Kontaktní úloha v kombinaci s technikou superprvků
|
|
- Štefan Slavík
- před 6 lety
- Počet zobrazení:
Transkript
1 onference ANSYS 2009 ontaktní úloha v kobinaci technikou uperprvků Jiří Podešva VŠB - Technická univerzita Otrava Abtract : The odeling of the roller bearing bring two iportant proble. The contact proble ean that two urface touch one another. The contact tranit the preure force but not tenile force. It i not known neither the contact area nor the ditribution of the contact preure. The econd proble i the largene of the tructure, the nuber of degree of freedo (DOF). Nowaday the hardware allow to olve the large yte of equation. Neverthele if the nuber of DOF go over 10 5 or 10 6 and the algorith neceitate the iterative approach thi could be the proble. The effective way of olution can be doain decopoition uing o called upereleent. The paper bring the decription of odeling with uper-eleent and olving the contact proble. Abtrakt : Modelování valivého ložika přináší dva význané probléy. U kontaktního probléu předpokládáe, že dva povrchy e budou dotýkat. Dotyk přenáší tlakovou ílu, ne však tahovou. Není dopředu jané ani jak velká bude kontaktní plocha, ani jaké bude rozložení kontaktního tlaku. Druhý problée ůže být velikot úlohy. Dnešní hardware ice uožňuje rychlé řešení velkých úloh. Přeto při počtu tupňů volnoti v řádu 10 5 až 10 6 a při použití algoritů, vyžadujících opakování výpočtu, ůže toto předtavovat problé. Účinnou cetou řešení ůže být dekopozice odelu na tzv. uper-prvky. Přípěvek přináší popi odelování použití uper-prvků a doplnění odelu o kontaktní prvky. eyword : contact, urface, preure, large tructure, doain decopoition, uper-eleent líčová lova : kontakt, povrch, tlak, velká truktura, dekopozice, uper-prvek 1. Úvod Metoda konečných prvků je v dnešní době široce využívanou etodou řešení nejrůznějších úloh echaniky kontinua, ale i jiných druhů fyzikálních probléů. Její aplikace přináší nutnot řešení různých průvodních probléů. Dne již typickou úlohou odelování echanických outav je kontaktní problé. Dvě tělea ají polu navzáje protý kontakt dotyke. Modelování této vazby přináší dva probléy. Vazba je nelineární, přenáší ílu ve ěru tlaku ale nikoliv ve ěru tahu. Přenáší-li vazba tlak, pak nejen že není dopředu znáo rozložení kontaktního tlaku, není znáa ani velikot a tvar kontaktní plochy (pro vybrané úlohy je znáo Hertzovo řešení, tí e však pro odelování praktických úloh nevytačí). oerční prograové balíky, určené pro odelování echaniky kontinua etodou konečných prvků, dne již nabízí řadu nátrojů pro řešení tohoto probléu. Přeto e nedá říci že kontaktní problé by byl uzavřenou kapitolou.
2 TechSoft Engineering & SVS FEM Praxe odelování etodou konečných prvků přináší čato nutnot řešení extréně velkých outav rovnic. Ačkoliv pokrok v oblati hardwaru počítačů je veli rychlý, hledají e i jiné efektivní cety řešení tohoto probléu v oblati ateatické. Jednou z ožnotí je rozdělení oblati, na níž daný problé řešíe, na několik podoblatí. Vlatní řešení pak probíhá ve třech fázích : výpočet atic podoblatí, řešení na rozhraní podoblatí a řešení uvnitř podoblatí. Pro podoblati bývá někdy používáno označení uperprvky nebo akroprvky. 2. ontaktní problé ontaktní úloha ezi dvěa těley bývá obvykle řešena dvěa adai povrchových prvků, pokrývajících kontaktní povrchy. V Anyu e ji říká contact a target. Jedno těleo e pokryje contact prvky, druhé target prvky. V průběhu výpočtu progra kontroluje zda nedochází k proniknutí (penetraci) uzlů contact povrchu do target povrchu. contact urface Obr. 1. ontaktní a cílový povrch. target urface 3. Technika rozkladu na podoblati Tato technika vede k radikálníu nížení počtu tupňů volnoti řešené úlohy. Metody redukce počtu tupňů volnoti lze rozdělit do dvou kupin. Eliinační etody počívají v eliinaci (zanedbání) velkého počtu tupňů volnoti. Typický předtavitele je etoda tatické kondenzace. Tranforační etody počívají v definování úplně nové ady ouřadnic (tupňů volnoti) protřednictví tranforační atice. Nejznáější je etoda odální tranforace. Technika rozkladu na podoblati patří do první kupiny. Uvažuje klaickou úlohu lineární tatiky ve forě aticové rovnice q = kde je atice tuhoti, q je vektor neznáých pounutí a f je vektor zatěžujících il. Rozdělíe nožinu neznáých q na podnožinu q (ater) neznáých, jež budou po redukci zachovány, a podnožinu q (lave) neznáých, jež budou eliinovány. Mateatický zápi pak bude ít tvar f
3 onference ANSYS 2009 q q f = f neboli q q + + q q Vyjádříe-li z druhé rovnice neboli q = ( f q ) q = f q dotáváe po doazení do první rovnice outavu rovnic rovnováhy pro ater tupně volnoti ve tvaru ( ) q f Použijee-li ubtituce = f f ají rovnice rovnováhy outavy, redukované na ater tupně volnoti, tvar q kde je redukovaná atice tuhoti a f je redukovaný vektor zatěžujících il. Potup lze pro úlohy lineární dynaiky rozšířit o redukovanou atici hot M a redukovanou atici tluení B. uvedenéu je třeba dodat že zatíco atice tuhoti celé kontrukce á obvykle ilně páový charakter, redukovaná atice tuhoti je obecně plná. Proto je třeba volit počet ater tupňů volnoti co nejenší. Obr. 2. Základní truktura, rozdělená na tři ubtruktury.
4 TechSoft Engineering & SVS FEM Uvažuje echanickou trukturu, jejíž topologie nabízí přirozené rozdělení na několik ubtruktur, pojených navzáje vazbai, obahujícíi co nejenší počet tupňů volnoti. Ty budou zachovanýi ater tupni volnoti, uvnitř ubtruktur leží eliinované lave tupně volnoti. Redukovaná atice tuhoti takovéto truktury pak předtavuje atici tuhoti outavy, v níž e jednotlivé ubtruktury jeví jako jednotlivé konečné prvky. Protože však tyto ubtruktury předtavují ve kutečnoti značně koplikované outavy, užívá e pro ně terín akro-prvky nebo též uper-prvky. Jak je zřejé z odvození, tyto uper-prvky uí být vnitřně lineární. Naproti tou budou-li použity pro vytváření rozáhlejšího odelu, tento odel ůže kroě uper-prvků obahovat i jiné typy prvků a ůže být nelineární. 4. Modelování ložika Předěte odelování je dvouřadé kuželíkové ložiko peciální kontrukce. Cíle je zjitit kontaktní tlaky na valivých těleech. Za títo účele byl vytvořen tandardní konečnoprvkový odel použití objeových oiuzlových prvků. Na dotykových plochách valivých těle vnitřní a vnější kroužke byly generovány páry kontaktních prvků. Ložiko je tvořeno vnitřní kroužke, dvěa vnějšíi kroužky a dvěa řadai po 35 valivých těleech. aždé valivé těleo á kontakt vnitřní a vnější kroužke, celke tedy 140 kontaktních párů. Pro generování kontaktních párů bylo nutno napat akro, obahující výběr uzlů na jednotlivých valivých těleech a na obvodu kroužků, a definování kontaktních prvků. Obr. 3. Ložiko. Poznáka : všechny kroužky jou aozřejě úplné. Zde na obrázcích jou dělené aby byl zřejý jejich profil.
5 onference ANSYS 2009 Obr. 4. Vnitřní kroužek, oba vnější kroužky a valivé těleo. Model byl doplněn o kontaktní plochy - po dvou na každé ze 70 valivých těle, kontakty vnitřní a vnější kroužke. Vzhlede k počtu kontaktních ploch neohl být použit tzv. contact wizard v Anyu. Bylo nutno napat akro, obahující cyklu, v jehož každé yčce byly definovány kontakty na jedno dolní a jedno horní valivé tělee. Výledke náledné tatické analýzy bylo rozložení kontaktních tlaků na kontaktních plochách. [MPa] -.907E Obr. 5. Rozložení kontaktního tlaku, detail.
6 TechSoft Engineering & SVS FEM 5. Použití uper-prvků Jako jednotlivé uper-prvky byly definovány tři kroužky a 70 valivých těle (viz obr. 4). Definování valivých těle jako uper-prvky bylo nutno provét akre, obahující přílušný cyklu. Značný problé předtavovalo definování kontaktních ploch. Povrchové kontaktní prvky lze generovat teprve na již exitující 3D íti objeových prvků. Ty určují topologii kontaktní plochy. Při použití uper-prvků neexituje íť objeových prvků. Proto bylo nutno uložit íť kontaktních prvků, tak jak byla vytvořena na tandardní konečnoprvkové odelu, a načít ji do uper-prvkového odelu. tou bylo nutno zajitit hodné čílování uzlů na kontaktních plochách. 6. Závěr Jetliže tandardní konečnoprvkový odel, tvořený zejéna objeovýi oiuzlovýi prvky, čítá tupňů volnoti, odel užívající uper-prvky á pouze tupňů volnoti. Jde tedy o výraznou redukci velikoti úlohy. To ovše za cenu poěrně koplikovaného potupu vytvoření tohoto odelu. Praktické využití je tedy poněkud probleatické. Reference 1. Crifield M. A., Non-linear Finite Eleent Analyi of Solid And Structure, John Wiley & on, Chicheter, olář V., Něec I., anický V., FEM Principy a praxe konečných prvků, Coputer Pre, Praha, Zhi - Hua Zhong, Finite Eleent Procedure For Contact - Ipact Proble, Oxford Univerity Pre, Oxford, Subtructuring, Any anual. 5. The non-linear analyi, Any anual. Poděkování Tento přípěvek byl vypracován za podpory výzkuného záěru MSM názve Výpočetně náročné počítačové iulace a optializace.
Provedeme-li tuto transformaci v obecném modelu soustavy ve tvaru
7. Redukce počtu tupňů volnoti O životnoti a polehlivoti outav rozhoduí do značné íry eí dynaické vlatnoti. Proto e outavy u nich e předpokládá dynaické zatěžovaní iž v návrhu podrobuí dynaický analýzá.
HAVÁRIE KONSTRUKCE STŘECHY HALY VLIVEM EXTRÉMNÍHO SNĚHOVÉHO ZATÍŽENÍ
III. ročník celotátní konference SPOLEHLIVOST KONSTRUKCÍ 99 Téa: Cety k uplatnění pravděpodobnotního poudku bezpečnoti, provozuchopnoti a trvanlivoti kontrukcí v norativních předpiech a v projekční praxi,
Umělé neuronové sítě jako prostředek pro modelování nelineárních soustav
Acta Montanitica Slovaca Ročník 3 (998), 4, 489-494 Uělé neuronové ítě jako protředek pro odelování nelineárních outav Ivan Taufer a Oldřich Drábek The Artifical Neural Network a ean for odeling Nonlinear
4. TROJFÁZOVÉ OBVODY
Katedra obecné elektrotechniky Fakulta elektrotechniky a inforatiky, VŠB - T Otrava 4. TROJFÁZOVÉ OBVODY rčeno pro poluchače všech bakalářkých tudijních prograů FS 4. Úvod 4. Trojfázová outava 4. Spojení
Téma: Analýza kmitavého pohybu harmonického oscilátoru
PRACOVNÍ LIST č. Téa úlohy: Analýza kitavého pohybu haronického ocilátoru Pracoval: Třída: Datu: Spolupracovali: Teplota: Tlak: Vlhkot vzduchu: Hodnocení: Téa: Analýza kitavého pohybu haronického ocilátoru
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
Posouzení stability svahu
Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové
Laboratorní práce č. 3: Kmitání mechanického oscilátoru
Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA
Katedra geotechniky a podzemního stavitelství
Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního
Metoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace tudijního oboru Geotechnika Reg. č. CZ..7/../8.9 Metoda konečných prvků Základní veličin, rovnice a vztah (výuková prezentace pro. ročník navazujícího tudijního oboru Geotechnika) Doc. RNDr. Eva
Kompresory pístové. Další dělení je možné podle počtu stupňů, pohonu, dopravované látky, způsobu chlazení atd.
Kopreory pítové Rozdělení Hlavní čáti Pracovní oběhy p.k.-princip činnoti Základní výpočty pro jednotupňový kopreor Několikatupňová kopree Základní výpočty pro dvoutupňový kopreor Upořádání vícetupňových
Nelineární úlohy při výpočtu konstrukcí s využitím MKP
Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Katedra obecné elektrotechnky Fakulta elektrotechnky a noratky, VŠB - T Otrava 4. TROJFÁOVÉ OBVODY 4. Úvod 4. Trojázová outava 4. Spojení ází do hvězdy 4.4 Spojení ází do trojúhelníka 4.5 Výkon v trojázových
5.4.6 Objemy a povrchy rotačních těles I
5.4.6 Objey a povchy otačních těle I Předpoklady: 050405 Pedagogická poznáka: Stejně jako u nohotěnů i u otačních těle e vzoce po objey a obahy e neodvozují, žáci ohou využívat tabulky a cíle hodin je,
Náhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
Simulace oteplení typového trakčního odpojovače pro různé provozní stavy
Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses
VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU
VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU Ing. Petr FRANTÍK, Ph.D., Ing. David LEHKÝ, Ph.D., Ústav stavební echaniky, Fakulta stavební, Vysoké učení technické v Brně, tel.:
dynamika hmotného bodu, pohybová rovnice, d Alembertůvprincip, dva druhy úloh v dynamice, zákony o zachování / změně
Dnaika I,. přednáška Oba přednášk : dnaika otnéo bodu, pobová ovnice, d lebetůvpincip, dva du úlo v dnaice, zákon o zacování / zěně Doba tudia : ai odina Cíl přednášk : eznáit tudent e základníi zákonitoti
Gymnázium, Ostrava-Poruba, Čs. exilu 669
Gynáziu, Otrava-Poruba, Č. exilu 669 STUDIJNÍ OPORA DISTANČNÍHO VZDĚLÁVÁNÍ ŘEŠENÍ FYZIKÁLNÍCH ÚLOH ANTONÍN BALNAR Otrava 005 Recenze: prof. RNDr. Erika Mechlová, CSc. Publikace byla vytvořena v ráci projektu
ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ
ČEZDitribuce, E.ON Ditribuce, E.ON CZ., ČEPS PREditribuce, ZSE Podniková norma energetiky pro rozvod elektrické energie ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST : PŘÍKLADY VÝPOČTŮ Znění pro tik PNE 041 druhé
Studium tenkých mazacích filmů spektroskopickou reflektrometrií
Studiu tenkých azacích filů pektrokopickou reflektroetrií Pojednání ke tátní doktorké zkoušce. Ing. Vladiír Čudek Útav kontruování Fakulta trojního inženýrtví Vyoké učení technické v Brně Obah Obah Úvod
1. Hmotnost a látkové množství
. Hotnost a látkové nožství Hotnost stavební jednotky látky (například ato, olekly, vzorcové jednotky, eleentární částice atd.) označjee sybole a, na rozdíl od celkové hotnosti látky. Při požití základní
Head space. - technika výhradně spojená s plynovou chromatografií
Izolační a eparační etody J. Poutka, VŠCHT Praha, ÚPV 204, http://web.vcht.cz/poutkaj Head pace (nebo Headpace nebo Head-pace) - technika výhradně pojená plynovou chroatografií - vzorkuje e tzv. hlavový
Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6)
Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) 1.a) Jetliže kolo automobilu neprokluzuje, je velikot okamžité rychloti
5. cvičení z Matematické analýzy 2
5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v
ŽB DESKA Dimenzování na ohyb ZADÁNÍ, STATICKÉ SCHÉMA ZATÍŽENÍ. Prvky betonových konstrukcí ŽB deska
ŽB DESKA Dienzování na ohyb Potup při navrhování kontrukce (obecně): 1. zatížení, vnitřní íly (E). návrh kontrukce (např. deky) - R. poouzení (E R) 4. kontrukční záady 5. výkre výztuže Návrh deky - určíe:
VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU
Pítový alovací troj je teelný otor, kde e čát energie vzniklá álení aliva řeění v tlakovou energii. Tato energie oocí vhodného echaniu e ění v echanickou energii. Jako nejoužívanější echaniu k řeěně tlakové
ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY
ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla
Stabilita v procesním průmyslu
Konference ANSYS 2009 Stabilita v procesním průmyslu Tomáš Létal VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ, Adresa: Technická 2896/2, 616 69
Základy tvorby výpočtového modelu
Základy tvorby výpočtového modelu Zpracoval: Jaroslav Beran Pracoviště: Technická univerzita v Liberci katedra textilních a jednoúčelových strojů Tento materiál vznikl jako součást projektu In-TECH 2,
VLHKOST HORNIN. Dělení vlhkostí : Váhová (hmotnostní) vlhkost w - poměr hmotnosti vody ve vzorku k hmotnosti pevné fáze (hmotnosti vysušeného vzorku)
VLHKOST HORNIN Definice : Vlhkot horniny je efinována jako poěr hotnoti voy k hotnoti pevné fáze horniny. Pro inženýrkou praxi e používá efinice vlhkoti na záklaě voy, která e uvolňuje při vyoušení při
Zhotovení strojní součásti pomocí moderních technologií
Útav Strojírené technologie Zadání: Speciální technologie č. zadání: Cvičení Zhotovení trojní oučáti poocí oderních technologií Poznáy: Pro zadanou trojní oučát (hotový výrobe) dle pořadového číla viz
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:
Příklady k přednášce 19 - Polynomiální metody
Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako
APLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ
APLIKACE SIMULAČNÍHO PROGRAMU ANSYS PRO VÝUKU MIKROELEKTROTECHNICKÝCH TECHNOLOGIÍ 1. ÚVOD Ing. Psota Boleslav, Doc. Ing. Ivan Szendiuch, CSc. Ústav mikroelektroniky, FEKT VUT v Brně, Technická 10, 602
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Analýza dynamické charakteristiky zkratové spouště jističe nn
Konference ANSYS 2009 Analýza dynamické charakteristiky zkratové spouště jističe nn Ing. Petr Kačor, Ph.D., Ing. Martin Marek, Ph.D. VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky, Katedra elektrických
teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů
Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9
METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU.
METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU. THE METHODOLOGY OF THE BEAM STIFFNESS SUBSTITUTION CALCULATION. Jiří Podešva 1 Abstract The calculation of the horizontal mine opening steel support can be performed
TECHNICKÁ UNIVERZITA V LIBERCI
ECHNICÁ UNIVERZIA V LIBERCI FAULA SROJNÍ atedra aplikované kybernetiky Obor 3922 Automatizované ytémy řízení ve trojírentví Zaměření Automatizace inženýrkých prací Programový modul pro automatické eřízení
7. cvičení návrh a posouzení smykové výztuže trámu
7. cvičení návrh a poouzení mykové výztuže trámu Výtupem domácího cvičení bude návrh proilů a roztečí třmínků na trámech T1 a T2. Pro návrh budeme jako výchozí hodnotu V Ed uvažovat největší hodnotu mykové
s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do
Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø
( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )
( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...
přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu
7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací
středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko
tředové promítaní všechn promítací paprk procháejí jedním bodem (vlatní) třed promítání neachovává e rovnoběžnot vdálenot objektů od tředu promítání ovlivňuje velikot jejich průmětů vdálenější objekt mají
Příklad 1 Ověření šířky trhlin železobetonového nosníku
Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování
4. Práce, výkon, energie
4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy
Kovové vlnovce a kompenzátory
Kovové vnovce a kopenzátory 87cz//0/0/0 Witzenann Opava po. r.o. Nákadní u. č. 7 7 0 Opava Teefon: +4 6 8 Teefax: +4 6 opava@witzenann.cz www.witzenann.cz OBSAH Witzenann Opava Předtavení firy Witzenann
teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky
Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice
Prvky betonových konstrukcí BL01 9 přednáška
Prvky betonových kontrukcí BL01 9 přednáška Prvky namáhané momentem a normálovou ilou základní předpoklady interakční diagram poouzení, návrh namáhání mimo oy ouměrnoti kontrukční záady Způoby porušení
Příklady k přednášce 19 - Polynomiální metody
Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo
středové (perspektivní) promítání vytváří obrazy podobné těm, které vidí lidské oko
tředové promítaní všechn promítací paprk procháejí jedním bodem (vlatní) třed promítání neachovává e rovnoběžnot vdálenot objektů od tředu promítání ovlivňuje velikot jejich průmětů vdálenější objekt mají
Systém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
Technické informace. Statika. Co je důležité vědět před začátkem návrhu. Ztužující věnce. Dimenzování zdiva
Co je důležité vědět před začátkem návrhu Nonou kontrukci zděných taveb tvoří zdi a tropy vytvářející protorově tabilní celek, chopný přenét do základů veškerá vilá a vodorovná zatížení a vyrovnávat edání
Numerická simulace sdílení tepla v kanálu mezikruhového průřezu
Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper
ROBUSTNÍ ŘÍZENÍ DVOUROZMĚROVÉ SOUSTAVY ROBUST CONTROL OF TWO INPUTS -TWO OUTPUTS SYSTEM
ROBUTNÍ ŘÍZENÍ DVOUROZMĚROVÉ OUTAVY ROBUT CONTROL OF TWO INPUT -TWO OUTPUT YTEM Jiří Macháček Anotace: Návrh decentralizovaných regulátorů je založen na podínkách robustní stability a robustní kvality
FSI analýza brzdového kotouče tramvaje
Konference ANSYS 2011 FSI analýza brzdového kotouče tramvaje Michal Moštěk TechSoft Engineering, s.r.o. Abstrakt: Tento příspěvek vznikl ze vzorového příkladu pro tepelný výpočet brzdových kotoučů tramvaje,
BEZSTYKOVÁ KOLEJ NA MOSTECH
7. 9. března 01 01 BEZSTYKOVÁ KOLEJ NA MOSTECH Doc. Ing. Otto Plášek, Ph.D Vysoké učení technické v Brně, Fakulta stavební 1. ÚVOD V současné době probíhá rozsáhlá odborná diskuze ke spolupůsobení ostní
ZHODNOCENÍ OBTÍŽNOSTI VÝKLADOVÉHO TEXTU SOUČASNÝCH ČESKÝCH UČEBNIC PŘÍRODOPISU PRO 6. AŽ 9. ROČNÍK ZŠ POMOCÍ DVOU METOD
ZHODNOCENÍ OBTÍŽNOSTI VÝKLADOVÉHO TEXTU SOUČASNÝCH ČESKÝCH UČEBNIC PŘÍRODOPISU PRO 6. AŽ 9. ROČNÍK ZŠ POMOCÍ DVOU METOD Libuše Hrabí Katedra přírodopiu a pětiteltví PdF UP v Olomouci Abtrakt V tomto článku
Červen 2014. Tlaková potrubí z polyethylenu
Červen 2014 Katalog výrobků Tlaková potrubí z polyethylenu Červen 2014 Obah Obah Katalog Rozvoy voy PE 100.......................... 5 SafeTech RC...................... 9 Wavin TS........................
Popis fyzikálního chování látek
Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna
Násobení. INP 2008 FIT VUT v Brně
Náobení INP 2008 FIT VUT v Brně Náobení a náobičky Při náobení číel v dvojkové outavě můžeme náobit abolutní hodnoty číel a pak doplnit do výledku znaménko, anebo raději náobit přímo číla e znaménkem.
BENCHMARKOVÝ MODEL CHLADICÍHO ZAŘÍZENÍ V SUPERMARKETECH SUPERMARKET REFRIGERATION BENCHMARK MODEL
BENCHMARKOVÝ MODEL CHLADICÍHO ZAŘÍZENÍ V SUPERMARKETECH D. Honc, F. Dušek Katedra řízení proceů, Fakulta elektrotechniky a informatiky, Univerzita Pardubice Abtrakt Řízení rozáhlých ytémů je prakticky
1. Matematický model identifikované soustavy
IDENTIFIKACE SOUSTAVY SEDAČKY SEDAČKA C.I.E.B TYPOVÉ ŘADY 5 A NÁVRH REGULAČNÍHO OBVODU GHARAZI SAYED MOHSEN Technická univerita v Liberci, fakulta trojní, katedra aplikované kybernetiky, Hálkova 6, 46
MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:
Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:
[ ] C A. rozlišovací schopnosti jednotlivých médií: oko (1 úhlová minuta), negativ (100 čar/mm), CCD (velikost pixelu)
rozlišovací ez objektivu rozlišovací chopnoti jednotlivých édií: oko (1 úhlová inuta), negativ (1 čar/), CCD (velikot pixelu) difrakce na kruhové otvoru o poloěru R: první axiu obahuje cca 8% energie prošlého
ANALÝZA VÍCEROZMĚRNÝCH DAT
ANALÝZA VÍCEROZMĚRNÝCH DAT JIŘÍ MILITKÝ, Katedra textilních ateriálů, Technická universita v Liberci, Hálkova 6 461 17 Liberec, e- ail: jiri.iliky@vslib.cz Motto: Všechno není jinak MILAN MELOUN, Katedra
POČÍTAČOVÉ MODELOVÁNÍ NELINEÁRNÍCH PROBLÉMŮ ANSYS WORKBENCH
Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní POČÍTAČOVÉ MODELOVÁNÍ NELINEÁRNÍCH PROBLÉMŮ ANSYS WORKBENCH Návody do cvičení předmětu Výpočty v mechanice s použitím MKP Jiří Podešva Ostrava
Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)
Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních
ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA
TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační
1.1. Primitivní funkce a neurčitý integrál
Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia
4. cvičení z Matematické analýzy 2
4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45
1.1.14 Rovnice rovnoměrně zrychleného pohybu
..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů
ZPRACOVÁNÍ VÝBĚRŮ Z ASYMETRICKÝCH ROZDĚLENÍ
ZPRCOVÁÍ VÝBĚRŮ Z SYMERICKÝCH ROZDĚLEÍ JIŘÍ MILIKÝ, Katedra tetilních materiálů, echnická univerita v Liberci, 46 7 Liberec MIL MELOU, Katedra analytické chemie, Univerita Pardubice, Pardubice btrakt Jou
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava
7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy
7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový
Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky
Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz
ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME
1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se
Soustavy se spínanými kapacitory - SC. 1. Základní princip:
Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je
MOŽNOST PRAVDĚPODOBNOSTNÍHO VÝPOČTU KRITICKÉ ÚNAVOVÉ TRHLINY METODOU PDPV
MOŽNOST PRAVDĚPODOBNOSTNÍHO VÝPOČTU KRITICKÉ ÚNAVOVÉ TRHLINY METODOU PDPV Vladiír Toica 1) a Martin Krejsa 2) Abstract: Degradation of bridges structures is accidental event expressed ainly as fatigue
SIMULACE PROCESU TUHNUTÍ A CHLADNUTÍ KRUHOVÉHO PREDLITKU SIMULATION OF SOLIDIFICATION PROCESS OF ROUND CC BLANK
SIMULACE PROCESU TUHNUTÍ A CHLADNUTÍ KRUHOVÉHO PREDLITKU SIMULATION OF SOLIDIFICATION PROCESS OF ROUND CC BLANK Miroslav Príhoda Jirí Molínek René Pyszko VŠB Technická univerzita Ostrava, 17. listopadu
Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou
Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem
IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL
IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením
VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička
VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU Ing. Aleš Hrdlička Katedra technické kybernetiky a vojenké robotiky Vojenká akademie v Brně E-mail: hrdlicka@c.vabo.cz Úvod Tento článek popiuje jednoduchou
Newtonův zákon I
14 Newtonův zákon I Předpoklady: 104 Začnee opakování z inulé hodiny Pedaoická poznáka: Nejdříve nechá studenty vypracovat oba následující příklady, pak si zkontrolujee první příklad a studenti dostanou
TAH/TLAK URČENÍ REAKCÍ
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava
ELEKTRICKÝ OBVOD, ZÁKLADNÍ OBVODOVÉ VELIČINY,
ELEKRCKÝ OBVOD, ZÁKLADNÍ OBVODOVÉ VELČNY, CHARAKERSCKÉ HODNOY Elektrotechnické zařízení Schéa Elektrický obvod Elektrotechnické zařízení druh technického zařízení, které využívá přeěny elektrické energie
Posouzení skupiny pilot Vstupní data
Posouzení skupiny pilot Vstupní data Projekt Datu : 6.12.2012 Název : Skupina pilot - Vzorový příklad 3 Popis : Statické schéa skupiny pilot - Pružinová etoda Fáze : 1 7,00 2,00 +z 12,00 HPV Nastavení
Teorie systémů a řízení
VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie
Úvod do předmětu, úvod do problematiky CAE a MKP (přehled nástrojů a obecné postupy CAD/CAE, vazby součástí CAE)
CAD/CAE ÚNOD: Jan Tippner, Václav Sebera, Miroslav Trcala, Eva Troppová. Úvod do předmětu, úvod do problematiky CAE a MKP (přehled nástrojů a obecné postupy CAD/CAE, vazby součástí CAE) Podpořeno projektem
Obecný princip 3D numerického modelování výrubu
Obecný princip 3D numerického modelování výrubu Modelovaná situace Svislé zatížení nadloží se přenáší horninovým masivem na bok tunelu Soustava lineárních rovnic Soustavou lineárních rovnic popíšeme určované
FUZZY STOCHASTICKÁ ANALÝZA SLOŽITÝCH SOUSTAV ČÁST II CHARAKTERISTIKY FUZZY NÁHODNÉ VELIČINY
FUZZY STOCHASTICKÁ ANALÝZA SLOŽITÝCH SOUSTAV ČÁST II CHARAKTERISTIKY FUZZY NÁHODNÉ VELIČINY FUZZY STOCHASTIC ANALYSIS OF COMPLEX SYSTEMS PART II CHARACTERISTICS OF FUZZY RANDOM VARIABLE Mirolav Pokorný
4 HMM a jejich trénov
Pokročilé metody rozpoznávánířeči Přednáška 4 HMM a jejich trénov nování Skryté Markovovy modely (HMM) Metoda HMM (Hidden Markov Model kryté Markovovy modely) reprezentujeřeč (lovo, hláku, celou promluvu)
MODELOVÁNÍ KOORDINACE SILNĚ ZÁVISLÝCH SVĚTELNÝCH KŘIŽOVATEK 1. ÚVOD
MODELOVÁNÍ KOORDINACE SILNĚ ZÁVISLÝCH SVĚTELNÝCH KŘIŽOVATEK Modeling strongly dependent crossroads coordination Ing. Michal Turek h.d. Vysoká škola logistiky o.p.s. Katedra logistiky a technických disciplín
Tvarová optimalizace v prostředí ANSYS Workbench
Tvarová optimalizace v prostředí ANSYS Workbench Jan Szweda, Zdenek Poruba VŠB-Technická univerzita Ostrava, Fakulta strojní, katedra mechaniky Ostrava, Czech Republic Anotace Prezentace je soustředěna
Parametrická studie vlivu vzájemného spojení vrstev vozovky
Konference ANSYS 2009 Parametrická studie vlivu vzájemného spojení vrstev vozovky M. Štěpánek a J. Pěnčík VUT v Brně, Fakulta stavební, Ústav stavební mechaniky Abstract: The testing of a cyclic-load performance
Teorie elektronických obvodů (MTEO)
Teorie elektronických obvodů (MTEO) Laboratorní úloha čílo teoretická čát Filtry proudovými konvejory Laboratorní úloha je zaměřena na eznámení e principem činnoti proudových konvejorů druhé generace a
3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze
3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0
Optimalizace talířové pružiny turbodmychadla
Konference ANSYS 2011 Optimalizace talířové pružiny turbodmychadla Radek Jandora Honeywell, spol. s r.o. HTS CZ o.z., Tuřanka 100/1387, 627 00 Brno, radek.jandora@honeywell.com Abstract: Po testech životnosti