ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE. ARST - Architektura a statika. ARST - Architektura a statika
|
|
- Jiřina Dvořáková
- před 6 lety
- Počet zobrazení:
Transkript
1 SKOŘEPINOVÉ KONSTRUKCE 133 1
2 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku ( << b; l) Prostorová obdoba deskovýc konstrukcí Velice tenké konstrukce u střešníc konstrukcí běžně 4 až 10 cm skořepiny, skořápky (sell structures) Tloušťka se volí jako konstantní, popřípadě jako proměnná ( zvětšující se nejčastěji směrem ke krajním nosníkům) Střednicová ploca skořepiny geometrická množina bodů půlící výšku skořepiny Zatížení skořepinovýc konstrukcí je zcela obecné
3 Konstrukce vyskytující se i v přírodě (fauna, flóra) Stavební konstrukce mají organický základ (podobné zmíněným přírodním konstrukcím) 3
4 4
5 5
6 Jarunderalle (1913), Wroclaw Hangár Orly airport (190), Paříž 100. výročí porážky Napoleona Parabolický angár pro vzducolodě Felix Candela ( ) projekty tenkýc skořepinovýc železobetonovýc konstrukcí MOŽNOSTI VÝSTAVBY 6
7 7
8 Vienna University of Tecnology Rozdělení skořepin Rozdělení podle tvaru střednicové roviny (obecné rotačně symetrické) a podle namáání Gaussova křivost K vycází z lavníc poloměrů křivosti R 1 a R (největší a nejmenší ze všec poloměrů křivosti v daném bodě, leží v rovinác k sobě kolmýc) K > 0 např. koule 1 1 K = k1 k = R1 R Rozdělení podle namáání: - skořepiny tlustostěnné - skořepiny střední tloušťky - skořepiny tenkostěnné - nelineární tenkostěnné skořepiny - membrány Tlustostěnné skořepiny tloušťka skořepiny je srovnatelná s minimálním poloměrem křivosti plocy R min ; neplatí Kircoffova ypotéza tenkýc desek nelineární rozložení napětí po výšce skořepiny, velice složité řešení blízké tlustým deskám K = 0 např. válec Tenkostěnné skořepiny - velmi malá tloušťka stěny ve srovnání s minimálním poloměrem křivosti střednicové plocy; lze zanedbat vliv smykovýc sil na deformaci normál ke střednicové ploše lineární rozložení normálovýc napětí K < 0 např. yperbolický paraboloid Nelineární tenkostěnné skořepiny - velice tenké skořepiny, deformace srovnatelné s tloušťkou konstrukce, nutno uvážit geometrickou nelinearitu při řešení konstrukcí K >0 a K<0 (dle poloy na skořepině) např. anuloid Membrány - speciální typ skořepin, u kterýc se nevyskytují žádné momenty (oybové ani kroutící), namáání pouze normálovými, popřípadě smykovými silami rovnoměrné rozložení napětí po tloušťce konstrukce membránová napjatost (stav napjaté blány); stav konstrukce, který je dán jejím tvarem, zatížením a podmínkami uložení (nutno poskytnout takové podmínky uložení, které zabezpečí volné pootočení a zároveň musí být uložení scopno přenést membránové síly) 8
9 Matematické definování střednicové plocy Podle namáání konstrukce ta tlak Tažené konstrukce membrány Nárada kružnicový oblouk o poloměru R - podporové reakce - délka konstrukce p L 1 H = V = p L 8 f 1 L L oblouku, 0 = R sin R - taová síla v konstrukci - protažení konstrukce od působícío zatížení T T0 - pokud je konstrukce předepnuta silou T 0, protažení je pak dáno L = EA - konečná délka konstrukce p L p L T = H + V = + 8 f T L = L oblouku,0 EA 1 p L T sin T T0 T Loblouku, L + 0 oblouku, 0 = EA p L oblouku, 0 9
10 Tlačené konstrukce klenby NAMÁHÁNÍ SKOŘEPIN A VNITŘNÍ SILOVÉ ÚČINKY p(x) H x M( x) = H y( x) d M( x) d y = p( x) H = p( x) d x d x y Normálová napětí σ 1 a σ superpozice oybu a osové síly (nenulová odnota na střednicové ploše) Smyková napětí - τ 1 a τ 1 superpozice krutu a smyku Smyková napětí - τ 13 a τ 3 smykové síly ve směru normály ke střednicové ploše Napětí σ 1 σ τ 1 τ 1 τ 13 τ 3 Přeled vnitřníc silovýc účinků Výsledný vnitřní účinek N 1 normálová síla M 1 oybový moment N normálová síla M oybový moment S 1 smyková síla M 1 kroutící moment S 1 smyková síla M 1 kroutící moment Q 1 posouvající (příčná) síla Q posouvající (příčná) síla da = ( dy + zdα ) dz dy dy z dα = da = dy z dz dydz R + = R 1 + R Závislost mezi vnitřními silami a napětími Normálová napětí σ 1 a normálová síla N 1 z Elementární síla na ploše da σ da dydz R 1 = σ1 1 + z N Na celou přední stěnu elementu pak působí = = + 1 N = 1 σ1da dy σ1 1 dz σ1 1 + R dy z R dz 10
11 z N1 = σ1 1 R z N = σ 1 R 1 z M1 = σ1 z 1 R z M = σ z 1 R1 z S1 = τ1 1 R Vnitřní silové účinky 8 neznámýc silovýc účinků z S1 = τ 1 1 R 1 z M + 1 = τ1 z 1 dz R z M1 = τ 1 z 1 R1 z Q1 = τ13 1 R z Q = τ 3 1 R1 M 1 = σ1 zdz = σ '' 1 1 max 6 ' N1 = σ1dz = σ1 Pro tenkostěnné konstrukce je možné zanedbat změnu šířky proužku po výšce skořepiny plocu naradíme obdélníkem. ZÁKLADY TEORIE OBECNÝCH TENKOSTĚNNÝCH SKOŘEPIN Předpoklady řešení: 1. Platí Hookův zákon a princip superpozice. Platí předpoklad tenkostěnnosti 3. Průyby skořepiny jsou malé ve srovnání s její tloušťkou 4. Body ležící před deformací na normále střednicové plocy leží po deformaci na normále zdeformované střední plocy Kircoffova ypotéza 1 R min 10 MEMBRÁNOVÁ TEORIE SKOŘEPIN Vzledem k malé tloušťce konstrukce (oybový moment přímo úměrný 3 mocnině této tloušťky) jsou oybové momenty velmi malé a lze je zanedbat (za jistýc speciálníc předpokladů). Podmínky vzniku membránovéo stavu ve skořepině: - Zatížení kolmé k povrcu skořepiny spojité a ne příliš nerovnoměrné porušení stavu (bodová síla, nálá změna zatížení) - Síly působící na skořepinu musí být ve směru tečen ke střední ploše - Tloušťka stěny se nemění nále - Křivost střední plocy skořepiny a poloa středu křivosti se mění spojitě Základní rovnice membránovéo stavu 6 podmínek rovnováy 3 silové a 3 momentové ϕ ( N r ) + ( T r ) x y ψ ( N r ) + ( T r ) xy x + Xrxry = 0 y x xy y + Yrxry = 0 ψ ϕ N N x y + + Z = 0 rx ry 11
12 Z Y X Z Y X Z Z Y Y X X Z Y X 1. Krok skořepina po obvodu podepřená Kloub po okraji m x[knm/m] Vetknutí po okraji m x[knm/m] Krok skořepina podepřena patním nosníkem Navržený nosník m x[knm/m] Navržený nosník n x[kn/m] x zajistit požadované uložení: umožnit deformaci zacytit šikmé tlaky Kloub po okraji n x[kn/m] KRUHOVÝ VÁLEC - Osa x rovnoběžná s osou válce 1/r x = 0, r y = r (poloměr řídící kružnice) N T x xy + + X = 0 x r ψ Ny Txy + + Y = 0 r ψ x Ny = Zr 1
BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K
BETONOVÉ KONSTRUKCE B03C +B03K Betonové konstrukce - B03C +B03K SKOŘEPINOVÉ KONSTRUKCE Skořepiny Konstrukční prvky plošnéo carakteru dva převládající rozměry konstrukčnío prvku (
BETONOVÉ KONSTRUKCE B03C +B03K SKOŘEPINOVÉ KONSTRUKCE. Betonové konstrukce B03C +B03K. Betonové konstrukce - B03C +B03K
7.1.017 SKOŘEPINOVÉ KONSTUKCE BETONOVÉ KONSTUKCE B03C B03K Betonové konstrukce - B03C B03K 1 7.1.017 Skořepiny Konstrukční prvky plošnéo carakteru dva převládající roměry konstrukčnío prvku (
Skořepinové konstrukce. tloušťka stěny h a, b, c
Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce
Rotačně symetrická deska
Rotačně symetrická deska je tenkostěnné těleso, jeož střednicová ploca je v nedeformovaném stavu rovinná, kruová nebo mezikruová. Zatížení působí kolmo ke střednicové rovině, takže při deformaci se střednicová
Geometricky válcová momentová skořepina
Geometricky válcová momentová skořepina Dalším typem tenkostěnnéo rotačně souměrnéo tělesa je geometricky válcová momentová skořepina. Typický souřadnicový systém je opět systém s osami z, r, a t. Geometricky
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
POŽADAVKY KE ZKOUŠCE Z PP I
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
Nosné konstrukce AF01 ednáška
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce AF01 3. přednp ednáška Deska působící ve dvou směrech je
INŽENÝRSKÉ KONSTRUKCE
INŽENÝRSKÉ KONSTRUKCE sylabus přednášek pro předmět 133BK02 a Michal Drahorád Marek Foglar INŽENÝRSKÉ KONSTRUKCE Stavební konstrukce nebo jejich části, které nelze primárně klasifikovat jako pozemní stavby,
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
KONSTRUKCE POZEMNÍCH STAVEB
6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle
1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
14/03/2016. Obsah přednášek a cvičení: 2+1 Podmínky získání zápočtu vypracovaná včas odevzdaná úloha Návrh dodatečně předpjatého konstrukčního prvku
133 BK5C BETONOVÉ KONSTRUKCE 5C 133 BK5C BETONOVÉ KONSTRUKCE 5C Lukáš VRÁBLÍK B 725 konzultace: úterý 8 15 10 email: web: 10 00 lukas.vrablik@fsv.cvut.cz http://concrete.fsv.cvut.cz/~vrablik/ publikace:
Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice
Pružnost a pevnost 13PRPE Přednášk Desk Deska/stěna/skořepina, desk ákladní předpoklad, proměnné a rovnice Petr Kabele České vsoké učení technické v Prae Fakulta stavební Úvod Přemístění, deformaci a napjatost
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání
Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Vnitřní síly v prutových konstrukcích
Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m
Téma 5 Lomený a zakřivený nosník
Stavební statika, 1.ročník bakalářského studia Téma 5 Lomený a zakřivený nosník Rovinně lomený nosník v rovinné úloze Rovinně lomený nosník v příčné úloze Prostorově lomený nosník Katedra stavební mechaniky
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice
Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta
ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI
ÚVOD DO TEORIE MATEMATICKÉ PRUŽNOSTI ZÁKLADNÍ PŘEDPOKLADY A POJMY 1. Látka, která vtváří příslušné těleso je dokonale lineárně pružné, mezi napětím a přetvořením je lineární závislost.. Látka hmotného
1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.
Výpočet spojovacích prostředků a spojů (Prostý smyk) Průřez je namáhán na prostý smyk: působí-li na něj vnější síly, jejichž účinek lze ekvivalentně nahradit jedinou posouvající silou T v rovině průřezu
NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)
NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou
Přednáška 10. Kroucení prutů
Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní
při postupném zatěžování opět rozlišujeme tři stádia (viz ohyb): stádium I prvek není porušen ohybovými ani smykovými trhlinami řešení jako homogenní prvek, stádium II dříve vznikají trhliny ohybové a
Další plochy technické praxe
Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch
Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.
Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový
1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.
Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Prvky betonových konstrukcí BL01 7 přednáška
Prvky betonových konstrukcí BL01 7 přednáška Zásady vyztužování - podélná výztuž - smyková výztuž Vyztužování bet. prvků desky - obecné zásady - pásové a lokální zatížení - úpravy kolem otvorů trámové
Uplatnění prostého betonu
Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého
SMA2 Přednáška 09 Desky
SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
Betonové konstrukce (S)
Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy
Skořepiny jsou plošné konstrukce jejich tloušťka je mnohonásobně menší než zbývající dva rozměry jejich střednicová plocha je zakřivená
SKOŘEPINY Skořepiny jsou plošné konstrukce jejich tloušťka je mnohonásobně menší než zbývající dva rozměry jejich střednicová plocha je zakřivená Používají se jako nosné části konstrukcí ohraničující nějaký
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Platnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
Přednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright
Diferenciáln. lní geometrie ploch
Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ
KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr
12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
MILLAU VIADUCT FOSTER AND PARTNERS Koncepce projektu Vícenásobné zavěšení do 8 polí, 204 m + 6x342 m + 204 m Celková délka mostu 2 460 m Zakřivení v mírném směrovém oblouku poloměru 20 000 m Konstantní
a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.
Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
pedagogická činnost
http://web.cvut.cz/ki/ pedagogická činnost -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový ýprůřez - Konstrukční ustanovení - Základová
Tvorba výpočtového modelu MKP
Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování
Výpočet sedání kruhového základu sila
Inženýrský manuál č. 22 Aktualizace 06/2016 Výpočet sedání kruhového základu sila Program: MKP Soubor: Demo_manual_22.gmk Cílem tohoto manuálu je popsat řešení sedání kruhového základu sila pomocí metody
Betonové konstrukce (S)
Betonové konstrukce (S) Přednáška 5 Obsah Mezní únosnost prvků namáhaných osovou silou a ohybem, stav dekomprese, počáteční napjatost průřezu. Prvky namáhané smykem a kroucením, analýza napjatosti (pružná,
K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:
13. Prostý ohyb Definice
p13 1 13. Prostý ohyb 13.1. Definice Prostý ohyb je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se vzájemně natáčejí kolem osy ležící v
Pružnost a plasticita CD03
Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Platnost Bernoulli Navierovy hypotézy
Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady
1 Švédská proužková metoda (Pettersonova / Felleniova metoda; 1927)
Teorie K sesuvu svahu dochází často podél tenké smykové plochy, která odděluje sesouvající se těleso sesuvu nad smykovou plochou od nepohybujícího se podkladu. Obecně lze říct, že v nesoudržných zeminách
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Příloha č. 1. Pevnostní výpočty
Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM
NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova
Z hlediska pružnosti a pevnosti si lze stav napjatosti
S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který
Výpočet vodorovné únosnosti osamělé piloty
Inženýrský manuál č. 16 Aktualizace: 07/2018 Výpočet vodorovné únosnosti osamělé piloty Program: Soubor: Pilota Demo_manual_16.gpi Cílem tooto inženýrskéo manuálu je vysvětlit použití programu GEO 5 PILOTA
Funkce dvou proměnných
Funkce dvou proměnných Funkce dvou proměnných harmonická vlna Postupné příčné vlnění T=2, = 2 ( t, ) Asin t 2 Asin t T v t Asin 2 T Počátek koná harmonický pohb, ten se šíří dál řadou oscilátorů ve směru
STABILITA SVAHŮ staveb. inženýr optimální návrh sklonu
IG staveb. inženýr STABILITA SVAHŮ - přirozené svahy - rotační, translační, creepové - svahy vzniklé inženýrskou činností (násypy, zemní hráze, sklon stavební jámy) Cílem stability svahů je řešit optimální
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze
NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI
ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB Halové stavby Konstrukční
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice
3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední
Úloha 1 - Posouzení nosníku na ohyb, smyk a průhyb
Úloa - Posouzení nosníku na oyb, smyk a průyb Zatížení a součinitele: Dřevo Třída_provozu Délka_trvání_zatížení 0 V 06 :3: - 0_Proste-podepreny-nosnik.sm Stálé zatížení (včetně vlastní tíy nosníku): Užitné