Veveří 331/95, Brno KLENBY 1. ÚVOD. typické. rozměry ZAŘÍZENÍ. měření přetváření vybraného. pouzder se uchytí vynášecí.
|
|
- Vlasta Říhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Funkční vzorek - identifikační číslo: 7776 Veveří 33/95 60 FUNKČNÍ VZOREK NÁZEV: RAMENÁTOVÝ ZESIOVA AČ PRO SEOVÁNÍ PŘETVÁŘENÍ PRŮŘEZU KENBY. ÚVO Užíváníí současných měřidel pro ormace zdiva bylo převzato z oblastí kde byl sledovaný prvek zhotoven z dostatečněě homogenních materiálů (ocel beton. Zdivo je však typické svými odlišnými materiálovými charakteristikami u na sebe navzájem kolmých směrů. íky velikosti základních stavebních prvků (cihla malta nepostačují dosavadní používané rozměry měřidel. Pro dosažení výsledků s postačující přesností je nutné sledovat opět vzájemnou změnu pozice dvou předem zvolených bodů které se však nacházejí v dostatečné vzdálenosti od sebe aby respektovaly lokální diskontinuityy zdiva. Vytčený cíl komplikuje fakt že sledovaný úsek je zakřivený.. KONSTRUKCE ZAŘÍZENÍ Pro sledování ormací krajních vláken ve zvoleném průřezu klenby bylaa navržena ocelová konstrukce měřícího zařízení (dále ramenátový zesilovač. Podstata zařízení spočívá v měření přetváření vybraného úseku sledované konstrukce na účinky vnějšího silového namáhání pomocí snímačů které ke klenbě samotné nepřiléhají. Navržená geometrie musí zohlednit potřebu záznamu ormace z řádově většího celku než je velikost zdících prvků. Obrázek Konstrukční prvky měřícího zařízení - ramenátového zesilovače Navrženým zařízením je možno stanovitt velikost posunů a zároveň velikost pootočení části klenby nacházejícíí se mezi body upnutí konstrukce ke klenbě. Soustava se skládá ze dvou tuhých polorámů které nejsou vzájemně propojeny. Každý polorám jee vetknut do zdiva na jednom konci sledovanéhoo úseku. Polorámy se dotýkají hroty umístěných snímačů. Připevnění upínacích pouzder na zdivoo se provádí závitovými tyčemi procházejícími skrz celý průřez nebo mechanickými rozpěrnými kotvami. o takto nachystaných pouzder se uchytí vynášecí ramena. Jejich osa by měla být orientována kolmo ke střednicii klenby. Požadované natočení ramenátů do jedné osy umožňují tzv. korekční klouby. Konstrukce kloubů byla navržena tak aby se při běžně užívaných úhlech mezi vynášecími rameny docílilo snadné rotace jednotlivých ramenátů. Každá trubka se upne do kloubu přibližně
2 Funkční vzorek - identifikační číslo: 7776 Veveří 33/95 60 ve svém středu díky tomu pak nedochází k namáhání kloubu v rovině rotace krouticím momentem. Obrázek Upínací pouzdro Obrázek 3 Korekční K kloub 3. TEORIE K ANAÝZE SOUBORU EXPERIMENTÁNĚ NAMĚŘENÝC AT Samotný záznam dat pořízený během měření sanované konstrukce zobrazuje sice změny v geometrii avšak nemá vypovídací schopnost o míře přetvoření. Proto byla odvozena zjednodušená teorie na základě stavebně-mechanických pružnostníchp h a geometrických charakteristik. Obecné řešení platné v celém rozsahu překračuje reálné hodnoty ormací na stavební konstrukci a nelze ho odvodit přímým výpočtem analyticky. Proto byly zavedeny zjednodušující předpoklady umožňující přímý výpočet s přijatelnou nepřesností. Záznam posunů na snímačích se převede zpět na velikost ormací lícee a rubu sledované konstrukce. Na základě znalosti těchto posunů je možno stanovit přetvoření krajních vláken sledovaného úseku klenby. Rozdílná hodnota poměrných přetvoření na líci a rubu je důsledkem změny poloměru klenbového oblouku resp. změny křivosti. 3.. Odvození geometrických závislostí Za vstupní hodnoty jsou považovány geometrické rozměry rámu a ormace zaznamenané snímači na ramenátech. Ostatní rozměry se dopočítávají podle následujících vztahů. Vynášecí ramena nesvírají díky zakřivení střednicee klenby pravý úhel s ramenáty osazenými snímačem. Proto se stanoví kolmé vzdálenostii mezi spodními a horními ramenáty. h h ( h h ( - délka ramenátů mezi stavěcími klouby osazených snímačem č. - vzdálenost kloubu s ramenátem r č. od líce klenby - vzdálenost kloubu s ramenátem r č. od líce klenby Stanoví se kolmá vzdálenost mezi horním snímačemm č. a spojnicí bodů proniku vynášecích ramen se spodním lícem klenby. h h h h h h élka základen pro výpočet přetvoření v krajních vláknech průřezu je odvozena z geometrie. h. ( h t. h h h h
3 Funkční vzorek - identifikační číslo: 7776 Veveří 33/95 60 Nezbytnou hodnotou pro posouzení zda došlo ke změně křivosti je stanovení poloměru zakřivení. Opět lze vycházet z podobnosti trojúhelníka: tg h h r kde je za neznámou považován průmět poloměru líce klenby do d svislé roviny. Matematickou úpravou lze tuto teoretickou hodnotu vyjádřit ve vztahu: h h r. Stanoví se hledaný poloměr zakřivení v úseku klenby mezi vynášecími rameny. V případě že osa vynášecích ramen nesvírá se střednicí klenby pravý úhel výpočtem stanovený poloměr bude vykazovat odchylku. Ve výpočtu je možné uvažovat spočtený nebo skutečný poloměr r ( h h r (. 4 Je-li určena hodnota poloměru stanoví se pr obloukové délky líce a rubu klenby ro známou velikost vrcholového úhlu mezi rameny: r r r r t. Na základě velikosti ormací zaznamenaných snímači se tyto změnyy transformují zpět na povrchová vlákna klenby. Nejprve se extrapolují zaznamenané ormace a z takto stanovených ormací a se jižž určí velikosti přetvoření po výšce vyšetřovaného průřezu v konstrukci za předpokladu platnosti Bernoulliovy hypotézy. Obrázek 4 Rozdíly mezi extrapolací posunů a poměrných přetvoření Velikost změny délky krajních vláken klenby (spodních a horních ve sledovaném úseku resp. vyjadřují následující vztahy: h ( h t. h h h h Na základě znalosti ormací a se již stanoví velikost poměrných přetvoření líce a rubu konstrukce: 3
4 Funkční vzorek - identifikační číslo: 7776 Veveří 33/95 60 Za vstupní par délky ametry se považují obloukové a posuny a. Stanovení velikosti poloměru zakřivení a vrcholového úhlu poo ormaci vychází z řešení lineárních rovnic: r ( r t ( ( lze tedy psát: ( ( t r. Obrázek 5 Změna sledovaných veličin před a po ormaci zakřiveného prvku 3.. Zjednodušení uvažovaná při měření 3.. Vliv pootočení vynášecích ramenn Vzdálenost mezi klouby je přii měření zkreslena o rotaci vynášecích ramen. Tato vzdálenost se protoo určuje jako součet průmětů jednotlivých ramenátů do osy o procházející klouby. Obrázek 6 Nepřesnost záznamu vlivem pootočení ramenátu odnotu chyby měření vlivem pootočení průřezu lze vyjádřit jako: c ( i i (cos kde Teplota Korekcee záznamu o vliv teploty se při krátkodobém měření stanovuje s pouze od délkových změn prvků ramenátového zesilovače. Ze záznamu teploty se určí změnaa posunu snímačů a přičte se s opačným znaménkem k záznamu. 4
5 Funkční vzorek - identifikační číslo: 7776 Vysoké učení technické v Brně Fakulta stavební Ústav Betonových a zděných konstrukcí Veveří 33/95 60 T T T i i a i b T ( hi i. h h 3..3 Změna obloukové míry za přímkovou Přetvoření se určuje ze záznamu ormace a délek. Skutečné přetvoření bude menší protože stejná ormace se odehrává na původní zakřivené délce klenby. Obrázek 7 Zjednodušená geometrie pro přímý výpočet / odchylka r Obrázek 8 Nepřesnosti ze záměny délek 4. ZÁVĚR Použití ramenátového zesilovače je vhodnou metodou pro určení velikosti přetvoření (daného posunem pootočením nebo jejich kombinací libovolného průřezu na konstrukci se zakřivenou střednicí. Konstrukce zesilovače podává představu o chování většího úseku zděných prvků a potlačuje tak zkreslená naměřená data získaná konvenčními metodami. Pro realizaci měření jsou nezbytné dva požadavky. Funkční měřící souprava a přibližná představa o chování zesilovaného prvku. První požadavek sestává z hardwarového vybavení (ramenátový zesilovač snímače sběrnice dat PC a ze software který umožní sledování zájmových veličin v reálném čase. ruhým požadavkem je předběžná statická analýza pro určení geometrie zesilovače. Na základě odvozené teorie je možné implementovat výpočet zájmových veličin do stávajícího programového vybavení. Využití ramenátového zesilovače modifikovaného pro sledování posunů s nulovým pootočením našlo uplatnění u mostních kleneb zatěžovaných příčným předepnutím. Sledování vzájemných posunů mezi dvěma libovolnými body ležícími ve směru působícího předpětí umožňuje korekci předpokládaného modulu přetvárnosti zaznamenání síly při které dojde k uzavření trhlin které nemůžou být zainjektovány s ohledem na svou šířku a podle míry nelineárního chování zdiva možnost usuzovat stav napjatosti v konstrukci. Při dostatečně hustém rozmístění měřících základen lze získat představu o vlivu smykových sil přenášených kontaktně přes ložné spáry. Užití ramenátového zesilovače se proto doporučuje jako relevantní součást prací spojených se sledováním chování kleneb při změně zatěžování. 5
6 Funkční vzorek - identifikační číslo: 7776 Veveří 33/ FOTOGRAFIE MĚŘÍCÍO ZAŘÍZENÍ 6
7 Funkční vzorek - identifikační číslo: 7776 Veveří 33/
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D
Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu
Předpjatý beton Přednáška 5
Předpjatý beton Přednáška 5 Obsah Změny předpětí Ztráta předpětí třením Ztráta předpětí pokluzem v kotvě 1 Maximální napětí při předpínání σ p,max = min k 1 f pk, k 2 f p0,1k kde k 1 =0,8 a k 2 =0,9 odpovídající
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku
K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku 1 Zadání úlohy Vypracujte návrh betonového konstrukčního prvku (průvlak,.). Vypracujte návrh prvku ve variantě železobetonová konstrukce
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ
KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr
Teorie tkaní. Modely vazného bodu. M. Bílek
Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.
reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter
Přednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM
PŮDORYSNĚ ZAKŘIVENÁ KONSTRUKCE PODEPŘENÁ OBLOUKEM 1. Úvod Tvorba fyzikálních modelů, tj. modelů skutečných konstrukcí v určeném měřítku, navazuje na práci dalších řešitelských týmů z Fakulty stavební Vysokého
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Předpjatý beton Přednáška 4
Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Zjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017
IDEA StatiCa Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017 Praktické použití programu IDEA StatiCa pro návrh betonových prvků Složitější případy
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY PŘEDMĚT BL001 rok 2017/2018 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.
Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový
PRŮŘEZOVÉ CHARAKTERISTIKY
. cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,
Analytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K
BETONOVÉ KONSTRUKCE B03C +B03K Betonové konstrukce - B03C +B03K SKOŘEPINOVÉ KONSTRUKCE Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (
SOUŘADNICE BODU, VZDÁLENOST BODŮ
Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose
Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)
Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B5. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
33PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B5 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Předpjatý beton 2. část návrh předpětí Obsah: Navrhování
1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.
Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou
Prvky betonových konstrukcí BL01 3. přednáška
Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
Platnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013
PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Výpočet přetvoření a dimenzování pilotové skupiny
Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu
BL006 - ZDĚNÉ KONSTRUKCE
BL006 - ZDĚNÉ KONSTRUKCE Vyučující konzultace, zápočty, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, Registrace studentů a průběh konzultací: Studenti si
ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
Mechanika tuhého tělesa
Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný
Autor: Vladimír Švehla
Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta
Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)
PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Statika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: RÁMOVÝ ROH S OSAMĚLÝM BŘEMENEM V JEHO BLÍZKOSTI Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce Návrh
Nosné konstrukce AF01 ednáška
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce AF01 3. přednp ednáška Deska působící ve dvou směrech je
Podmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
Namáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
KONSTRUKCE POZEMNÍCH STAVEB
6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle
5 Analýza konstrukce a navrhování pomocí zkoušek
5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE
SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015
Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky. vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN
Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN Karel Mikeš České vysoké učení technické v Praze Fakulta stavební
ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE. ARST - Architektura a statika. ARST - Architektura a statika
SKOŘEPINOVÉ KONSTRUKCE 133 1 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (
Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení
PŘEDNÁŠKY Účinky smršťování a dotvarování a opatření pro omezení jejich nepříznivého působení Pozemní stavby Pozemní stavby rámové konstrukce Vliv dotvarování a smršťování na sloupy a pilíře střední sloupy
Betonové a zděné konstrukce 2 (133BK02)
Podklad k příkladu S ve cvičení předmětu Zpracoval: Ing. Petr Bílý, březen 2015 Návrh rozměrů Rozměry desky a trámu navrhneme podle empirických vztahů vhodných pro danou konstrukci, ověříme vhodnost návrhu
Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží
EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme
Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce
133 BK4K BETONOVÉ KONSTRUKCE 4K Betonové konstrukce BK4K Program výuky Přednáška Týden Datum Téma 1 40 4.10.2011 2 43 25.10.2011 3 44 12.12.2011 4 45 15.12.2011 Skořepinové konstrukce úvod Úvod do problematiky
Moment síly výpočet
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.2.3.2 Moment síly výpočet Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA
STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 04. VYZTUŽOVÁNÍ - TRÁMY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284
Prvky betonových konstrukcí BL01 7 přednáška
Prvky betonových konstrukcí BL01 7 přednáška Zásady vyztužování - podélná výztuž - smyková výztuž Vyztužování bet. prvků desky - obecné zásady - pásové a lokální zatížení - úpravy kolem otvorů trámové
Výpočet vnitřních sil na kruhovém ostění
Výpočet vnitřních sil na kruhovém ostění Výpočet dle metody Zurabova-Bugajevové Metoda Zubarova-Bugajevové patří k metodám stanovení vnitřních sil na pružném ostění s předurčenou křivkou pasivního odporu.
BEZSTYKOVÁ KOLEJ NA MOSTECH
Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce
Schöck Isokorb typ K. Schöck Isokorb typ K
Schöck Isokorb typ Schöck Isokorb typ (konzola) Používá se u volně vyložených ů. Přenáší záporné ohybové momenty a kladné posouvající síly. Prvek Schöck Isokorb typ třídy únosnosti ve smyku VV přenáší
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS
CL001 Betonové konstrukce (S) Program cvičení, obor S, zaměření KSS Cvičení Program cvičení 1. Výklad: Zadání tématu č. 1, část 1 (dále projektu) Střešní vazník: Návrh účinky a kombinace zatížení, návrh
Pružnost a plasticita CD03
Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Posuzování betonových sloupů Masivní sloupy
PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK
PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK - - 20,00 1 [0,00; 0,00] 2 [0,00; 0,38] +z 2,00 3 [0,00; 0,72] 4 [0,00; 2,00] Geometrie konstrukce
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM
VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM Projekt: Dílčí část: Vypracoval: Vyztužování poruchových oblastí železobetonové konstrukce
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ
VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ ZADÁNÍ Navrhněte most z prefabrikovaných předepnutých nosníků IST. Délka nosné konstrukce mostu je 30m, kategorie komunikace na mostě je S 11,5/90.
Betonové konstrukce (S) Přednáška 4
Betonové konstrukce (S) Přednáška 4 Obsah: Předpětí a jeho změny Ztráta předpětí třením Ztráta předpětí pokluzem v kotvě Okamžitým pružným přetvořením betonu Relaxací předpínací výztuže Přetvořením opěrného
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami
Přijímací zkoušky na magisterské studium, obor M
Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová
KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování
Relaxační metoda. 1. krok řešení. , kdy stáří betonu v jednotlivých částech konstrukce je t 0
PŘEDNÁŠKY Relaxační metoda 1. krok řešení V okamžiku t 0, kdy stáří betonu v jednotlivých částech konstrukce je t 0 a kdy je konstrukce namáhána vnitřními silami { }, nechť je konstrukce v celém svém rozsahu
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16
ČVUT v Praze, fakulta stavební Katedra betonových a zděných konstrukcí Zadání předmětu RBZS obor L - zimní semestr 2015/16 Přehled úloh pro cvičení RBZS Úloha 1 Po obvodě podepřená deska Úloha 2 Lokálně
1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)
Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016
Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové
VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku
VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte
BETONOVÉ KONSTRUKCE B03C +B03K SKOŘEPINOVÉ KONSTRUKCE. Betonové konstrukce B03C +B03K. Betonové konstrukce - B03C +B03K
7.1.017 SKOŘEPINOVÉ KONSTUKCE BETONOVÉ KONSTUKCE B03C B03K Betonové konstrukce - B03C B03K 1 7.1.017 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající roměry konstrukčnío prvku (
Základní výměry a kvantifikace
Základní výměry a kvantifikace Materi l Hmotnost [kg] Povrch [m 2 ] Objemov hmotnost [kg/m 3 ] Objem [m 3 ] Z v!sy 253537,3 1615,133 7850,0 3,2298E+01 S 355 Ðp" #n ky a pylony 122596,0 637,951 7850,0 1,5617E+01
Platnost Bernoulli Navierovy hypotézy
Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady
Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace