1. Matematický model identifikované soustavy
|
|
- Kamil Ovčačík
- před 8 lety
- Počet zobrazení:
Transkript
1 IDENTIFIKACE SOUSTAVY SEDAČKY SEDAČKA C.I.E.B TYPOVÉ ŘADY 5 A NÁVRH REGULAČNÍHO OBVODU GHARAZI SAYED MOHSEN Technická univerita v Liberci, fakulta trojní, katedra aplikované kybernetiky, Hálkova 6, 46 7 Liberec, , , ayed_mohen_gharai@vlib.c Abtract: Tento přípěvek e abývá identifikací a regulací outavy automobilové edačky C.I.E.B typové řady 5 při růných vtupech ignálu. Sedačka je vybavena nelineárním tlumičem, který je natavitelný, tak aby e choval buď jako tvrdý nebo měkký tlumič. Při měření vtupních a výtupních ignálů byl regulátor polohy odpojen, aby neaahoval do dynamických vlatnotí amotatného ytému. Přípěvek bude rodělena do tří hlavních čátí. V první čáti budou analyovány naměřené ignály.v druhé čáti bude identifikována outava edačky na podkladě naměřených ignálů. Polední čát e bude abývat regulací identifikované outavy. Uvedená práce identifikace, regulace a modelování outavy byla realiovaná v programu MATLAB od firmy Mathwork. Klíčová lova: parametrická identifikace, neparametrická identifikace, impulní, přechodová charakteritika, diferenční rovnice.. Matematický model identifikované outavy Metody výpočtu nelineárních outav jou obtížnější a čaově náročnější, než metody řešení u lineárních outav. Využíváme proto čato růné matematické modely pro jejích jednodušení. Matematické modely jou účelné nebo nutné náledujících důvodů : pro pochopení a popi chování mechanických outav při dynamickém namáhání pro modelování odeev na předpokládané vnější íly pro modelování dynamických charakteritik, měnících e v důledku modifikací Matematické modely nejou obecnými modely vlatních outav a kontrukcí, ale ve kutečnoti e jedná modely dynamických vlatnotí těchto outav a kontrukcí. Matematický model dané outavy v čaové oblati může být odvoen na ákladě analytického modelu pomocí druhého Newtonova pohybového ákona. Setavením rovnoti vnitřních il etrvačných, tlumících a pružných il a vnějších il budících il je íkán matematický model ve tvaru diferenciální rovnice druhého řádu. 2. Základní popi identifikovaného ytému Obr. Zjednodušený model dynamického ytému Sedačka má paralelogramové upořádání polohovou regulací, natavitelný tlumič ATESO, vduchová pružina je dvouvlná, doraová outava je pevná pryžovými ilenbloky. Tlumič je upevněn v podélné oe edačky mei podním ramenem paralegramu a nepřímo vrchním rámem podtavce. Natavení tvrdoti tlumiče e provádí plynule páčkou be ajištění polohy. Natavení výšky edáku vhledem k podlae kabiny e provádí ručním kolečkem přeuvnou maticí na oičce. Přeuvná matice je polohovým regulátorem pojena táhlem pře vinutou pružinu. Pro identifikaci dynamických vlatnotí outavy byl odpojen regulátor polohy edačky. Vduchová pružina byla uavřena, tlak v pružině byl nataven na p.25 Mp
2 Obr. 2 Kinematické chéma identifikovaného ytému Obr. 3 Pohled P ákladní rám a buená čát neodpružená čát D, D2 úchyty tlumiče 2,3 ramena mechanimu edačky E, E2 přenoová člen ovládaní regulátor 4 aretační páka e třemi otvory G otáčení 5 átěž H deky E2O rameno regulátoru I odpružená čát A2, B2 klouby ákladního rámu O oa polohového regulátoru A, B klouby kotevního rámu edačky kotevní klouby, C2 úchyty pružiny pohyblivý kloub 3. Signály Důležitou oučátí identifikace je volba a generování vhodných tetovacích ignálů. Tyto ignály mohou být determinitické, tochatické nebo tv. peudonáhodné. Determinitické ignály le analyticky popat a patří mei ně koková měna, rampový ignál, impul, obdélníkový harmonický ignál atd. Stochatické ignály jou charakteritické tím, že jou analyticky nepopatelné. Každá taková realiace je náhodná a neopakovatelná. Klaickým předtavitelem tohoto druhu ignálu je bílý šum. Peudonáhodné ignály le popat jako náhodné ignály, jejichž vlatnoti mohou být a daných podmínek tejné jako u tochatických ignálů, ale jou íkané determinitickým půobem a jou tedy opakovatelné. Pro buení identifikovaného ytému byly použity 3 druhy ignálů : a kokové měny amplitudou mm vytvořené pomocí programu Matlabu b ignál, který byl naměřen v kabině vou TATRA během jídy na dálnici ignál vou TATRA.
3 c ignál, který byl naměřen v kabině vou LIAZ 4 během jídy na ilnici ignál vou LIAZ 4. Přehled generovaných a výtupních ignálů: Obr. 4 Čaový průběh vtupní a výtupní kokové měny Obr. 5 Čaový průběh vtupního a výtupního ignálu vou TATRA Obr. 6 Čaový průběh vtupního a výtupního ignálu vou LIAZ 4 3. Fourierova tranformace vygenerovaných vtupních ignálů Roklad obecného, tj. nejen periodického ale také neperiodického ignálu, na harmonické ložky, le určit pomocí Fourierovy tranformace. Tento roklad obahuje obecně ložky o všech frekvencích infiniteimální nekonečně malou amplitudou. Spektrum je pojitá funkce frekvence vi obr. 7 až obr. 9 Definiční vorce přímé a pětné inverní
4 Fourierovy tranformace pro ignál, tj. funkci xt ve výnamu voru nebo originálu, jou náledující: ω F{ x t} x t exp jωt, X dt 3. x t F { X ω } X ω exp jωt dω, 2π 3.2 Obr. 7 Vtupní ignál vou LIAZ 4 a jeho pektrum Obr. 8 Vtupní ignál vou TATRA a jeho pektrum Obr. 9 Skoková měna vygenerovaný ignál a její pektrum
5 4. Identifikace outavy Při identifikaci technologické outavy v áadě můžeme vycháet e dvou přítupů: - parametrická identifikace íkání parametrů koeficientů diferenční rovnice modelu - neparametrická identifikace íkání jednotlivých bodů impulní rep. přechodové charakteritiky Parametrická identifikace Pro výpočet koeficientů přenou je možno uvažovat modely růnou trukturou. Uvažujeme nejdříve obecný model ve tvaru : kde A B C D F a b c d f b c d f A... a na... b... c b nc... d... f nd f y na nb nc nf k nd B F Způob určení koeficientů outavy je ávilý na volbě truktury modelu. Pro jednoduchot použijeme LS model, kde F - D - C - : u k C D k 4. A -.ykb -.ukk Pro další výpočet koeficientů le tento model upravit na tvar : 4.2 a nebo A -.yk-b -.ukekk 4.3 A -.ykb -.ukδk 4.4 kde δk předtavuje minimaliaci chyby po úpravě yk * yk - - a * yk a * y k n b * u k b * u k... b * 2 n * maticový ápi má podobu a n δ u k n k yk uk un-k yk- -yk-n koeficienty B A * X kde yk, uk, un-k, yk-, yn-k jou hodnoty íkané měřením. Pro minimaliaci chyby e dá maticový ápi přepat do tvar T T T A * A * X A * B kde T A je tranponovaná matice. Toto je jednoduchá maticová rovnice a její řešení nám dává koeficienty přenou. V náledující čáti této práce jou použity ignály voů Tatra měkkým a tvrdým tlumičem.
6 a ignál vou TATRA měkkým tlumičem Obr. Odeva outavy na ignál vou TATRA ve podní poloe, měkký tlumič be apojeneho regulátoru a ekvivalentní átěží 6 [kg] Obr. Přehled náhodného ignálu po odečtení třední hpodnoty a ořeávání Výledky identifikace programu Matlabu : %prevod theta formatu do dikretniho A a... a na na Ad B b b... b nb nb Bd -.27 %prevod dikretniho na pojity Ac Bc.4.28 Ze íkaných koeficientů Ad, Bd, Ac, Bc, le napat výledný dikrétní a pojitý přeno ve tvaru: F b ignál vou TATRA tvrdým tlumičem F Obr. 2 Odeva outavy na ignál vou TATRA ve podní poloe, tvrdý tlumič be apojeneho regulátoru a ekvivalentní átěží 6 [kg]
7 Obr. 3 Přehled náhodného ignálu po odečtení třední phodnoty a ořeávání Výledky identifikace programu Matlabu : %prevod theta formatu do dikretniho A B a... b b... a na b nb na nb Ad Bd.27 %prevod dikretniho na pojity Ac Bc.4.28 Ze íkaných koeficientů Ad, Bd, Ac, Bc, le napat výledný dikrétní a pojitý přeno ve tvaru: F F Modelování regulačního obvodu a eříení regulátoru podle kritéria minima kvadratické regulační plochy Sytémy říení uavřeném obvodu regulace e od otevřeném obvodu liší tím, že k říení využívají principu pětné vaby, obr.2 Řídicí ytém R dotává informace o žádané hodnotě výtupního ignálu, které e protředkují řídicí veličinou w, a porovnává je doaženým výledkem činnoti, tj. e kutečnou hodnotou y. Jetliže exituje odchylka e w y, aahuje řídicí ytém akční veličinou u do říeného ytému S tak, aby odchylku odtranil. Poruchy d mohou půobit jak v mítě půobní akční veličiny jako na obr.4, tak i v jiných mítech říeného ytému S. v u S R e Obr. 4 Říení v uavřeném obvodu y w R řídicí ytém, S říený ytém w řídicí veličina, u akční veličina y výtupní veličina, d - porucha
8 Obr. 5 Regulační obvod identifikované outavy PID regulátorem Uvažujeme regulační pochod půobený měnou žádané hodnoty regulované veličiny měnou řídicí veličiny, tj. vt, wt ηt, či určitou poruchou, tj. wt, vt ηt, obr. 6 a tanovme čaový integrál J rovn. 8.2 odchylek rovn. 8. regulované veličiny od její nové utálené hodnoty et yt y 8. Obr. 6 Blokové diagramy eříení PID regulátoru metodou minima kvadratické regulační plochy Obr. 7 Regulační pochod vyvolaný měnou vt nebo vnikem wt před optimaliaci Pro eříení regulátoru použijeme integrální kriterium pro kvadratickou regulační plochu J k [ y t y ] 2 dt 8.2 která je vhodná pro periodické regulační pochody. Cílem úpěšnoti eřiování regulátorů rep. Volby truktury regulátoru nebo případně i truktury regulačního obvodu je, aby výše uvedený čaový integrál regulační plochy byl minimální J min
9 Obr. 8 Regulační pochod vyvolaný měnou vt nebo vnikem wt po optimaliaci Pomocí tohoto kriteria byly určeny parametry PID regulátoru : P I D v, w v, w Tabulka 8. Kontante ragulátoru 6. Stabilita regulačního obvodu Nutnou a potačující podmínkou pro tabilitu uavřeného lineárního regulačního obvodu je, aby všechny kořeny charakteritické rovnic odvodu měly ápornou reálnou čát, čili aby ležely v levé polorovině komplexní roviny. Obr. 9 Roložení kořenů charakteritické rovnice v komplexní rovině
10 7. Závěr Obr. 2 Buení a odeva identifikované outavy Obr. 2 Buení a odeva reálné outavy Výledky práce můžeme rodělit do dvou kupin a Identifikace outavy Porovnáním grafů na obr.2 a obr.2 je řejmé, že při tejné velikoti buení outavy je odeva reálné outavy velmi podobná odevě identifikované outavy. To namená, že použitá metoda identifikace je vhodná a na ákladě vytvořeného matematického modelu le navrhnout regulátor, který upokojivě plní požadavky regulace. b Regulace outavy Z obr. 8 je řejmé, že optimaliací uavřeného regulačního obvodu bylo doaženo výledků odpovídajících požadavkům na tabilitu outavy a jištěné parametry PID regulátoru le použít pro realiaci identifikované outapvy. literatura: [] Tůma, J.: Zpracování ignálů íkaných mechanických ytémů užitím FFT, Sdělovací technika Praha, 997 [2] Balda, M., Beneš, J., Bošek, B., Hanuš, B., Horánký J., Kuchtíček, B., Strejc, V.: Teorie automatického říení, SNTL Praha, 969 [3] Balátě, J.: Vybrané tatě automatického říení, VUT Brno, 996 [4] Olehla, M.: Základy aplikované kybernetiky, TUL Liberec, 997 [5] Olehla, M.: Identifikace technologických outav, TUL Liberec, 997 [6] Manuál k programu MATLAB vere.3. od firmy MathWork Přípěvek byl podporován grantovou agenturou no. FRVŠ 248/G
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava
Více1 Úvod do číslicové regulace
Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené
Více25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13
5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )
VíceAutomatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou
Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem
VíceAnalýza diskrétních regulačních obvodů
Čílicové říení Analýa ECHNICÁ NIVERIA V IBERCI Hálkova 6 46 7 iberec C akulta mechatroniky a meioborových inženýrkých tudií Čílicové říení Analýa dikrétních regulačních obvodů Studijní materiály oc Ing
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
Víces požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do
Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø
Více( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )
( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...
VíceSystém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
VíceIDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL
IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením
VíceTeorie systémů a řízení
VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie
VícePříklady k přednášce 20 - Číslicové řízení
Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )
Více21 Diskrétní modely spojitých systémů
21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,
VíceVzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)
Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních
VíceVYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička
VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU Ing. Aleš Hrdlička Katedra technické kybernetiky a vojenké robotiky Vojenká akademie v Brně E-mail: hrdlicka@c.vabo.cz Úvod Tento článek popiuje jednoduchou
VíceAutomatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Víceteorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů
Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9
VíceVysokofrekvenční obvody s aktivními prvky
Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor
VícePodpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík
Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání
Více5. cvičení z Matematické analýzy 2
5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v
Více8 - Geometrické místo kořenů aneb Root Locus
8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu
VíceTeorie elektronických obvodů (MTEO)
Teorie elektronických obvodů (MTEO) Laboratorní úloha čílo teoretická čát Filtry proudovými konvejory Laboratorní úloha je zaměřena na eznámení e principem činnoti proudových konvejorů druhé generace a
VícePřednáška Omezení rozlišení objektivu difrakcí
Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové
VíceŘízení tepelného výkonu horkovodu simulace řízeného systému i řídicího algoritmu
Řízení tepelného výkonu horkovodu imulace řízeného ytému i řídicího algoritmu Operating of heat rate hot water pipe imulation of control ytem and control algorithm Bc. Michaela Pliková Diplomová práce
VíceÚstav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie
VícePříklady k přednášce 25 Dopravní zpoždění
Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t
VícePraha technic/(4 -+ (/T'ERATU"'P. ))I~~
Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU
VícePříklady k přednášce 6 - Spojování a struktury
Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení
VíceÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA
TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační
Více4. Práce, výkon, energie
4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy
VíceREGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace
EP-egulace EP EGULACE EL. POHONŮ Stabilita a tlumení Obr.. Schéma uzavřené regulační myčky Obr.. Ukazatele kvality regulace V regulačních pohonech pouzujeme kvalitu regulace nejčatěji dle přechodové charakteritiky,
VíceLab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení
Jméno a příjmení ID FYZIKÁLNÍ PRAKTIK Ročník 1 Předmět Obor Stud. kupina Kroužek Lab. kup. FEKT VT BRNO Spolupracoval ěřeno dne Odevzdáno dne Příprava Opravy čitel Hodnocení Název úlohy Čílo úlohy 1. Úkol
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceDoplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky
Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+
VícePříklad 1 Ověření šířky trhlin železobetonového nosníku
Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování
VíceSTŘEDNÍ PRŮMYSLOVÁ ŠKOLA MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 Číslo úlohy: 9
STŘEDNÍ PŮMYSLOVÁ ŠKOL MOVSKÁ OSTV, KTOCHVÍLOV 7 Čílo úlohy: 9 Jméno a příjmení: ZPÁV O MĚŘENÍ Martin Dočkal Třída: EP3 Náev úlohy: egulační vlatnoti reotatu Skupina:. Schéma apojení: Měřeno dne: 4.2.2004
Více7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy
7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový
VíceANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných dat je vyjádřen n-rozměrným loupcovým vektorem hodnot x i,
VícePříklady k přednášce 16 - Pozorovatel a výstupní ZV
Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým
VícePříklady k přednášce 25 Dopravní zpoždění
Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 28 5-5-8 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { } t f(): t f() t = t
VíceZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST 2: PŘÍKLADY VÝPOČTŮ
ČEZDitribuce, E.ON Ditribuce, E.ON CZ., ČEPS PREditribuce, ZSE Podniková norma energetiky pro rozvod elektrické energie ZKRATOVÉ PROUDY VÝPOČET ÚČINKŮ ČÁST : PŘÍKLADY VÝPOČTŮ Znění pro tik PNE 041 druhé
VíceVŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení
VŠB - echnická univerzita Otrava Fakulta trojní Katera automatizační techniky a řízení Ověření méně známé metoy eřizování regulátorů čílicovou imulací a na laboratorním moelu teplovzušného agregátu Vypracoval:
VíceOsnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
VíceIvan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I
Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo
VícePOHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU
POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU Pavel NĚMEČEK, Technická univerzita v Liberci 1 Radek KOLÍNSKÝ, Technická univerzita v Liberci 2 Anotace: Příspěvek popisuje postup identifikace zdrojů
VíceAplikace experimentálních identifikačních metod pro modelování reálných procesů. Bc. Miroslav Husek
Aplikace experimentálních identifikačních metod pro modelování reálných proceů Bc. Mirolav Huek Diplomová práce 017 ***nacannované zadání. 1*** ***nacannované zadání. *** Prohlašuji, že beru na vědomí,
VíceRegulační obvod s měřením regulováné veličiny
Regulační obvod s měřením regulováné veličiny Zadání Soustava vyššího řádu je vytvořena z několika bloků nižšího řádu, jak je patrno z obrázku. Odvoďte výsledný přenos soustavy vyššího řádu popisující
VícePříklady k přednášce 2 - Spojité modely
Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice
VíceZpětná vazba, změna vlastností systému. Petr Hušek
Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze
VíceModelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Více25.z-6.tr ZS 2015/2016
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí
VíceRegulační obvod s měřením akční veličiny
Regulační obvod s měřením akční veličiny Zadání Soustava vyššího řádu je vytvořena z několika bloků nižšího řádu, jak je patrno z obrázku. Odvoďte výsledný přenos soustavy vyššího řádu popisující dané
VíceSimulátor ochran a protihavarijních automatik (RTDS) - modely měřících a výkonových transformátorů
Simulátor ochran a protihavarijních automatik (RTDS) - modely měřících a výkonových tranformátorů Ing. Petr Neuman, CSc., ČEPS, a.., Praha, Čeká republika E-mail: neuman@cep.cz Anotace Autor přípěvku vytupuje
VíceFlexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
VíceELEKTRICKÝ OBVOD, ZÁKLADNÍ OBVODOVÉ VELIČINY,
ELEKRCKÝ OBVOD, ZÁKLADNÍ OBVODOVÉ VELČNY, CHARAKERSCKÉ HODNOY Elektrotechnické zařízení Schéa Elektrický obvod Elektrotechnické zařízení druh technického zařízení, které využívá přeěny elektrické energie
VíceTECHNICKÁ UNIVERZITA V LIBERCI
ECHNICÁ UNIVERZIA V LIBERCI FAULA SROJNÍ atedra aplikované kybernetiky Obor 3922 Automatizované ytémy řízení ve trojírentví Zaměření Automatizace inženýrkých prací Programový modul pro automatické eřízení
VícePříloha 1 Zařízení pro sledování rekombinačních procesů v epitaxních vrstvách křemíku.
Příloha 1 Zařízení pro ledování rekombinačních proceů v epitaxních vrtvách křemíku. Popiovaný způob měření e vztahuje ke labě dopovaným epitaxním vrtvám tejného typu vodivoti jako ilně dopovaný ubtrát.
VíceAutomatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat
Akademický rok 07/08 Připravil: adim Farana Automatizační technika Algebra blokových chémat, vývojové diagramy Obah Algebra blokových chémat ývojové diagramy Algebra blokových chémat elikou výhodou popiu
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
VíceZ transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)
Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také
VíceZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechnik a podzemního taviteltví Modelování v geotechnice Základní veličin, rovnice a vztah (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace tudijního
VícePříklady k přednášce 19 - Polynomiální metody
Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako
VíceTematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
VíceVerifikace modelu VT přehříváků na základě provozních měření
Verifikace modelu VT přehříváků na základě provozních měření Jan Čejka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF
VíceŘešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6)
Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) 1.a) Jetliže kolo automobilu neprokluzuje, je velikot okamžité rychloti
Vícepřírodovědných a technických oborů. Scientia in educatione, roč. 5 (2014), č. 1, s
[15] Nováková, A., Chytrý, V., Říčan, J.: Vědecké myšlení a metakognitivní monitorování tudentů učiteltví pro 1. tupeň základní školy. Scientia in educatione, roč. 9 (2018), č. 1,. 66 80. [16] Bělecký,
VíceTECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec
TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika
VíceOsnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita
VíceŘízení tepelné soustavy s dopravním zpožděním pomocí PLC
Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Jan Beran TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
VícePříklady k přednášce 2 - Spojité modely
Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 8 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti 9-6-8 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Více1.1.14 Rovnice rovnoměrně zrychleného pohybu
..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů
VíceInovace ve vnìjší ochranì pøed bleskem Izolovaný svod HVI s vysokonapěťovou izolací
Ochrana pøed pøepìtím Ochrana pøed blekem/uzemnìní Ochrana pøi práci DEHN chrání. DEHN + SÖHNE GmbH + Co.KG Han-Dehn-Str. 1 Potfach 1640 92306 Neumarkt Nìmecko. Tel. +49 9181 906-0 Fax +49 9181 906-1100
VícePříklady k přednášce 19 - Polynomiální metody
Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo
VíceOdpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZIT V LIBERCI Savová regulace Liberec Ing. irolav Vavroušek . Savová regulace V práci e budu zabýva analýzou yému popaného diferenciální rovnicí: Řešení bude probíha pomocí yému TLB...
VíceDiplomová práce. Plně aktivní podvozek automobilu. Pavel Mašita
Diplomová práce Plně aktivní podvoek automobilu Pavel Mašita Obsah Úvod Cíle práce Koncepce říení Rovinný model Prostorový model Říení Návrh trajektorie Experiment, vhodnocení Závěr Úvod Vývoj technik
VíceLaborato regula ních systém a prost edk Název prezentace ídicích systém Umíst ní laborato E228 Správce laborato Ing. Št pán O ana, Ph.D.
Laboratoř regulačních systémů a prostředků Náev preentace řídicích systémů Umístění laboratoře: E228 Správce laboratoře: Ing. Štěpán Ožana, Ph.D. Zaměření laboratoře Návrh a realiace měřicích a řídicích
VíceAnalýza a zpracování signálů. 5. Z-transformace
Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná
Více4 HMM a jejich trénov
Pokročilé metody rozpoznávánířeči Přednáška 4 HMM a jejich trénov nování Skryté Markovovy modely (HMM) Metoda HMM (Hidden Markov Model kryté Markovovy modely) reprezentujeřeč (lovo, hláku, celou promluvu)
VíceMetoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace tudijního oboru Geotechnika Reg. č. CZ..7/../8.9 Metoda konečných prvků Základní veličin, rovnice a vztah (výuková prezentace pro. ročník navazujícího tudijního oboru Geotechnika) Doc. RNDr. Eva
Více1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
VíceANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VíceVytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů
Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká
VíceVzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.
Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY
VYSOKÉ UČENÍ TECHNICKÉ V BNĚ FAKULTA ELEKTOTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ADIOELEKTONIKY Ing. oman Šotner STUDIUM ELEKTONICKÉHO ŘÍZENÍ A EÁLNÉHO CHOVÁNÍ VAIABILNÍCH FILTAČNÍCH A OSCILAČNÍCH
VíceKTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
VíceČíslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
VíceRobustnost regulátorů PI a PID
Proceedings of International Scientific Conference of FME Session 4: Automation Control and Applied Informatics Paper 45 Robustnost regulátorů PI a PID VÍTEČKOVÁ, Miluše Doc. Ing., CSc., katedra ATŘ, FS
VíceVlastnosti členů regulačních obvodů Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů
VíceZápadočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky. Bakalářská práce. Řízení Trojkolového vozíku
Západočeká univerzita v Plzni Fakulta aplikovaných věd Katedra kbernetik Bakalářká práce Řízení Trojkolového vozíku Plzeň, 23 Jan Holub Prohlášení Předkládám tímto k poouzení a obhajobě bakalářkou práci
VíceGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
VíceMetodika generování a ladění modelů neuronových sítí
Metodika generování a ladění modelů neuronových sítí Martin Moštěk Katedra měřicí a řídicí techniky, FEI, VŠB Technická univerzita Ostrava 17. listopadu 15, 708 33, Ostrava-Poruba martin.mostek@vsb.cz
VíceDC/DC konvertory ady CHS2
DC/DC konvertory ady CHS2 DC/DC konvertory ady CHS2 jou galvanicky odd lené dvouhladinové m ni e malého výkonu bez výtupní tabilizace. Konvertory této ady jou integrovány do platových pouzder SIL. Tyto
VíceMODELOVÁNÍ VYSOKOFREKVENČNÍCH PULSACÍ
VYSOKÉ UČNÍ TCHNICKÉ V BNĚ BNO UNIVSITY OF TCHNOLOGY FAKULTA STOJNÍHO INŽNÝSTVÍ NGTICKÝ ÚSTAV FACULTY OF MCHANICAL NGINING NGY INSTITUT MODLOVÁNÍ VYSOKOFKVNČNÍCH PULSACÍ HIGH-FQUNCY PULSATIONS MODLING
VíceMechatronika ve strojírenství
Mechatronika ve strojírenství Zpracoval: Ing. Robert Voženílek, Ph.D. Pracoviště: katedra vozidel a motorů (TUL) Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským
VíceṠystémy a řízení. Helikoptéra Petr Česák
Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné
VíceAktivní detekce chyb
Fakulta aplikovaných věd, Katedra kybernetiky a Výzkumné centrum Data - Algoritmy - Rozhodování Západočeská univerzita v Plzni Prezentace v rámci odborného semináře Katedry kybernetiky Obsah Motivační
Více