž č č ý é é ž ž Ž ů é č ř ž ž ž ď Ž č
29. OBJEMY A POVRCHY TĚLES
9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinemaika Základní pojmy Ronoměný přímočaý pohyb Ronoměně zychlený přímočaý pohyb Ronoměný pohyb po kužnici Základní pojmy Kinemaika - popiuje pohyb ělea, neuduje jeho příčiny Klid (pohyb) - učujeme zhledem
Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011
Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)
ě ě ř ú ř Ů Ě Í ě ě úř ě ú ú úř ě ě ě ů š ř ů Č ř ž ř ř ů ř ů ř úř ď ě ř ú ř ů ř ú ř ě ě ř ř š ě ř ě ů ř ě š ú ů ě š ě ú ú ě ě ř ň ú Í ř š ú ř ďě ú Í
úř úř Č ř ě Ú ě ě ř ú úř ě ě ú ě ů ě ě ě ě ě š ř ů ě ď ě ě š ř ů ú ě ě ř ř ě ě ú ú úř úř ú ě ě ě ř ú ř Ů Ě Í ě ě úř ě ú ú úř ě ě ě ů š ř ů Č ř ž ř ř ů ř ů ř úř ď ě ř ú ř ů ř ú ř ě ě ř ř š ě ř ě ů ř ě š
áš á á Š É Í Ě Č É á í á é ňí ě š á á é ě č é á í á č ě é á ňí č í í á í á ěž é š š é Ů í ň ň ě ě ě á Ží ňí č í é Í éň í á í í Ů čí í ňí ě á é ň é í í
š Š É Í Ě Č É í é ňí ě š é ě č é í č ě é ňí č í í í ěž é š š é Ů í ň ň ě ě ě Ží ňí č í é Í éň í í í Ů čí í ňí ě é ň é í í ě é ň Ž ě é ňí ě ě ň í í í í Ú ň č í í é ě ě é é é Ó í Ý Ě í é í é š é ě ě é í
ř ě š ý č ů č č ý č ý š č ý ý ž é ž ě š č ř ý ž ž č ě é ý ž ě š ř ů č ř ř ž ř č ř č ě č ě ě ř ž ž ó ň ý é ě ý č š ř ě šš č ř ý úř é č č ř ýš č ř č ě č
š č š ž ř Č ě ý ě ř ě é úč č é ú ý ě ý ů ů č š ř ů Č ě ě š č š ě č ý ě š ž č ř č é ř ě é ě úč ě ý ě č é é č ž ž ě š ě ž ý ě ř ě é ů ž ě š ř š ě š ř ě ě č é č ž ř š ě ý č ú ú ě š ž ý ř š ý ř ČČ Č ý č ý
období: duben květen - červen
období: duben květen - červen U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 2 8. 4. 2 0 1 1 Z O s c h v á l i l o z á v ^ r e X
9. Planimetrie 1 bod
9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,
ď
č č č Ť č ň č ž č Ť ž Ě Ň ě ž Í ť Í ě č ť č ž č Í č Ť ě ě É ě ž Ó Í É ž ž č č Š č Ť ď ě Š ť ž Ý ď Š č č č Í ě ž č č Ú Í ž ě ž Ť ž Š ď Ď Š ŤÚ ď ž č Š Š ť ď Š č Ú Ú ž Í ť ď Í č ď ě Í ě ě Í Š ď Ú ž Í Í Š
é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é Š ý ú ř Ť ž ž ř ř Ť é Í š ý Ž ý é ř Ť š ř ř ř š ý ř Ž ď ř ř ž ř ž é
ř ý ú ď Š Í Á É ř ú ř ř é ů é ř ř š ř é ž é Ž š é š ý é Ť é ř ů ý ž Ž Á ý ř é ř ů é é ž é ž ř é é ř ž é ř ú ý é é ž Ť ž é é š ň é ž ř š é š ý é Ť é é ř ů ý ť ž ž ž ý ř é é é é ž ř é Š Ú ý ž é ř é ž ř é
Předmět studia klasické fyziky
Přemě sui klsiké fik mehnik, emonmik, elekonmik, opik klsiká fik eoeiká fik epeimenální fik eoie elii sisiká fik knoá fik moení fik Přemě sui klsiké fik Fik oeně koumá sukuu hmo její ákon, hoání přío se
Kinematika hmotného bodu. Petr Šidlof
et Šilof Úo Kinemtik popis pohybu (nezkoumá příčiny pohybu) Šiší souislosti: mechnik tuhých těles sttik kinemtik ynmik Mechnik mechnik poných těles sttik kinemtik ynmik mechnik tekutin hyosttik ynmik tekutin
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem
o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o
o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e
Ú ř É ý á Ú ý É É Ť Ú ÚÉ Ú Ú Ú É Ť ř á Ú Ú č
É ý á ž ř áě ó ě ó é á á ý Ú ř É ý á Ú ý É É Ť Ú ÚÉ Ú Ú Ú É Ť ř á Ú Ú č Ý ř ý ý ř É ó ú É ř é ě ě č ě á ď ý á ř ó ě ě ó á ý ě ÉĚ ě ú É ě á ě ý Ě ě é ž é č ě ó ž á á ž á ó ý č ý é š ě Ž ě Ě ě ě ž ě ó ě
č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ Ř Ř Ř š ě č č Ř š ě š
Ý Í Í Í Í č č ě Í č č č č č č č Š ě ě Š ě č č účí Í č č ě ě ě č ě Ř č úč ě č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ
Dynamika hmotného bodu - rekapitulace.
Dnmik hmoného bodu - ekpiulce. Dnmik II,. přednášk Kinemik bodu, ákldní eličin h, lášní přípd pohbu. Křiočý pohb bodu, chlo chlení jko eko, ouřdné ém. Pohb bodu po kužnici. Dnmik hmoného bodu, pohboá onice,
é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý ěř ě ú ř é ú č č Ž ě ř ě ř č ř ř ď čč ř ě č ýš é ř ěž č ř é ě š Ú ř š ě
č ř é řš ř řš č ř ě Š é č ěř é ý š ř ř ý ěř é š ř č ěř é é č ý ěř č ý ěř Í ě ř řš ř č ř č é ě ě č ř ý é é é č řš é é ě ě Ž é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
ř ř é ř ě Ž ě ř ý ě č ř č úč
ř ý ě č č ž Á Á É Á č č Á Á É Á ř ž ř ř é ř ě Ž ě ř ý ě č ř č úč ř Č Á Á É Á ř ž š š Úč ř ř ě é ě ř ý ž ř úč é č ý ě é ř é ř ě ž ř ě é ř é ř ř ě ž ř ř ř é š č ř ě ř é ž é č ě ř ž č ě ť ř ř ěž ř ý ř ř č
Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava
Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,
přednáška 3 Základní pojmy - trajektorie, proudnice Trocha matematiky Rovnice kontinuity Pohybové rovnice
3 HYDROMECHANIKA HYDRODYNAMIKA ákldní once ákon řednášk 3 Leu : Ok Mšoský; HYDROMECHANIKA Jomí Noskeč, MECHANIKA TEKUTIN Fnšek Šob; HYDROMECHANIKA 3 Hdodnmk Úod: Meod osu konnu loo úodem Rodělení oudění
á í ý ť é ó Í č é ě é Í Í ú Ž Í é í á á ý á ý ě ť é ť á í č čť š é ť Ě í í č á á á á ě í ě ř ě Í š ů ě ř ů ú í ý Í ý é á í č á á ž é ř ř š š ý ý ú áš
ý ť é ó Í č é ě é Í Í ú Ž Í é ý ý ě ť é ť č čť š é ť Ě č ě ě ě Í š ů ě ů ú ý Í ý é č ž é š š ý ý ú š ě Í č Í Í ú ě Á Í ť Í ě Í š š ň ú č š Ů Í č ď š éí é Č ě ů ý ó ěž š ě ť Í ž ě Č Í ý é Í ÁÉ ň ů Ů ě ú
Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016
Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se
ů ů ď
ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě
ě ž ž Ž Š Ť ť ě ň ť Ž č Ď č č Ď Ž ě ě Č ě Ž Í ěč ěč Ž Ž ě ě č Ž ž ě ž ž ž ž ě žď ě ě Ž Ť Í ě ě č ě ě ě ď Ť ť Ť ň ě ž ě ňí Ť ě ž ě ž ě ň ě ž ě č ž Í č
ě Ú ě ě Ž Ť č ň ě Ť č č č ě ž ě ž ň ě Ž č ě ů ž Ž Í Ťž ú ž č Ť ě Ť ť ě ž ž ť ž ě ž ě Ž ě ž Ť č Ť ě ě ž ě č ž ě ě ě Ť č Ť Ž ě ť ě ě ž ě ž ž Ž č ž Ť ž Ť ž ě ž Ť žď Ť ž Ť Ť ě č Ť ž Ť Í ě č Ť ě ě ž ž ě Ť č
Kinematika hmotného bodu
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
ř ý ý ř é Ť š ř ř é ř ě ž ě č č č é ů é š ř é Ť é ř é ř ě Č ě ě úč ě ě ě č ů č ů ř ř é ě ž č é Ž ěř ý é ř é ý é ž č š úč č é ů ů č é ů ř ž é ěř é ě ř ž ř č é ů é ě č č ý ů š č é ů ř ž é ěř č ů é ž ě ř
é éž á ó ý ě č ě í ž é é š é í é š ě ě í é í ú úž ú é ž ě ž ď ý ý řě ě ě á š á š ř ý ďá ě ě ě ú Ž ý ť ě ž řěčí ě ž í šě š ž ř ř ěř ďá ó ř š Žá ě í ě ý
Í Í Ý í í í ě ý á é í á ř č é á ý á ý ň ó š á č ě é ř ř čí é ú č ž é š á é á í á ř č Č á č ě š ě á í ď š á ř é í é ě á í čá ď Í ěč é é ěř é ě ší ě á í é žď á á š ř čí é š ě ž ýš á í é ě á ď ř ě í é á ú
é ě ž Í ě ěž Í Ť ě é ě Ž ě é ě ěš ě ž é ě ž Ť ň ě é é é Ž Í é Í ě ě é ň é Í ď ě ě š š é ď ě é ě ě é é ž é é ď ě Ž š é ě š ť ě ž é Ž Č ž ě ž ť ě Š ě Í
š ňě é é ž Ó é Í š éě é ě Í ě š ž Í ň ě ž ě é é ť ě ď ď ě ď ě é ě š ě žšď é é é ě ě é ě š ě š é ě é ě ě ě š ž é é ď é ě é ě š é ž Š ď š š š ď ďé ě ď é ě é é ť Ď ď ě ě é ž ě ď ě ž ž š é ě Í Í ď ě ž Ť ě
3.1.3 Vzájemná poloha přímek
3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné
Ť ž í ž í Ť š í ž í íč ž Ť ě í Č š š Ť Ž š Ť š ě í š Ť Ťí š í č Č í í ě č ě Ť š í í í í í ě Ť š č í ňí í í í Ť ň š š ě í í č š í í í č ěš š í Ť š Ť ě
É É Ř Í č É Í Ň É ř ž Ť í í í í í š č í í í í í Ť Ě ě č Í Ť ě í ž ě ž í Ť Í č š Ó í íž í í ě ě š ě č š í Ťí ž ě í č í ě í í č í í Ť ě ě í Ý ě Ť í Ť Ť š Ťíš ě č ě ě ž ě Ď č ě íž í í ě č í ž ž Ť í Ť ž Ž
Í ž é é é é ž é š ů š š é ú é ůž Ú Ú š é é ž ž ž Í ž š Ú Ž é ď é ť é Í é š éů ů ť Š ů Í é Í Í š š ů ú é ž ž
š é Ž é ť ť é ž ž é é ú ú ž é Č Ž é é Í Ž Ž é ž ů ť é ú ů š ú š š ď ů ž ž é ú ž š é ž é ú š š Š š Ž Ž é ů ž Í Í é šť é ž ť š Š š ů é š š ť ů ů š ž Í Č ť é ť ž ž Š Š ů ů ů é ť ů é ů Ž š é Í Í ž ž ť é Í
é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž
Ě Ě ů ř Ž ř Ů Ú Ě ú Ž ř ř Ž ř é úč ř ú Í ř Ž Í ř ů š ř é ů ů é é Í é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž ř ř ý ý ž é ř ů ů é ř ž ů ž ý ž č ý é Ž ů Í
Ě Č ě Š Í Č Ě ě č ň
Ť É Í Ě Č ě Š Í Č Ě ě č ň Í č č č Á Ť č Ť Í ť č Ť č č ě ě ž ě Ť Í ě Ž č ě ě ě ž Ž Í š ť Ď ž č ě ě š Ť ě ě Ě ě š ě ě č Í ž ě ě š Ž šš ž Í Ť Ž ž ě ž Ť Ť ž ď č š ž ž Í Ť š ě Ť ě ž č ď č č ž Í č š Ž Ž Í č
č íč ý š íč š í é ř í ě ř é ě í č š í ž í č ě á ří ž é ě é á ě é í č é š ř í é í ě í ý á í ů á í ž ř š ž é ř é ě í á í ý š íč é á í ě ě í ž čá ý é žá
ÍČ Ý č ář ý ý č ě í á í ž č ř á ý ří á č é ž í é í š í š ší ý á í ý ý č ě ř č á é ří íč č é é ář í á í ů ší é é í š ý č ě á í ý ů ří ů í ě á č ř á í á í á í á č é ě í íč č á ž ě č é č ě ě č í á í č ě š
á é á á ž š áí ť ě ů ž š ř ě ů ř ě ž š ž ě é ýš á á ý ář ě ů ř ě ě é ý ď ž á ď ě á ě é ě ě ř š é á á ř ý á á á ž ř ú á á ř ž ý ář ě é á š ž á á é é ů
ě á á áš é ě á é é ě ě š ř ů á Ť ě ě š ř ů ě á áš á áš ď Á Í Ň Ú á áš ý á ů é žď á ě ř ř ě ž á ň á ů ň á á úř á á Á Ů ř ě ů ď ž Ž á á á ď á á ý ý ě ů ů š ě ů á ě ě š ř ů á á á á é á á ž š áí ť ě ů ž š
č Ó š í é í é í ž íč é Í é Ť č ž é Ž ě Š š é é čí í í ě í Óč é í Ó íč č í í ě ší íč í š í í í č ě í í č ě í ň ě í ě í ě ší í š í Š Í í é Í ě Ó Ťí ěě ě
í Š ě čž ť č í í é ž í č í íč í č ě Ž í ě č Ž Ž š é ě ší Ží č íž š ěží é Ží č ě č é Í ňí é č é é Č Í Í Ž Ů Ž í Ť ň í č Ť Ťí Í í ž č í í š Š ň ě í í Ťí č č Ž Ť š š í č ř í íž í Ž í Ó í í í č í í í ě í Ť
š é ě é é č ě é é ž é č ž é é ě ý é é ý č Í č č ů ý ě ň é ů é ů ů š ě š ě ě ň ě ů š ý ý č č ů Ú Ú ý ě ů ý ě ž é ž č č Ú ž ž ě ě ě Š ů ě ý ě ň ý ě ý Ť
ě ýú Č š š ě ě Č ž ě ú Č ú č ě ě š ů ú é ú Č Ř š é č é Ú Č ž ě é ů ý Ú Č š ž Ú ž č é é š ý č ě ý č é éč Ú ž š é é ý é č ě Č č ý ť éč ý ů ž č ť ý ý č ě é ď č Ť š č ě š ú šť é č ě ě ě š ů ú Č č é ě é ú é
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é
Á ž č é ž ě Č é ě ě ó Í č ý č č ý ú č ý ž Í ý ú ž ý š ý ý é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é é š é ž ě č ý ý ě é ž ě Í ý ě ý č
é ě é ň é Ž Ž ě é Ž Ž ě Í ú Í é ů ů ú ě é Š é ěž Í ě Č ď Ž ě ě Ť Č ú Č ů Č Č Č Č Č ú Č é ě Í Í Í Ť ž é ě ě ůž ě Í Č é ť Ó ě
Ě Ý Í Č ě é ě é ě ě é ě ů ů é Ž ů ě ě ů ú ů ůž Ž ů Ž ě é é Ž é Ž Ó é ů Ž ě é Ž ě ů é ě ů é Ž é ť ě ěž Ž Ž é Ž ě ě ů é ěž é é é ů é Ž ěí é Ž ě Ž Ž ě ě ě ě ě ů é é ů ě ě é ť é ě Š ě é ě é ň é Ž Ž ě é Ž Ž
Ú Ř ř é ř š ě ě č Ř ř é ř š ě ř šť ě ň ř ý ě č ř š É é č š ě ů ř šť š č ř ř ř š ě ě ě ň ě ů ř é ř š ě ř š ě ř ř é ř š ě ř č ř é ě é ř é ř š ě ř é ř š
ř š ě ě ň ř ě ř é ř š ě č Ť é ě ě ý ě č é řó ř š ě ě ň ř Ú Ř ř é ř š ě ě č Ř ř é ř š ě ř šť ě ň ř ý ě č ř š É é č š ě ů ř šť š č ř ř ř š ě ě ě ň ě ů ř é ř š ě ř š ě ř ř é ř š ě ř č ř é ě é ř é ř š ě ř
MATEMATIKA III. Program - Křivkový integrál
Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
ď š Ú Ž é š š ě ě ě ě ě Ž š Ž ě ě š ť Ú ěš ě ě é š ě Ž ěš ě š é ě š š š ě ěš š Ž Ž é ě ě ě ě é é ě ě é ě Ú ě é ě é ě ť é É Š ě é š ě Ž é é é é ě ě Č é š Ž š š é é Ž š é ě Č š ě ě š ě ěž é é š é ěž é Ž
Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í
Í ř č č ř ý š ř ů é ý ž č č ý é úč é č č Úč Úč é ž č é ř č Č ý ř č ř ý Č ý Č ř š ý é ž č é ž ý é ř č é ř é ř ř č ř é č č č é č ů š č ý ý ý ř č é úč ř
č Í č č ý ý ú ř é é ž Č Č Č ř ý ý ú š ý Ú Č š é Č Š ř š é č úč ý ý ý ř ú ý č ý ý ú š ý Ú é š Č ř é é ž Č Č Č úč ý ř ý č č Í ř č č ř ý š ř ů é ý ž č č ý é úč é č č Úč Úč é ž č é ř č Č ý ř č ř ý Č ý Č ř
č é é ů č č č č Ř č é č ů č é š ž ž é é ž é Ž é č é é Ž é ř é ž ř ž š é š Í é č é ř š Č š č Ť š ž é é Í š ž é ž ř č é ď č ž É Ú Ž č č č č ů č é č éč č
úř ž ř úř Č ř ř Ú Í Ú Í Í Ř Á ÁŠ Í Í úř ž ž é ú ů é Ř ú Ř Ř š úř úř ř š ú ř š ř ů ř š ř ů ř ř ž ž Í ú ř š Ž é Ř č ú Ř š č šú ú ř ž č ú Ř č č ž š é ó š óž ř ů é é ó ó ó Úš č é é ů č č č č Ř č é č ů č é
Ý áš á í é ť š í
ří ď ě ě é ř ý ří ý é úř á ú ě ě ř ář í ší ž í ř í í Í ř ý áš ě ů é í ď Í ř ý řá óš í áš í ý í ř š í á á ř ří ž ě ž ď š ě í í í á žá ý á Í ÍŽ Š Á Ó ř č í Í é ž é ž á í á á Ž ř ě ž ú á á č ě ě í ěž á í
... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š...
2 0 1 2 / 2 01 V ý r o č n í z p r á v a o č i n n o s t i š š k o l n í k r2o0 1 2 / 2 01 Z p r a c o v a l : I n g. P e t r a M a n s f e l d o v á D o k u m e n t : I I V O S / I / S M 9 8 8 S c h v
Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti
Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad
ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř
Í Ř Á Ý Š Á Ý ě ě ě ě Ř ě ě Í Í ů ň ň ň ň ň ě ě ě Ď Ú ě ě Č ě Č ó ů Š ěď ě ě ó ě Ř ě ěž ěž ě ž ě ě Č Ú ď ú Ř ě ě ž ě ň Š ě ň Š ů ž ž Š ž ů ž ů ž ž ó Ř Ř ž ě ž ě ě Č ě ž ž ž ž ě ó ú ě Š Č ě ň óž ó ě ě ž
Á č ý ě š ě š č é ě š č ř é ý ů ž ě ž ě é ě ě ý ů é ó é ž ů ý ý ř ý é č ě Ž řč ě š č ý é ě š ě é é ě č č ř řňč ý ý č ý řň ů ř ý ý ř č ě ý č ý ř řň ě ř
Ě Ý Č ě ř Á Č ř č é č č ň ý č š ř ě ú ýř ě ů ř š ů é ě č č é é šř ě ú ů ý ě é ě é ú ě ž č é é ř č č ě ě Á ĚČ ů č ě ř é ř é ů ř ž ř ě ý č ě ě ř ýž ěž Č š ý ů ž é ř š ě č ž č ě ž č č ě é Á č ý ě š ě š č
č é ž Ý č é ž é é ž é é č Ú ž č é ž é Ž é é ť č ť ž ť ž é č é é ž é é é č é ž ť č ž é ž ž ž é č č č č ž é é č é é ž č é ž é ž é ž é č é č č č é é é ž ž é č č č č ž ž é ž é é é é é č č é ž Ž č Ž ž č ž ž
é ě Č Í ě ě š ě ě é č ě ě ž č ě Č ě é ě ě é Í Č ě á ě ě ě á č Š ě č é Č č ě č ě ě é č ě č ě ž é ě Š á ě á á č á á Ů š á šš é ě ě á á á Á č á á á č ě á
Ě Ý úř č é á ě ú á ž č á č č č Ř Á Áš é ú ě ý ú č š ý č á Ú á č ě á ě ý ů é ě š ů á á ě é ó á á ě á á ě ů á á á é á žáď š Č Šě á ú ě éúč é á á ú Š č é á ú é é š Ň á é č á č á č á ě Ú ě á ě ě č ú ě é úč
é ž é č ž ř ě úř ě ů č č é č ř š ě ě ě ř ě ř ů ě é ě ě ř ř š ď ř ě ý é ť č ě ž ý ě ý ř ů ě ý é ě ú ř ě ě š ř ů š ě ř ž ř š úč š ň š ě ý úř ř ý é č é ý
Á É é č č Ž ť ř Á ž Č É Í Ř ž ř ť ť ř ť ý ť č ý é Č ý ý úč č ě Č ř ř ř č ě é ř Č úč ř ř ž é ě ř Ú ř ž ž ý ž é ř ú ž é č ř ř ě ř ě ř ě ž ý č ý é é ě č ř é úč ř č é č é é ěř Ž ý ž ů ý é é ž ý ý ř Ů ž ý ř
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA VZORCE. k bakalářské zkoušce
VYOKÁ ŠKOLA EKONOMCKÁ V RAZE FAKULTA NFORMATKY A TATTKY Kaeda a a avděodobo TATTKA VZORCE baalářé zošce veze 3. oledí aalzace: 3.9.7 KT 7 oá aa Rozděleí čeoí,,..., Kval % z ůmě H H H G... Rozěí R ma -
č š š ř ř Í ů č Ě Á Š ŠÁ Ř Ď É Í Ě Í Í čí ž ě č é č ě ý Ž ř ě č ý ě ý ý ř ě š ý ě ť ý é é ě ě é ě é ř é ř Ť ě š ě ž ě é ě é é ů ě é ř ú ý ý é ěř ý ý š ý ý ž é é š ý š ě ý ř ř ř ě š ý ě ý ý ř ě é Ž é é
č ý č í ó č éš í í Č čš í š ě č ý é ž é ž ů íž ž š ě ý č Ž ů č ý é š ší ů č í ý ž é č ž ů é í í é ěš ě č ž ů é Ť é í íí í Ž ě é í ě ýš ý Í ě ý ě ů ů č
Č š í č ý č čš é í íč š í č í Í í č íč í č íč ó ó ý š í é íš ý ý ý í ě é ý ě í ý ó í ěý ý č Í ě í óí ý š ě č č í í ě Ú ů ě í ý é íš í í ě š í ď íí šší é é ě í š ý ě ě ší ů č íč é ě ě í š é í š ě í í š
1.4.7 Trojúhelník. Předpoklady:
1.4.7 Trojúhelník Předpoklady: 010406 Př. 1: Narýsuj tři body,,, které neleží na přímce. Narýsuj všechny úsečky určené těmito třemi body. Jaký útvar vznikne? Získali jsme trojúhelník. Jak přišel trojúhelník
Kopie z www.dsagro-kostalov.cz
é š š é ó ú Č é ř ěž é ú ó ó ú é ě ó ÚČ Ý éž é ú ň é ú é ě ě ž š Ý Á š é šť úě ó Ý É úě ž řé š ěž ó óš ú š řé é ě ě ž Ý éž ř ó ú Á Ě Éú é šť š š ř ě š ř ó š ň ó Ý š ě ě ž é ř ž ž é ř Ů ě ě ů ě ú š ů é
ý č é ž é č š é é Í č ý ž Š ť ž é č ě ě š ě ý ů ě Í š č ě ý Š č é ě č é č é č ě é é č ě ý úč č é é ů ý č Úč ů ě ú č č Ť ý ů ů ž ůž ěť é é š š ů ý ě ů
é č ů ěš é Š ň č č Ú č č Č é č Ú ě ě ě ů Ú č é ž é é č é ž ý č é ž é č š é é Í č ý ž Š ť ž é č ě ě š ě ý ů ě Í š č ě ý Š č é ě č é č é č ě é é č ě ý úč č é é ů ý č Úč ů ě ú č č Ť ý ů ů ž ůž ěť é é š š
Ť Š č č ž ď č Ž ů Á č ž č ž č ůž č č č č č č ž č ž ůž č ž ď ů Í č č č ž Ž ť Í č ž Š Í Í ó č ď ú ůž č ž ž ž č Š Š ď ť ž ž č ž ž č ž ž ú č ú ú č ž Ť Í č č č č ů ž č č ňč ů ů č č č ž Ť ž č Ž č ž č č č ž
ů ůč ě ř ř č ž ý ů ň č ě ř ě ě ř š ř ů ž ž ú š č ř ý š ú ě č š ž ě ě ž šů š ř ý ř š š ř š ý ě ř ž ý ž ž ý š ř č ž ý ů š ě š č š š ň ě ř šý ř ř ě ř ž ě
č ě ž ř ý ž ř ě ý š ů ě ý ť ě ž č ž ě ř ů ě Á ě ý šř ů ř ů č ů č š ě ř ý ů ěč č š Ť ž š ý ž ěň ř š Ž ň š ě ý Ď š š ó ň Ď ň ž ň ě ž č ě ý ě ů Ť ř ů ň ň ň óř ň Ž ů ůč ě ř ř č ž ý ů ň č ě ř ě ě ř š ř ů ž
á č é ů é ž Á é áří í á í Š á š í í í í í ů ě ů á í á í ů ě č é ů ů á ř í í á ž áň č řá úč í á ě řá ě ěš á ě á ý ý á ž ů á é ů ě Žá é ř í ů ří á é ř á
é é ž Á é í í í Š š í í í í í ě í í ě é í í ž Ň ú í ě ě ěš ě ž é ě Ž é í í é š é í í ší ě Ů í í Č ž Č ž é Č í ž í ú ě í í í ě Č ž í í Ž í í í Č ě í í ě š í ě í Ž í ž ě ě í Č ě í ě í š í ě í é ú í é í é
Souhrn vzorců z finanční matematiky
ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý
ž Í ú č č ě ó ě ě é ó ů Ú č Č č ý š ú ě ó š ý ě é ó ý ý ř ž ó č ť Č č ř č é ý é ě ř é é č é ý č é č č ř ě ě ř ě ž č ý ó ž ý č ý š ě é ř ý š š č é č č é ě č Í ó ó ý č ó ý Ž č č é ů ů ř ě ě š ř ě é ř ě
f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim
KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x
ď ž ě ž š ě ň í ž č š í Ť š í Ť ě ě í Í í ě í Ď ť í í č ť ě íš ň ď ě ž ě š č í ě š í ě čí š í ž í ž í ě ž Ť ž ď č ď ě ší í í č ě ž í í Š ď šíč Š š č í
Íí ě í č í ť ž ě ť ě ě ě í čí š í í í ě č š ž ě ž í í í í í Ý í í í Í í ě Ť í í ž č ě ď ě č íž ě ě ď í š í š í í č Ťíš í í í ě č ž š č ž ě í ž ž č ží ě ší Ť í Ž í číš ě ž í ě ě Ž č č ňí í čí Ťí í š í í
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č
ž ž č Ý ť ž ž Ó š á ď č č č ž Ó á ě é ě ž á ě š á ěč ě á ť ž á ď áš Ť ď Ž ď á š é é é á ž ď ď ďč á ž š ď á á é č č é é á ť ž ň ěď á é Ž á ž ď á ě Ť á ž é é é ě ě á žá žď é ě áť é á Ž č č é Ý ď ě é é ě
š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š
ý ú ť ťť ú č š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š é š ř ř ž ň é ť š é ň š ýř ů ě ě é ň š ď ý ů č ž ř ž č ř ř ě ě č
é žď ě ř ř ě ž ň ů é ě é ř ě ě š ř ů ó ě ě ě š ů ě ě š ř ů ě ó š óš ř ě ů š š é žď ě ř ř ě ž ň é ú ě ě ě ř ěř ú é é é é é é é ú ě ú é š š ú ě ř ů ů ě é é ů ú ž é é ů é ž é ř ě ě ě ě ř ř é é ž š ž é ř š
Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í
ú ÉČ Ě Í ó Ó Ó Ó ů Ž ú ň ů Íň Í ú ů ú ť ů ť ň Č Í Í Ý ÍÝ ÍÝ Ý Ý Ý Ý ť ó ó Ě Ě Ť ť É Ě Ě ť ť Ť Ě ÉÉ ĚĚÉŤ É ň ó Ť É É Ž ó Ě Ě Ť Ě Ě É Ě Ě Ě Ě Í Ě Ě ĚĚĚ Ě Ě Ě Ě É É Ě É Ě Ě ť Ý Č ů ó ů ů ú Ž ů ů ů Č ů ů Č
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Í Í ř ť é č é Č é é č é Ť Ť č é Ť Ť é Í ť Ť Š é č é é Í Ě č č é é Ť č Ó ň é é Ť Í Í Ť é é Í ň č é é Ž é é č č é Ó č Ó é č Ú é é Ť é Ť Ť Ť Ť é ť ňč ň é
Ů ú é Ť Ť Ť č č Ť é Í Ť č é č é é č Á Í Í é ň ú Ó č é Ť č Ť Ť č č é č é č ň č é é Ý Ě Ů Ť Ť Č Ť é Ť é č Ť Ť Ť Ť ů č Ť č Ť é č é ť č é Ť Ť Ý č é Ť č é Ť é é č éť é Ť Ť é Ť é č é é é č é é é é é Ť ň Ť é
š á Ž í ěž ě šíť í á Ž é ž ž í ě í á á ž á é ě í ě ší í é é é é ž é á č á ň ě ší í é é é ě é ě á á Ť í ž á é í Ť é í Ť č ží ěť á Ť ší é í é í é ř í í
š Ž ěž ě šť Ž ž ž ě ž ě ě š ž č ň ě š ě ě Ť ž Ť Ť č ž ěť Ť š ř č ě ě ě š Ť ž ě ěť ž Ž Ť š Ť Í ž Ť ě č ěž Ť Ť Ý ě ě ž Ť Ť ž ň ú ě š ž ěž ě šť Ž ž ž Í Í ě ž Ů ě ě š Ž č Ť ě š ě ě Ť Ť ž Ť Ť č ž ěť Ť š ř
ě ž ů ř ě ě ě ěš Č ů ě ě ě ě é ž ě ěš ě ě ě é ě ěš ý ě ě ě ě ý ě ě š ř ů é Ž ě ěš ú ě ěš é ě ěšť ě Č ě Č Č ř Č é ě ř Č é ě ř Č Č ě ů Č š Ř ě ř Č ěš Č
ř ř ě Ú ď é ř ý ý ě ř ř ě é ě é ř ř é ů ěš ó Č ů é Ž ř ě ý ř ř é ž ů é ž ř ě š ě ě ý é ř ř ř é ř š é Ž é ů ř Ž é ř ř ř é é ř ě ů ř é ů Ž ř é ů ř ů ů ř ý ů ž ř é ů ř ěš ó ř é ř š ě ě ě ěš ě ř ě ěš é é ů