Sekvenční logické obvody(lso)
|
|
- Jindřich Kříž
- před 9 lety
- Počet zobrazení:
Transkript
1 Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách výstupích sigálů. Stav výstupích sigálů logických sekvečích obvodů je tedy fukcí okamžitých hodot vstupích stavů a fukcí předchozího výstupího stavu, tedy vitřích sigálů. Tím se LSO liší od kombiačích obvodů, u kterých výstupí sigály jsou fukcí pouze okamžitých stavů vstupích sigálů. Logické sekvečí obvody také azýváme klopé obvody V LSO logickém sekvečím obvodu rozlišujeme stav- jeho vstupů (vstupí sigály) jeho vitří stav ( vitří sigály ) jeho výstupů ( výstupí sigály ) Obecě ozačujeme vitří stav LSO písmeem Pro další úvahu si ozačíme vitří stavy obvodů : - 1 -
2 je stav obvodu v okamžiku (také v čase t) +1 je stav obvodu v okamžiku +1, tedy v době ásledující ( také v čase t + t ) Vlastosti klopých obvodů KO a) klopý obvod může zaujímat pouze jede ze dvou vitřích stavů 0, ebo 1 b) stav klopého obvodu v určité době je podmíě stavem tohoto obvodu v době předcházející a stavem vstupích sigálů v době předcházející +1 = f (, v 1, v 2 ) kde v 1 a v 2 jsou hodoty vstupích sigálů v okamžiku c) výstup klopého obvodu ( paměťového čleu ) zobrazuje bezprostředě jeho vitří stav. Obvykle má klopý obvod dva výstupy ozačeé a, kde výraz představuje egaci stavu. 1.1 Rozděleí LSO-klopých obvodů- a) podle způsobu sychroizace je dělíme a a1) sychroí- změy stavů jsou řízey sychroizačími impulsy a2) asychroí změa vstupích stavů působí přímo a výstupy se zpožděím b) podle vstupů je dělíme a : jedovstupové dvouvstupové c) podle způsobu ovládáí vstupů : hladiové MS ( Master- Slave ) Derivačí d) podle fukce je dělíme a : klopé obvody RS T D JK - 2 -
3 2. Klopý obvod RS bistabilí KO Klopý obvod RS má dva stabilí stavy: = 1; = 0 Pokud se epřivede a vstupy R, S žádý sigál (R = S = 0), pak klopý obvod zůstává v předchozím stavu po příchodu log 1 (H) a vstup S, obvod překlopí do stavu 1 (H) = 1, = 0 po příchodu log 1 (H) a vstup R, obvod překlopí do stavu 0 (L) = 0, = 1 Trasformačí tabulka obvodu RS S R +1 trasformace 0 0 M paměťová trasformace - stav obvodu se eměí přechod do = obvod klopí do stavu = x x edefiovaý tzv. zakázaý stav obvodu Zjedodušeá tabulka obvodu RS Úplá tabulka obvodu RS i R S i R S x x x x x x Zjedodušeá tabulka představuje tzv. defiičí podmíky klopého obvodu RS. Tato tabulka má ve srováí s jiými dříve používaými tabulkami jedu zvláštost. Pokud jsou vstupy S, R obvodu ve stavu log 0, stav výstupu ezávisí ai a S ai a R, ale závisí a předchozím stavu obvodu, tedy a tzv. vitřím stavu. Při řešeí tedy uvažujeme další vstupí veličiu a tou je předchozí výstupí stav obvodu, který je obvodem zpěté vazby přiřaze ke vstupím proměým R a S. Tuto problematiku řeší tzv. úplá tabulka klopého obvodu - 3 -
4 RS. V této tabulce jsou vyjádřey výstupí stavy obvodu v době ásledé, vyjádřeé stavem +1. Z úplé tabulky vyjádříme operátorovou rovici obvodu pro ásledý stav. K vyjádřeí operátorové rovice obvodu použijeme metodu miimalizace pomocí Karaughovy mapy. Z mapy vyjádříme operátorovou rovici +1 = S + R Při řešeí operátorové rovice využijeme eurčité stavy obvodu-velká smyčka. Výsledou rovici upravíme pro realizaci pomocí De Morgaových zákoů. +1 = S + R = S. R čle. R ahradíme potom +1 = S. doplíme-li úplou tabulku egací výstupí proměé +1, pak po sestaveí Karaughovy mapy pro tuto proměou určíme druhý tvar operátorové rovice, pomocí tzv. miimálí součiové formy. S. R Z této mapy opět vypíšeme operátorovou rovici v miimalizovaé formě +1 = R + S. po úpravě +1 = R + S. = R. S. = R. Sekvečí obvod typu RS je možé realizovat buď pomocí hradel NAND, ebo hradel NOR. Ukážeme si realizaci v obou případech, obvod s hradly NOR bez odvozeí - 4 -
5 obr.1 Obvod RS realizovaý hradlem NOR obr.2 Obvod RS realizovaý hradlem NAND Tabulka přechodů Typ přechodu R S setrváí ve stavu = 0 U 0-0 přechod ze stavu = 0 do = 1 e 0 1 přechod ze stavu = 1 do = 0 d 1 0 setrváí ve stavu = 1 U Rozbor: a) pro setrváí ve stavu = 0, musí být S = 0 a a stavu R ezáleží, protože při kombiaci S = 0 ; R = 0 je = 0 b) do stavu = 1 obvod překlopí pouze při kombiaci R = 0 ; S = 1 c) do stavu = 0 obvod překlopí pouze při kombiaci R = 1 ; S = 0 d) ve stavu = 1 setrvá obvod pro R = 0 ; S = 0, ebo R = 0 a S = 1-5 -
6 Z Karaughovy mapy se také sestavuje mapa přechodů. Vytvoříme ji tak, že v políčku kde = 0 se ahradí všechy 0 typem přechodu U 0 a všechy 1 typem přechodu e a v políčku kde = 1 se ahradí všechy 0 typem přechodu d a všechy 1 typem U 1 Mapa +1 Mapa přechodů 0 1 S R x x 1 S R U 0 U 0 x e 1 d x U 1 U 1 Pro každý sekvečí obvod bude vždy platit, že mapa přechodů musí mít alespoň jede přechod typu e a d, přechody u mohou chybět. Klopý obvod RS je základím obvodem a používá se jako sychroí a asychroí. Je velmi vhodý pro ošetřeí spíačů, eboť má jedozačé stavy. Je základím stavebím prvkem dalších obvodů T ; D ; JK - 6 -
7 3. Klopý obvod D Název obvodu je odvoze od slova delay = zpožděí. Chováí obvodu připomíá zpožďovací čle. Je to paměťový čle odvozeý z klopého obvodu RS. Přeáší v koicideci s hodiovými ( taktovacími ) impulsy iformaci ze vstupu D a výstup.. Po příchodu log 1 (H) a vstup D obvod přechází do stavu (H), po příchodu log 0 (L) překlopí obvod do stavu 0 (L). Asychroí vstupí sigály R, S klopý obvod ulují a astavují do stavu 1, ezávisle a hodiových impulsech. Sychroí režim je defiová vstupím sigálem D a hodiovými impulsy. Klopý obvod se překlápí v okolí čela hodiového impulsu. Trasformačí tabulka D +1 Trasformace Zjedodušeá tabulka i D Úplá tabulka Tabulka přechodů i D Úplá tabulka respektuje vitří stav obvodu. Z úplé tabulky sestavíme Karaughovu mapu, ze které defiujeme operátorovou rovici obvodu D. Karaughova mapa přechod D u 0 0 e 1 d 0 u 1 1 D = D Pro realizaci obvodu provedeme rozšířeí operátorové rovice obvodu o čle. +1 = D ( + ) = D + D - 7 -
8 čle v závorce představuje 1, eboť = 1 a současě = 1, v podstatě ásobíme čle D jedičkou. Pro realizaci obvodu upravíme operátorovou rovici pomocí de Morgaových zákoů. +1 = D + D = D. D Realizace obvodu D pomocí hradel NAND obr.3 Zapojeí klopého obvodu D - 8 -
9 4. Klopý obvod T Je to bistabilí klopý obvod v asychroím režimu s jedím vstupem T a dvěma výstupy a. Tc vstup hodiových impulsů obvod se vstupem Tc pracuje jako sychroí, obvod bez vstupu Tc jako asychroí. Zkratka T je odvozea ze slova Trigger- spouštěí Klopý obvod T měí svůj stav při příchodu každého hodiového impulsu. Platí tedy, že +1 =. Z pravdivostí tabulky obvodu J-K vidíme, že tuto fukci plí obvod J-K pro stav J = K = 1. Obvod typu T má tedy dva vstupy, vstup T ( spojeé vstupy J-K) a vstup pro hodiové impulsy. Je-li T = 1, pak obvod překlápí a platí že +1 =, je-li T = 0, obvod zůstává v původím stavu +1 =. Tato fukce obvodu T se využívá u sychroích čítačů. Pokud eí uté obvod T elektricky ovládat, vystačíme s obvodem typu D, u ěhož spojíme výstup se vstupem D. Trasformačí tabulka T +1 Trasformace 0 M 1 K Zjedodušeá tabulka i T Úplá tabulka obvodu T i T Z úplé tabulky obvodu vyjádříme operátorovou rovici obvodu: - 9 -
10 =. T +. T = ( + T )( + T ) a + 1 =. T +. T + 1 a = ( + T ). ( + T ) teto zápis je v disjuktí formě NAND zápis je kojuktí formě NOR Realizace obvodu T hradly NAND vytvoříme Karaughovu mapu pro úplou disjuktí formu Z mapy vytvoříme operátorovou rovici miimalizovaé fukce, v tomto případě miimalizaci eprovádíme. + 1 =. T + T +. provedli jsme rozšířeí operátorové rovice o posledí čle, který představuje 0. Následě provedeme úpravu tak, že z posledích dvou čleů vytkeme před závorku čle ( T ) + 1 =. T +. + výraz v závorce upravíme podle de Morgaových zákoů ze + 1 součtu egací a egaci součiu : =. T + T. a celou pravou vziklé rovice zovu uplatíme de Morgaův záko, když před tím celou pravou část rovice dvakrát egujeme +1 = T. kde = ( T ). obr.4 Obvodová realizace LSO typu T
11 Mapa přechodů přechod T Aby obvod setrval v libovolém stavu musí být T = 0,aby u 0 0 obvod překlopil musí být T = 1 e 1 d 1 u 1 0 Klopý obvod typu T se používá jako asychroí s derivačím vstupem. Je používá jako dělič kmitočtu, ebo čítač
12 5. Klopý obvod typu JK Klopý obvod JK je sekvečí obvod se dvěma vstupy a symetrickými výstupy a. Chováí obvodu JK slučuje chováí obvodů RS a T. Po příchodu logické úrově 1 (H) současě a oba vstupy J, K, obvod překlápí do opačého stavu, tedy se chová jako obvod T. Trasformačí tabulka J K obvodu Zjedodušeá tabulka J K obvodu J K +1 trasfomace i J K M( paměť) K ( klopí) Zjedodušeá tabulka respektuje stav vstupích proměých J a K, erespektuje vitří stav obvodu. Pro vytvořeí operátorové rovice obvodu a pro jeho realizaci sestavíme úplou tabulku obvodu. Úplá tabulka J K obvodu vychází z paměťové fukce obvodu, eboť pro řešeí uvažuje i vitří stav obvodu. Vzhledem k tomu, že vstupí proměé mají počet tři- ; J ; K ;bude tabulka obsahovat osm řádků eboť 2 3 = 8 i J K vitří stav =0, J = K= 0 paměťová trasformace +1 = vitří stav =0, J =0; K=1 ulová trasformace +1 = vitří stav =0, J =1;K= 0 jedičková trasformace +1 = vitří stav =0, J = K= 1 klopá trasformace +1 = vitří stav =1, J = K= 0 paměťová trasformace +1 = vitří stav =1,J =0; K= 1 ulová trasformace +1 = vitří stav =1, J =1;K=0 jedičková trasformace +1 = vitří stav =1, J = K= 1 klopá trasformace +1 =0 Z úplé tabulky sestrojíme Karaughovu mapu pro stav +1 operátorovou rovici obvodu J K, a z mapy vyjádříme tzv. mapa obsahuje dvě smyčky, takže zápis provedeme v miimálí disjuktí formě
13 +1 = J + K pro realizaci obvodu pomocí součiových hradel NAND, provedeme rozšířeí operátorové rovice, tak že k pravé straě přičteme 0, tím se stav rovice eměí. Hodotu 0 představuje výraz.. +1 = J + K + z této části výrazu vytkeme před závorku ( K ) +1 = J + + egaci součiu součet čleů v závorce upravíme dle de Morgaových zákoů, ze souču egací a +1 = J + K abychom mohli obvod realizovat pomocí součiových hradel, musíme upravit výraz a součiový tvar. K tomu použijeme jedoduchou úpravu, když pravou strau rovice zegujeme dvakrát- hodoty výrazu se ezměí. Prví egaci uplatíme ve tvaru egace součtu, přičemž oba součiy a pravé straě představují jede čle. +1 = J. K NAND, tedy apř. obvodem MH 7400 takto vytvořeý výraz již můžeme realizovat pomocí čtyř dvouvstupových hradel obr.5 Obvodová realizace LSO typu JK Tabulka přechodů Obvod setrvává ve stavu = 0 buď je-li J = K = 0, ebo je-li K = 1 a J = 0. Setrváí ve stavu 0 je tedy ezávislé a hodotě vstupu K( může být libovolé), je-li J = 0. Obvod překlápí do stavu = 1, je-li J = 1 a K = 0, ebo jsou-li oba vstupy J = K = 1. Překlopeí do stavu = 1, je tedy ezávislé a hodotě vstupu K (může být libovolé), je-li J = 1 přechod J K u e 1 - d - 1 u
3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy
3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy
VíceČíslo materiálu VY_32_INOVACE_CTE_2.MA_17_Klopné obvody RS, JK, D, T. Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projeku CZ..7/.5./34.58 Číslo maeriálu VY_32_INOVACE_CTE_2.MA_7_Klopé obvody RS, JK, D, T. Název školy Auor Temaická oblas Ročík Sředí odborá škola a Sředí odboré učilišě, Dubo Ig. Miroslav Krýdl
VíceDERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
VícePOLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
VíceMatematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceKapitola 5 - Matice (nad tělesem)
Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceMatematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceAritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Více6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
VíceI. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0
8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VíceIAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
Vícef x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
Víceje číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost
Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceLineární programování
Lieárí programováí Adjugovaý problém lieárího programováí V případě řešeí problému lieárího programováí LP ma{ c T : A b 0} získáváme výchozí přípustou jedotkovou bázi u doplňkových proměých a za předpokladu
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
VíceNávrh synchronního čítače
Návrh synchronního čítače Zadání: Navrhněte synchronní čítač mod 7, který čítá vstupní impulsy na vstupu x. Při návrhu použijte klopné obvody typu -K a maximálně třívstupová hradla typu NAND. Řešení: Čítač
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
VíceSpojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
VíceAnalýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace
Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí
VíceAbstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceKomplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
VíceFunkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
VíceOKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN
Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,
VíceSTUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6
Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II
Více9.1.12 Permutace s opakováním
9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
Více2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
Vícen=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
Více23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
Vícen=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceZformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):
Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při
VíceZákladní požadavky a pravidla měření
Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu
Více8. KMITOČTOVÉ SYNTEZÁTORY A ÚSTŘEDNY, ČASOVÉ ZÁKLADNY
. KITOČTOVÉ YTEZÁTOY ÚTŘEY, ČOVÉ ZÁKLY myčka ázového závěsu myčka ázového závěsu = regulačí smyčka s automatickým řízeím ázový ebo také kmitočtový detektor, iltr s charakterem dolí kmitočtové propusti,
Více1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
Více9.1.13 Permutace s opakováním
93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
VíceRovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Rovice RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Rovice kombiatorické VY INOVACE_5 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Skupiy prvků, kde záleží a pořadí Bez opakováí Počet Vk( )
VíceZÁKLADNÍ TYPY DŮKAZŮ, MATEMATICKÁ INDUKCE
Projekt ŠABLONY NA GVM Gymázium Velké Meziříčí registračí číslo projektu: CZ07/500/098 IV- Iovace a zkvalitěí výuky směřující k rozvoji matematické gramotosti žáků středích škol ZÁKLADNÍ TYPY DŮKAZŮ, MATEMATICKÁ
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
Vícep = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:
ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá
VíceMatice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
Více6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI
6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících
VíceIterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
VíceSeznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.
2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
VíceMATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
VíceDůkazy Ackermannova vzorce
Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
Více1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu
1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou
Více7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Více2.4. INVERZNÍ MATICE
24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Více3. cvičení - LS 2017
3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a) fx) x 5x+4 4 x b) fx) x x +4x+ c) fx) 3x 9x+ x +6x 0 d) fx) x 7x+0 4 x. Řešeí a) Nulové body čitatele a jmeovatele
VícePřednáška 7: Soustavy lineárních rovnic
Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé
VíceDIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
Více1 Trochu o kritériích dělitelnosti
Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
VíceM - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
Více3. cvičení - LS 2017
3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a fx x 5x+4 4 x b fx x x +4x+ c fx 3x 9x+ x +6x 0. Řešeí a Nulové body čitatele a jmeovatele jsou { 4}. Aby vše bylo
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která
VíceP. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt
VíceO Jensenově nerovnosti
O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
VíceDefinice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
VíceGeometrická optika. Zákon odrazu a lomu světla
Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
Více1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );
1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1
VíceDISKRÉTNÍ MATEMATIKA PRO INFORMATIKY
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
VíceZnegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:
. cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
VíceStatistika pro metrologii
Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých
VícePřijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
VíceVlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
VíceUžití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
VícePřijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika
Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
Více1. Základy měření neelektrických veličin
. Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci
Více7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
Více= + nazýváme tečnou ke grafu funkce f
D E R I V A C E F U N KCE Deiice. (derivace Buď ukce,!. Eistuje-li limitu derivací ukce v bodě a začíme ji (. lim ( + lim Deiice. (teča a ormála Přímku o rovici y ( v bodě, přímku o rovici y ( (, kde (
Vícedefinované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12
Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se
Více1. Zjistěte, jestli následující formule jsou tautologie. V případě záporné odpovědi určete k dané formuli konjunktivní a disjunktivní normální formu.
Výrokový počet. Zjistěte, jestli ásledující formule jsou tautologie. V případě záporé odpovědi určete k daé formuli kojuktiví a disjuktiví ormálí formu. i) A C) = B C) = A B) ) ii) A B) = A C C B ) iii)
VíceModelování jednostupňové extrakce. Grygar Vojtěch
Modelováí jedostupňové extrakce Grygar Vojtěch Soutěží práce 009 UTB ve Zlíě, Fakulta aplikovaé iformatiky, 009 OBSAH ÚVOD...3 1 MODELOVÁNÍ PRACÍCH PROCESŮ...4 1.1 TERMODYNAMIKA PRACÍHO PROCESU...4 1.
VíceNávrh čítače jako automatu
ávrh čítače jako automatu Domovská URL dokumentu: http://dce.felk.cvut.cz/lsy/cviceni/pdf/citacavrh.pdf Obsah ÁVRH ČÍTAČE JAO AUTOMATU.... SYCHROÍ A ASYCHROÍ AUTOMAT... 2.a. Výstupy automatu mohou být
VíceAnalýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály
Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam
Více