Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6)
|
|
- Luboš Vaněk
- před 8 lety
- Počet zobrazení:
Transkript
1 Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) 1.a) Jetliže kolo automobilu neprokluzuje, je velikot okamžité rychloti automobilu rovna velikoti obvodové rychloti libovolného bodu kola ve vzdálenoti r od oy otáčení. Pro výpočet hodnot okamžité rychloti automobilu, okamžité úhlové rychloti kola, uražené dráhy a úhlu otočení ve vybraných čaech použijeme vzorce v=at, ω= v r, =1 2 at2, ϕ= r, kde a= v 1 t 1 =1,5m 2. Hodnoty zapíšeme do tabulky a etrojíme grafy: t v m ω rad m ϕ rad ω rad ϕ rad t Obr. R1 Obr. R2 6bodů b) Obahplochypodgrafemje 18rad 1 +48rad 1 5 = 165 rad. 2 Obahudáváúhelotočeníkolaautomobiluvčaovémintervaluod3do 8. c) Zgrafunapř.vyčteme,žeza10pohybuodjehopočátkueúhlovérychlot zvětšilaznulovéhodnotyna60rad 1.Směrnicepřímkyje t 1
2 ω 1 =60rad =6rad t Fyzikální význam této veličiny je změna úhlové rychloti za jednotku čau, v našem případě e úhlová rychlot za každou ekundu rovnoměrně zvětšila o6rad 1. Poznámka:Veličina ε= ω e nazývá úhlové zrychlení. t 2.Označme v 1 =60km h 1, v 2 =50km h 1, t 1, t 2 dobybrzdění, 1, 2 brzdné dráhy. a) Zrovnic Ft 1 = mv 1, Ft 2 = mv 2 plyne t 2 t1 = v 2 v 1.Hledanýpoměrje t 1 t 2 t 1 =1 t 2 t1 = =1 6 =16,7%. b) Zrovnic F 1 = 1 2 mv2 1, F 2 = 1 2 mv2 2 plyne 2 = 1 Hledaný poměr je =1 2 1 =1 ( v2 v 1 ) 2. ( ) 2 50 = =30,6%. c) Dleúlohya)platí t 1 = mv 1 F =3,8.Obdobně t 2= mv 2 F =3,1. Dleúlohyb)platí 1 = mv2 1 2F =31m.Obdobně 2= mv2 2 2F =22m. 3body d) Dleúlohya)platí t 1 = mv 1 F = mv 1 0,4mg = v 1 0,4g =4,2. Obdobně t 2 = v 2 0,4g =3,5. Dleúlohyb)platí 1 = mv2 1 2F = mv ,4mg = v2 1 0,8g =35,4m. Obdobně 2 = v2 2 0,8g =24,6m. 3body 2
3 3.a) Hledaná práce je rovna přírůtku kinetické energie: W= 1 2 (m 0+8m 1 )v (m 0+8m 1 )v 2 1 =1 2 (m 0+8m 1 )(v 2 2 v2 1 )=81,9MJ. 3body b) Tažením oupravy ilou o velikoti F po dráze vykonala lokomotiva práci W = F, (1) která je rovna přírůtku kinetické energie oupravy. V analogii úlohou a) platí: Zrovnic(1)a(2)plyne W = 1 2 8m 1v m 1v1 2 =4m 1(v2 2 v2 1 ). (2) F= 4m 1(v 2 2 v2 1 ) =50,4kN. (3) c) Velikot zrychlení vlaku je rovna velikoti zrychlení oupravy: a= F 8m 1. Užitím rovnice(3) dotaneme a= v2 2 v2 1 2 =0,21m 2. (Velikot zrychlení lze též zíkat z kinematických rovnic 3body =v 1 t+ 1 2 at2, v 2 = v 1 + at vyloučením čau t.) 4.a) Rozložením tíhové íly do měrů vláken dotaneme rovnoběžník il, kterým jekoočtverecvnitřnímúhlem60.zobr.r3plyne F 1 = F 2 = F G 2co30 = mg =1,42N. 3 3
4 F F1 F2 F2 F1 FG Fv Obr. R3 FG Obr. R4 b) Rovinatrojúhelníkuevychýlítak,ževýlednice Fvtíhovéíly FG= mga etrvačné íly F = mabude ležet v rovině určené trojúhelníkem. V rovnoběžníku il z úlohy a) nahradíme tíhovou ílu výlednicí Fv. Tíhová a etrvačná íla jou navzájem kolmé, pro velikot výlednice platí: F v = FG 2+ F2 = m g 2 + a 2. (1) Podle úlohy a) dotaneme F F 1 = F 2 = v 2co30 = m g2 + a 2 =1,43N. 3 c) Tentokrát etrvačná íla půobící na kuličku leží v rovině trojúhelníku. Tíhová a etrvačná íla jou navzájem kolmé, pro velikot výlednice platí(1). Výlednici Fv rozložíme do měrů vláken(obr. R4). Celou kontrukci ve zvoleném měřítku provedeme a velikoti il F1 a F2 změříme. Výledek lze ověřitvýpočtempomocíinovévěty: F 1 =1,79N, F 2 =1,04N. 5.a) Označme v 1 velikotrychlotivozíkuetřeloubezprotředněpozáahu.ze zákona zachování hybnoti během záahu plyne: mv=(m+ m)v 1. (1) Z rovnic rovnoměrně zpomaleného pohybu vozíku nábojem, při kterém zpočátečnírychlotiovelikoti v 0 zatavilnadráze d: v 0 = at, d= 1 2 at2, 4
5 dotaneme velikot zrychlení a= v2 0 2d. (2) Během zatavování po záahu třely potřebuje brzdící íla práci rovnou počáteční kinetické energii vozíku nábojem: Zrovnic(2)a(3)dotaneme 1 2 (m+m)v2 1 =(m+m)a D. (3) v 1 = v 0 D d. Doazením do vzorce(1) dotaneme velikot rychloti třely: v= m+m D m v 0 d =250m 1. b) Kinetická energie třely před záahem je E k = 1 2 mv2, kinetická energie vozíku nábojem bezprotředně po záahu je E k =1 2 (m+m)v2 1. 5bodů Energie jou v poměru E k = (m+m)v2 1 E k mv 2. Užitím rovnice(1) dotaneme konečný výledek E k = m E k m+m =0,0032=0,32%. Výrazný pokle mechanické energie je způoben tím, že většina kinetické energie třely(99,68%) e přeměnila na vnitřní energii, která e projevila deformací obou těle a zvýšením teploty. Pouze 0,32% kinetické energie třely e zachovalo ve formě kinetické energie vozíku e třelou. 1bod 6.Výledkyměřeníavýpočtůproetavuvýškouvýtokovéhootvoru H=51cm jou v tabulce. Změřená délka dotřiku je vždy menší než teoretická vypočítaná podlevzorce(1).ipřivýšcehladinyvětšínež20cmnadvýtokovýmotvorem doahujejenai90%. 5
6 K FP h /cm 0,5 G FP G WH FP G G WH î + FP Závilotdélkydotřiku dna hjelineární,nejednáevšakopřímouúměrnot. Lineární trend určený EXCELem můžeme pro délky měřené v centimetrech přepat na rovnici pro číelné hodnoty {d}=14,60{ h} 7,68. (2) Vzorec(1)přidanévýšcevýtokovéhootvoru H=51cmvedekrovnici {d te }=14,3{ h}. (3) Doazením h=30cmdo(2)dotáváme d=72,3cm. d cm d te d \ [ h cm 0,5 6
7 7.a) Pohyb ve vilém měru probíhá jako volný pád. Z rovnice h= 1 2h 2 gt2 0 plyne t 0 = g =3,03. Ve vodorovném měru e třela pohybuje rovnoměrně počáteční rychlotí ovelikoti v 0 = d t 0 =29,7m 1. b) Označme mhmotnottřely.voutavěpojenéezemíoznačme u 1 vodorovnououřadnicirychlotilehčíčátiau 2 vodorovnououřadnicirychloti těžšíčátipooddělení.voutavěpojenéletícítřelouoznačme u 1 vodorovnououřadnicirychlotilehčíčátiau 2vodorovnououřadnicirychloti těžší čáti po oddělení. Má-li čát třely o hmotnoti m/3 dopadnout k patě věže, muí plňovat rovnici Z rovnice dotaneme v 0 t 1 = u 1 (t 0 t 1 ). u 1 = t 1 t 0 t 1 v 0 = 0,493v 0 = 14,6m 1. Pak u 1 = u 1 v 0 = 44,4m 1. Zezákonazachováníhybnotive vztažné outavě pojené letící třelou plyne Z rovnice dotaneme Hledaná vzdálenot je 0= 1 3 mu mu 2. u 2= 1 2 u 1=22,2m 1. d 1 = v 0 t 1 +(v 0 + u 2 )(t 0 t 1 )=135m. c) Otočenímtřelyo180 evevztažnéoutavěpojenéletícítřelouvelikoti ložek rychloti zachovaly, ale jejich měr e změnil na opačný: Hledané vzdálenoti jou u 1 =44,4m 1, u 2 = 22,2m 1. d 2 = v 0 t 1 +(v 0 + u 1)(t 0 t 1 )=180m, d 3 = v 0 t 1 +(v 0 + u 2 )(t 0 t 1 )=45m. 7
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4
VíceFYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.
Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5
VíceŘešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D
1.a) Graf v km h 1 Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kaegorie D 50 Auor úloh: J. Jírů 40 30 0 10 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 6bodů b) Pomocí obahu plochy pod grafem určíme dráhu
VíceŘešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie D., kde t 1 = s v 1
Řešení úloh kola 5 ročníku fyzikální olympiády Kategorie D Autořiúloh:JJírů(až6),MJarešová(7) a) Označme sdráhumezivesnicemi, t časjízdynakole, t časchůze, t 3 čas běhuav =7km h, v =5km h, v 3 =9km h jednotlivérychlosti
VíceŘešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
VíceTECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec
TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika
Více1.1.14 Rovnice rovnoměrně zrychleného pohybu
..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů
VíceÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY
ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla
Více3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm *
Fyzika 1 2009 Otázky za 2 body 1. Mezi tavové veličiny patří a) teplo b) teplota * c) práce d) univerzální plynová kontanta 2. Krychle má hranu o délce 2 mm. Jaký je její objem v krychlových metrech? a)
Víces 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1
VíceGraf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu
VíceII. Kinematika hmotného bodu
II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze
Více1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
VíceRovnice rovnoměrně zrychleného pohybu
..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů
Víceb) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
VíceDigitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
VíceKINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
Vícepřednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu
7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací
VícePRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
VíceMechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie
Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,
VícePříklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
Vícee en loh 1. kola 41. ro n ku fyzik ln olympi dy. Kategorie D Auto i loh: J. J r (1,2,3,4,6,7), I. Volf (5) 1.a) Zrychlen vlaku p i brzd n ozna me a 1.
e en loh 1. kola 41. ro n ku fyzik ln olympi dy. Kategorie D Auto i loh J. J r (1,2,,4,6,7), I. Volf (5) 1.a) Zrychlen vlaku p i brzd n ozna me a 1. Z rovnic v 0 = a 1 t 1 ; 1 = 1 2 a 1t 2 1 (1) plyne
Více4. Práce, výkon, energie
4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy
VíceLaboratorní práce č. 3: Kmitání mechanického oscilátoru
Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA
VíceVzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.
Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.
VíceIII. Dynamika hmotného bodu
III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]
VíceLABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY méno Stanilav Matoušek Datum měření 16. 5. 5 Stud. rok 4/5 Ročník 1. Datum odevzdání 3. 5. 5 Stud. kupina 158/45 Lab. kupina
VíceZe vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní
VíceDynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
VíceROVNOMĚRNĚ ZRYCHLENÝ POHYB
ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou
VíceŘešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie C
Řešení úloh. kola 49. ročníku fyzikální olympiády. Kategorie C Autořiúloh:J.Jírů(),P.Šedivý(2,3,4,5,6),I.VolfaM.Jarešová(7)..Označme v 0souřadnicirychlostikuličkyohmotnosti3mbezprostředněpředrázem a v
VíceMechanika hmotného bodu
Mechanika hmotného bodu Pohybové zákony klaické fyziky Volný hmotný bod = hmotný bod (HB), na kteý nepůobí žádné íly (je to abtaktní objekt). Ineciální vztažná (ouřadná) outava = vztažná (ouřadná) outava,
VíceTÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.
TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Více1.4.3 Zrychlující vztažné soustavy II
143 Zrychlující vztažné outavy II Předoklady: 1402 Př 1: Vaón SVARME rovnoměrně zrychluje dorava Rozeber ilové ůobení a tav čidel na nátuišti z ohledu MOBILů Čidla na nátuišti (ohled MOBILŮ ze zrychlujícího
Více5 Poměr rychlostí autobusu a chodce je stejný jako poměr drah uražených za 1 hodinu: v 1 = s 1
Řešení úloh 1 kola 7 ročníku fyzikální olympiáy Kategorie C Autoři úloh: J Thomas (1,, 3), J Jírů (4, ), J Šlégr (6) a T Táborský (7) 1a) Označme stranu čtverce na mapě Autobus za 1 hoinu urazí ráhu s
VíceBIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
VíceŘešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie B
Řešení úloh 1 kola 55 ročníku fyzikální olympiády Kategorie B Autořiúloh:JJírů(1,2),JThomas(3,5,7),MJarešová(4),MKapoun(6) 1a) Během celého děje tvoří vozík s kyvadlem ve vodorovném směru izolovanou soustavu,
Vícepřírodovědných a technických oborů. Scientia in educatione, roč. 5 (2014), č. 1, s
[15] Nováková, A., Chytrý, V., Říčan, J.: Vědecké myšlení a metakognitivní monitorování tudentů učiteltví pro 1. tupeň základní školy. Scientia in educatione, roč. 9 (2018), č. 1,. 66 80. [16] Bělecký,
VíceANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je
VíceŘešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)
Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti
VíceDynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla
Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek
Více= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček).
4.4.4 Trigonometrie v praxi Předpoklady: 443 Nejdřív něco jednoduchého na začátek. Př. : vě přímé důlní chodby ústící do stejného místa svírají úhel α = 37 46' mají být spojeny chodbou, spojující bodu
VícePŘÍTECH. Smykové tření
PŘÍTECH Smykové tření Gymnázium Cheb Nerudova 7 Tomáš Tomek, 4.E 2014/2015 Prohlášení Prohlašuji, že jem maturitní práci vypracoval amotatně pod vedením Mgr. Vítězlava Kubína a uvedl v eznamu literatury
VíceDĚLENÍ HETEROGENNÍCH SMĚSÍ PŮSOBENÍM ODSTŘEDIVÉ SÍLY
DĚLENÍ HETEROGENNÍCH SMĚSÍ PŮSOBENÍM ODSTŘEDIVÉ SÍLY Odtředivky Vírové odlčovače Účinek odtředivé íly na hmotno čátici ω = π n F o = Vρ a o = Vρ rω = Vρ ϕ = r 4π Vρ n r Kromě odtředivé íly půobí na hmotno
VíceKLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
VícePřijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Více1.1.7 Rovnoměrný pohyb II
1.1.7 Rovnoměrný pohyb II Předpoklady: 16 Minulou hodinu jme zakončili předpovídáním dalšího pohybu autíčka. Počítali jme jeho dráhy v dalších okamžicích pomocí tabulky a nakonec i přímé úměrnoti: autíčko
Více[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
VíceBIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 4, Kinematika pohybu I. (zákl. pojmy - rovnoměrný přímočarý pohyb, okamžitá a průměrná rychlost, úlohy na pohyb těles, rovnoměrně zrychlený a zpomalený pohyb, volný pád) Studijní program,
VíceZákon zachování hybnosti I
8 Zákon zachování hybnoti I Předoklady: 007 Dneka e budeme zabývat třelbou z alných zbraní Při výtřelu zíká třela obrovkou rychlot a zbraň odkočí na druhou tranu Proč? Př : Na obrázku je nakrelena třela
VíceFYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
VíceFyzikální praktikum I
Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...
VíceOkamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z
5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r
Více( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )
( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...
VíceŘešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie B
Řešení úloh kola 9 ročníku fyzikální olympiády Kategorie B Autořiúloh:MJarešová,,,5),PŠedivý3,7)aVKoubek6) a) Označme hvýškunadzemí,kdedojdekesrážcespodní kuličkadopadnenazemrychlostíovelikosti v 0 Hg
Více3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VíceMěření zrychlení volného pádu
Měření zrychlení volného pádu Online: http://www.sclpx.eu/lab1r.php?exp=10 Pro tento experiment si nejprve musíme vyrobit hřeben se dvěma zuby, které budou mít stejnou šířku (např. 1 cm) a budou umístěny
VíceSystém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
VíceKMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VíceObr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.
9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce
Více3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze
3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0
VíceŘešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie C. t 1 = v 1 g = b gt t 2 =2,1s. t + gt ) 2
Řešení úloh. kola 47. ročníku fyzikální olympiády. Kategorie C Autořiúloh:R.Baník(3),I.Čáp(),M.Jarešová(6),J.Jírů()aP.Šedivý(4,5,7).a) Pohybtělesajerovnoměrnězrychlenýsezrychlením g. Je-li v rychlost u
Více(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
VíceTest jednotky, veličiny, práce, energie, tuhé těleso
DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost
Více1.3.2 Rovnoměrný pohyb po kružnici I
..2 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 0 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným
Vícen je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně
Konzultace č. 9 dynamika dostředivá a odstředivá síla Dynamika zkoumá zákonitosti pohybu těles se zřetelem na příčiny (síly, silové účinky), které pohyb vyvolaly. Znalosti dynamiky umožňují řešit kinematické
VíceMechanika kontinua - napětí
Mechanika kontinua - napětí pojité protředí kontinuum objemové íl půobí oučaně na všechn čátice kontinua (např. tíhová íla) plošné íl půobí na povrch tudované čáti kontinua a půobují jeho deformaci napětí
VíceŘešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L.
Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Ledvina (4) 1.a) Na dosažení rychlosti v 0 potřebuje každý automobil dobu t v 0
VíceR2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
Více4.1.5 Práce v elektrickém poli, napětí
4.1.5 Práce v elektrickém poli, napětí Předpoklady: 4102, 4104, mechanická práce Př. 1: Spočítej ílu, která půobí náboj o velikoti 2 10 5 C, který e nachází v elektrickém poli o intenzitě 2500 N C 1. Nejjednodušší
VíceZákladní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
VíceMechanické kmitání - určení tíhového zrychlení kyvadlem
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení
VícePrvky betonových konstrukcí BL01 9 přednáška
Prvky betonových kontrukcí BL01 9 přednáška Prvky namáhané momentem a normálovou ilou základní předpoklady interakční diagram poouzení, návrh namáhání mimo oy ouměrnoti kontrukční záady Způoby porušení
VíceTECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec
TECHNICKÁ NIVERZITA V LIBERCI Katedrzik, Studentká, 46 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOŠKY Z FYZIKY Akademický rok: 03/04 Útav zdravotnických tudií Studijní obor: Biomedicínká technika Tématické okruh
Více11. Dynamika Úvod do dynamiky
11. Dynamika 1 11.1 Úvod do dynamiky Dynamika je částí mechaniky, která se zabývá studiem pohybu hmotných bodů a těles při působení sil. V dynamice se řeší takové případy, kdy síly působící na dokonale
VíceTéma: Analýza kmitavého pohybu harmonického oscilátoru
PRACOVNÍ LIST č. Téa úlohy: Analýza kitavého pohybu haronického ocilátoru Pracoval: Třída: Datu: Spolupracovali: Teplota: Tlak: Vlhkot vzduchu: Hodnocení: Téa: Analýza kitavého pohybu haronického ocilátoru
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
Více1.3.6 Rovnoměrný pohyb po kružnici I
..6 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 05 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným
VíceHmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);
Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech
VícePOHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
POHYB TĚLESA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Pohyb Pohyb = změna polohy tělesa vůči jinému tělesu. Neexistuje absolutní klid. Pohyb i klid jsou relativní. Záleží na volbě vztažného tělesa. Spojením
Vícel, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
VíceFYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
VíceŘešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie D
Řešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Ksestrojenígrafupotřebujemevypočítatdobu t 2rovnoměrnéhopohybuadobu t 3jízdyběhemzrychlování: v m s 1 t 2= (366+210)m
VíceVýfučtení: Triky v řešení fyzikálních úkolů
Výfučtení: Triky v řešení fyzikálních úkolů Úvod Ve fyzice obča narazíme na problémy jejichž řešení je mnohdy komplikované a zdlouhavé. Avšak v určitých případech e tyto ložité problémy dají vyřešit velmi
Více4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Víceplochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
VíceKINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217
KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb
VíceKinematika hmotného bodu
KINEMATIKA Obsah Kinematika hmotného bodu... 3 Mechanický pohyb... 3 Poloha hmotného bodu... 4 Trajektorie a dráha polohového vektoru... 5 Rychlost hmotného bodu... 6 Okamžitá rychlost... 7 Průměrná rychlost...
VíceMěření fotometrických parametrů světelných zdrojů
FP 4 Měření fotometrických parametrů světelných zdrojů Úkoly : 1. Určete a porovnejte normované prostorové vyzařovací charakteristiky určených světelných zdrojů (žárovky, LED dioda) pomocí fotogoniometru
VícePříklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na
Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností
VíceObsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
VícePřípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
VíceZadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
VícePočty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
VíceFyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
Více