( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )

Rozměr: px
Začít zobrazení ze stránky:

Download "( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )"

Transkript

1 ( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí... Matematickým modelem edačky je diferenciální rovnice, jejíž řešení popiuje její pohyb. Připomeňme její odvození. F F y c m k y m F1 F F3 F m. g váha řidiče F 1 c. y reakce pružiny F k. y k. dy/dt reakce tlumiče F 3 m. y m. d y/dt etrvačný odpor F 3 F F 1 F m. y k. y c. y F m m 1 m m 1 hmotnot edačky m hmotnot řidiče g gravitační zrychlení c koeficient tuhoti pružiny k koeficient tlumení tlumiče Pro konkrétní hodnoty : m 1 0 kg m 0 kg m m 1 m kg g 10 m/ c N/m F m. g N k, N/m nabývá diferenciální popi tvaru : 100. y 400. y 000. y F Poloha edačky y je vztažena k utálenému tavu, odpovídajícímu deformaci pružiny vyvolané amotnou její váhou bez vnějšího zatížení. Váhu řidiče lze považovat za vnější ílu F [N] půobící na edačku. Poznamenejme, že kladnou výchylku y imulované reakce je nutné chápat tak, jak je naznačeno na obrázku, tedy proednutí měrem dolů.

2 Předpokládejme, že v utáleném klidovém tavu edačky ( nulové počáteční podmínky : y(0) 0, y (0) 0 ) doedne náhle řidič a vyvolá tak její pohyb. Řešení diferenciální rovnice za těchto podmínek a tímto buzením analyticky popiuje vyvolaný pohyb. Řešení : Nejprve připomeňme tatickou úvahu uvedenou již v první čáti textu. Jedná e o určení y( ) lim y(t), tj. celkové proednutí edačky v utáleném tavu, po odeznění t přechodového děje. Tuto hodnotu můžeme určit velmi nadno i jednoduchou úvahou bez použití ložité matematiky ( matematický rozbor však muí tento závěr amozřejmě potvrdit ). Z fyzikální podtaty je zřejmé, že e jedná o tabilní ytém v tom mylu, že po doednutí řidiče na edačku dojde k přechodovému ději, který e za konečný ča prakticky utálí. Po dotatečně dlouhé době t proto platí : F F( ) 00, y y ( ) 0, y y ( ) 0, y y( ) 0. Diferenciální popi tak přechází do tvaru : 100. y ( ) 400. y ( ) 000. y( ) F( ) y( ) 00 y( ) m 10 cm Zabývejme e dále pohybem edačky po doednutí řidiče. Její pohyb je analyticky popán v čae řešením uvedené diferenciální rovnice. Řešme ji pomocí Laplaceovy tranformace. Je to velmi jednoduchý a efektivní aparát, který nám umožní převét lineární diferenciální rovnici na rovnici algebraickou, v tomto tvaru pak nalézt řešení ( jeho obraz ) a opět ho převét zpět do čaové oblati. Byť tento potup vypadá na první pohled ložitě, řešení diferenciální rovnice je tímto způobem velmi jednoduché. K formálnímu řešení vytačíme několika málo korepondencemi a vlatnotmi, viz příloha na konci tohoto textu. Obraz diferenciální rovnice nalezneme nadno : 100. y 400. y 000. y F viz příloha na konci textu F(t) 00 / F( 100.[ y(0 ) y'(0 ) ] 400.[ y(0 ) ] 000. F( Obraz diferenciální rovnice je rovnice algebraická jedinou neznámou, obrazem řešení : y(0 ) [100 y'(0 ) 400 y(0 ) ] F(

3 vyjádřili jme tak obraz reakce dynamického ytému pro jakékoliv buzení a počáteční podmínky, v našem konkrétním případě však : 00 y( 0 ) y'(0 ) 0 ; F( ( 4 0 ) ( 4 )( 0 ) Poznámka : Hodnotu y( ) reakce edačky po odeznění přechodového děje můžeme ověřit již v této fázi řešení z nalezeného obrazu využitím limitních korepondencí mezi obrazem a předmětem (viz příloha na konci textu). y( ) lim lim 0 0 ( 4 )( 0 ) SROVNEJ! Použitím druhé limitní korepondence určíme naopak začátek pochodu, který muí být v ouladu e zadanými počátečními podmínkami. y( 0 ) lim lim ( 4 )( 0 ) 0 y' (0) lim ( 4 )( 0 ) Ověření hody těchto limitních hodnot v této fázi řešení je vhodnou kontrolou právnoti nalezeného obrazu. Poznamenejme však, že hoda hodnot nedokazuje právnot obrazu, ale naopak rozpor by prokázal chybu. 0 Řešení popiující pohyb edačky v reálném čae zíkáme zpětnou Laplaceovou tranformací. Nejprve obraz rozložíme na oučet parciálních zlomků, které pak potupně podle lovníku korepondencí uvedených v příloze na konci textu převedeme do hledaného předmětu. ( 4 )( 0 ) A B ( 4 ) C ( 0 ) A lim lim 0 0 ( 4 )( 0 ) B 1 lim ( 4 ) lim 4 4 ( 0 ) C 1 lim ( 0 ) lim 0 0 ( 4 ) ,05

4 Poznámka : Koeficienty parciálních zlomků lze určit i jiným způobem. Sečteme-li formálně uvažované parciální zlomky a rovnáme-li koeficienty u přílušných mocnin vzniklého polynomu v čitateli polynomem čitatele rozkládaného obrazu, dotaneme outavu algebraických rovnic, jejíž řešením jou hledané koeficienty (tzv.metoda neurčitých koeficientů). A B C A( 4 )( 0 ) B ( 0 ) C ( 4 ) ( 4 ) ( 0 ) ( 4 )( 0 ) (A B C) ( 4A 0B 4C) 0A ( 4 )( 0 ) ( 4 )( 0 ) A B C 4A 0B 4C 0A 0 0 A B C 5 0,05 Metoda neurčitých koeficientů e zdá být jednodušší (nad je i čatěji používaná), výpočet je však v obecném případě pracnější. Uvedený přítup limitními manipulacemi je vyoce efektivní zejména v případě reálných jednonáobných kořenů jmenovatele rozkládané funkce. Poznámka : Povšimněme i, že koeficienty A, B, C parciálních zlomků jou rezidua obrazu v jeho ingulárních bodech (pólech) a také e tak jako rezidua i počítají. Vzhledem ke tupňům polynomů čitatele (nula) a jmenovatele (tři) obrazu muí být jejich oučet roven nule. ( Součet reziduí je roven podílu koeficientů (n-1)-ní mocniny čitatele a n-té mocniny jmenovatele, kde n je nevyšší mocnina ve jmenovateli obraz muí být racionální lomená funkce ryzí. ) Tato kontrola je vhodným ověřením právnoti rozkladu. Ale pozor! V případě vícenáobných pólů nejou obecně koeficienty všech parciálních zlomků rezidua rozkládaného obrazu. V tomto případě je nutné i uvedený výpočet koeficientů parciálních zlomků poněkud modifikovat, viz např. /1/. Pokud máme obraz rozložený na oučet parciálních zlomků, jme již jen kouíček od hledaného řešení diferenciální rovnice. Z integrální podtaty Laplaceovy tranformace totiž vyplývá, že obraz oučtu dílčích funkcí e rovná oučtu jejich obrazů (a obráceně). Můžeme proto velmi jednoduše nalézt pomocí lovníku L-tranformace předměty odpovídající jednotlivým parciálním zlomkům a vyjádřit hledané řešení jejich oučtem. - 5 ( 4 ) 0,05 ( 0 ) Výledné řešení y(t) y'(t) ( - 5 e ( 0,5 e -4t -4t 0,5 e 0,05 e -0t ) η(t) -0t Rychlot pohybu edačky určíme jako derivaci ) η(t) 1 pro t 0 Symbol η (t) 0 t < 0 ( tzv.heaviideův jednotkový kok ) formálně ošetřuje platnot uvedeného vztahu jen pro t 0.

5 Ověřme právnot limitních hodnot řešení na začátku a na konci děje : y (0) lim y (t) lim ( - 5 e -4t 0,05 e -0t ) 0 t 0 y'(0 ) lim y'(t) y ( ) y '( ) lim y '(t) t t 0 t 0 t 0 lim y (t) t lim ( 0,5 e lim ( t -4t - 5 0,5 e e -4t -0t ) -4t -0t lim ( 0,5 e 0,5 e ) 0 SROVNEJ! t 0,05 e Ověření analytického a imulačního výledku imulací v protředí Matlab - Simulink : -0t 0 ) Soubor Model_edacky_3a.mdl viz příloha textu Simulační model edačky řidiče byl doplněn funkčním blokem (ve chématu označeno žlutě) realizujícím analytické řešení diferenciální rovnice. Praktická hoda je prokázána překrytím obou průběhů zakrelených do jednoho grafu (fialový průběh). Technická poznámka : Zobrazení různých průběhů do paralelních oken grafu zajitíme natavením parametru Number of axe v liště zobrazovače.

6 Situace. Dynamický ytém na mezi periodicity. Minimální hodnota tlumení k, při které e ještě neobjevují kmitavé ložky průběhu. Kořeny charakteritické rovnice jou reálné náobné. ( Modifikace matematického řešení. ) Obraz řešení diferenciální rovnice za tejných okolnotí jinými hodnotami kontrukčních parametrů pec m 100 m k c ( k 10 0 ) c 000 charakteritická rovnice a její kořeny 4 k 10 ± k k ; 1, pro dvojnáobný kořen k k ,9 10 [ N/m] 17, ,,94 Hodnota na mezi aperiodicity Obraz řešení je v tomto případě A B Y ( ( k 10 0 ) (,94 ) (,94 ) A lim lim 0 0 (,94 ) B lim (,94 ) lim 0,9,94,94 1 d d C lim { (,94 ) } lim lim,94 1! d,94 d,94 C (,94 ) Poznámka : V případě vícenáobných pólů by e koeficienty parciálních zlomků kleající mocninou kořenového činitele počítaly jako limita ze tejně rotoucí derivace {dtto} vynáobené faktoriálním koeficientem 1/n!, n řád derivace. Poznamenejme, že uvedené limity jou v regulárních bodech, takže e jedná jen o pouhé doazení hodnot (tejně tak, jako i v předcházejícím případě). Poznámka : V tomto případě jou rezidua pouze koeficienty A a C ( pozor! - B není reziduum ). Také i zde amozřejmě platí, že oučet reziduí je roven nule A C 0. 0,9 (,94 ) (,94 ) y(t) ( 0,9 t e -,94t e -,94t ) η(t)

7 Situace 3. Dynamický ytém kmitavý vlatními harmonickými ložkami pohybu. Kořeny charakteritické rovnice jou komplexní. Předpokládejme hodnoty parametrů m 100 [kg], k 400 [N/m], c [N/m] Y m 1 00 k c m 100 k 400 c 000 ( Charakteritická rovnice a její kořeny ; 1, 4 ± ( ) ± i,7 Kořeny charakteritické rovnice jou komplexní, dynamický ytém má vlatní kmity frekvencí,7 [rad/] a exponenciálním tlumením e -t. Rozklad na parciální zlomky předpokládáme díky komplexním kořenům ve tvaru A B C ( 4 0 ) 4 0 Koeficient A určíme nejlépe reziduálním výpočtem, koeficienty B a C metodou neurčitých koeficientů A lim lim B C (B ) (C 0,4) 4 0 ( 4 0 ) ( 4 0 ) B 0 C 0,4 0 0,4 4 0 B ; C 0,4 Náleduje důležitá úprava druhé čáti rozkladu ( parciálního zlomku odpovídajícího dvojici komplexně družených kořenů ) do tvaru podle poledních dvou korepondencí uvedených ve lovníku na konci textu TRIK! y(t) ( e { e 0,4 ( ) 76 -t -t co 76 t 0, e 76 ( ) 0, ( ) 76 ( ) ( ) 76 dále už jen jednoduchý převod podle uvedeného lovníku do předmětu in 0, t ) η(t) [ co(,7 t) 0,0 in(,7 t) ]} η(t) -t 76 ( ) 76

8 Podle vkuu, případně další kometická úprava y(t) [ e -t in (,7 t 1,37) ] η(t) [ e -t co (,7 t 0,) ] η(t) 0,0 ϕ ψ arctg 0,0 0,0 arctg 1,37 0, Situace 3.- jiná varianta řešení Předpokládejme tejnou ituaci, tejnou diferenciální rovnici, ukažme i však jinou variantu přechodu od obrazu k řešení v čaové oblati. Předpokládáme tejné hodnoty parametrů m 100 [kg], k 400 [N/m], c [N/m] Y m 1 00 k c m 100 k 400 c 000 ( ( Stejná je amozřejmě i charakteritická rovnice a její kořeny ; 1, 4 0 ) 4 ± ± i,7 Rozklad na parciální zlomky však předpokládáme ve tvaru komplexními koeficienty ( 4 0 ) A B C ( i,7) ( i,7) Všechny koeficienty A, B, C jou v tomto případě rezidua obrazu v jeho pólech a určíme je A lim lim 0 0 B C lim i,7 lim i,7 ( i,7) ( i,7) 4 0 lim i,7 lim i,7 L 0,05 i 0,01 ( i,7) L 0,05 i 0,01 ( i,7) Poznámka : Koeficienty B a C muejí být nutně komplexně družené, nebylo proto nutné C znovu počítat. Zde jou všechny tři koeficienty parciálních zlomků rezidua obrazu v jeho pólech, proto také platí A B C 0. Rozklad na parciální zlomky ( 4 0 ) 0,05 i 0,01 ( i,7) 0,05 i 0,01 ( i,7) pomocí lovníku (viz na konci textu) přechod do předmětu

9 y(t) [ { e L ( 0,05 i t [( 0,05 i { e 0,01) e -t ( i,7 )t 0,01) (co,7t ( 0,05 i 0,01) e iin,7t) ( 0,05 i ( i,7 )t 0,01) (co,7t [ co(,7 t) 0,0 in(,7 t) ]} η(t) ] η(t) iin,7t)]} η(t) SROVNEJ! Samozřejmě, že výledek je naproto tejný. Obě varianty e liší jen přítupem ke zpětné Laplaceově tranformaci. ( Všechny cety přeci vedou do Říma. :o) ) Jak je tedy ctěná libot, mně e první přítup, bez práce v komplexní oblati, zdá poněkud jednodušší a příjemnější. Čaový průběh pohybu edačky řidiče F y m c k Vypracoval : Janeček J., KŘT TU Liberec

10

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. )

( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. ) ( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. ) GRATULUJI! Pokud jste se rozhodli pro čtení této části proto, abyste se dostali trochu více na kloub věci, jste zvídaví

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

4. Práce, výkon, energie

4. Práce, výkon, energie 4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy

Více

Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík

Podpora výuky předmětu Teorie automatického řízení I Petr Žajdlík Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 8 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti 9-6-8 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika

Více

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

Matematika IV 9. týden Vytvořující funkce

Matematika IV 9. týden Vytvořující funkce Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

Propočty přechodu Venuše 8. června 2004

Propočty přechodu Venuše 8. června 2004 Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku 2004. Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených

Více

Tlumené a vynucené kmity

Tlumené a vynucené kmity Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností

Více

MANUÁL. Modul KMITÁNÍ A VLNĚNÍ.XLS, verze 1.0

MANUÁL. Modul KMITÁNÍ A VLNĚNÍ.XLS, verze 1.0 www.eucitel.cz MANUÁL Modul KMITÁNÍ A VLNĚNÍ.XLS, verze 1.0 Autor: RNDr. Jiří Kocourek Licence: Freeware pouze pro oobní potřebu. Použití ve výuce je podmíněno uhrazením ročního předplatného přílušnou

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Kapitola 7: Integrál.

Kapitola 7: Integrál. Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ

SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6)

Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) 1.a) Jetliže kolo automobilu neprokluzuje, je velikot okamžité rychloti

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu 7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové

Více

Výfučtení: Triky v řešení fyzikálních úkolů

Výfučtení: Triky v řešení fyzikálních úkolů Výfučtení: Triky v řešení fyzikálních úkolů Úvod Ve fyzice obča narazíme na problémy jejichž řešení je mnohdy komplikované a zdlouhavé. Avšak v určitých případech e tyto ložité problémy dají vyřešit velmi

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

1.1.7 Rovnoměrný pohyb II

1.1.7 Rovnoměrný pohyb II 1.1.7 Rovnoměrný pohyb II Předpoklady: 16 Minulou hodinu jme zakončili předpovídáním dalšího pohybu autíčka. Počítali jme jeho dráhy v dalších okamžicích pomocí tabulky a nakonec i přímé úměrnoti: autíčko

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

Příklad 1 Ověření šířky trhlin železobetonového nosníku

Příklad 1 Ověření šířky trhlin železobetonového nosníku Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

Téma: Analýza kmitavého pohybu harmonického oscilátoru

Téma: Analýza kmitavého pohybu harmonického oscilátoru PRACOVNÍ LIST č. Téa úlohy: Analýza kitavého pohybu haronického ocilátoru Pracoval: Třída: Datu: Spolupracovali: Teplota: Tlak: Vlhkot vzduchu: Hodnocení: Téa: Analýza kitavého pohybu haronického ocilátoru

Více

1 Úvod do číslicové regulace

1 Úvod do číslicové regulace Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené

Více

Aplikovaná matematika I

Aplikovaná matematika I Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Příklady k přednášce 16 - Pozorovatel a výstupní ZV

Příklady k přednášce 16 - Pozorovatel a výstupní ZV Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Příklady k přednášce 6 - Spojování a struktury

Příklady k přednášce 6 - Spojování a struktury Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Limita a spojitost LDF MENDELU

Limita a spojitost LDF MENDELU Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet VY_32_INOVACE_M0307. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet VY_32_INOVACE_M0307. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/34.0 Zlepšení podmínek pro

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

4 HMM a jejich trénov

4 HMM a jejich trénov Pokročilé metody rozpoznávánířeči Přednáška 4 HMM a jejich trénov nování Skryté Markovovy modely (HMM) Metoda HMM (Hidden Markov Model kryté Markovovy modely) reprezentujeřeč (lovo, hláku, celou promluvu)

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení

VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení VŠB - echnická univerzita Otrava Fakulta trojní Katera automatizační techniky a řízení Ověření méně známé metoy eřizování regulátorů čílicovou imulací a na laboratorním moelu teplovzušného agregátu Vypracoval:

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 28 5-5-8 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { } t f(): t f() t = t

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZIT V LIBERCI Savová regulace Liberec Ing. irolav Vavroušek . Savová regulace V práci e budu zabýva analýzou yému popaného diferenciální rovnicí: Řešení bude probíha pomocí yému TLB...

Více

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace EP-egulace EP EGULACE EL. POHONŮ Stabilita a tlumení Obr.. Schéma uzavřené regulační myčky Obr.. Ukazatele kvality regulace V regulačních pohonech pouzujeme kvalitu regulace nejčatěji dle přechodové charakteritiky,

Více

Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat

Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat Akademický rok 07/08 Připravil: adim Farana Automatizační technika Algebra blokových chémat, vývojové diagramy Obah Algebra blokových chémat ývojové diagramy Algebra blokových chémat elikou výhodou popiu

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost . cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()

Více

Násobení. INP 2008 FIT VUT v Brně

Násobení. INP 2008 FIT VUT v Brně Náobení INP 2008 FIT VUT v Brně Náobení a náobičky Při náobení číel v dvojkové outavě můžeme náobit abolutní hodnoty číel a pak doplnit do výledku znaménko, anebo raději náobit přímo číla e znaménkem.

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná

Více