Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.
|
|
- Bohumír Říha
- před 8 lety
- Počet zobrazení:
Transkript
1 reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč ČVUT v Praze, Fakulta architektury 21. března 2016
2 Dřevěný trámový strop - Anežský klášter reálných trám - 1x stat. neurčitá kce průvlak - stat. určitá kce
3 Lávka přes Kunratický potok u soutoku s Vltavou reálných staticky určitá
4 Železniční most na Výtoni reálných staticky určitá Z tvaru ocelových ložisek vznikly značky pro pevný a posuvný kloub. Konstrukce je prostě podepřená, tzn. staticky určitá, proto reakce určíme z podmínek rovnováhy. Samotná příhradová soustava je násobná soustava, která je staticky neurčitá. Osové síly v prutech lze určit z podmínek rovnováhy doplněné o tzv. přetvárné podmínky.
5 Pevný a posuvný kloub prostý a spojitý nosník reálných Detail uložení závisí na velikosti posunu a natočení, tj. závisí na rozpětí.
6 Hlávkův most západní pohled reálných staticky určitá
7 Hlávkův most východní pohled reálných 3x staticky neurčitá
8 Čechův most reálných 1x staticky neurčitá
9 Oblouk s táhlem - Letohrádek královny Anny reálných staticky určitá
10 Železniční most v Holešovicích reálných 1x staticky neurčitá
11 Štefánikův most reálných Výrazně štíhlé stěny působí jako kyvné stojky. Staticky neurčitá soustava.
12 Obloukový most s dolní mostovkou reálných Staticky neurčitá soustava prostě podepřená.
13 Tuhé těleso je hmotný útvar, který se nedeformuje. V rovině je hmotným tuhým objektem: Hmotný bod Tuhá deska Hmotné objekty mohou být: Volné nejsou ve svém pohybu omezovány Vedené pohyb je částečně omezen Pevně podepřené pohyb je zcela znemožněn reálných Stupeň volnosti - vyjadřuje možnost objektu v daném směru se posunout nebo pootočit. Volný objekt má tolik stupňů volnosti, kolika nezávislými parametry je určena jeho poloha.
14 reálných Hmotný bod y u v x Přemístění hmotného bodu lze popsat pomocí 2 parametrů: Posun ve směru osy x: u Posun ve směru osy y: v Proto má hmotný bod 2 volnosti.
15 Tuhá deska y ϕ Přemístění tuhé desky lze popsat pomocí 3 parametrů: Posun ve směru osy x: u Posun ve směru osy y: v reálných v Natočením kolem osy z: ϕ Proto má tuhá deska 3 volnosti. u x Tyto 3 parametry pro popis přemístění je možné jednoznačně určit pro libovolný bod na desce, např. pro její těžiště.
16 reálných Stavební jsou ke svému okolí fixovány vnějšími vazbami, aby bylo zabráněno jejich přemístění. Vazby omezují volnost pohybu objektu, čímž odebírají objektu jeho stupně volnosti. Podle počtu stupňů volnosti, které odebírají hmotnému objektu, se vazby rozdělují na jednoduché, dvojné, trojné... Ve vazbách vznikají síly, které nazýváme reakce.
17 Pevný kloub - dvojná vazba - odebírá 2 volnosti reálných A x A x A y V pevném kloubu je zabráněno svislému i vodorovnému posunu (u = 0, v = 0). Natočení v pevném kloubu je umožněno. V pevném kloubu vzniká vodorovná složka A x i svislá složka A y reakce A. A y
18 Posuvný kloub - jednoduchá vazba - odebírá 1 volnosti reálných B Značka vnikla zjednodušením tvaru válečkového ložiska: V posuvném kloubu je zabráněno posunu kolmo na podtržení značky posuvného kloubu. Je umožněn posun ve směru podtržení značky posuvného kloubu. Natočení v posuvném kloubu je umožněno. V posuvném kloubu vzniká reakce B, která má směr kolmý na podtržení značky posuvného kloubu. Je ve směru posunu, kterému je zabráněno.
19 reálných Kyvný prut - jednoduchá vazba - odebírá 1 volnosti Kyvný prut znemožní posun ve směru jeho střednice (osy). Natočení je umožněno. V kyvném prutu vzniká jedna reakce C, která leží v ose kyvného prutu. C
20 reálných Vetknutí - trojná vazba - odebírá 3 volnosti D x M D Ve vetknutí je zabráněno posunu ve vodorovném i svislém směru (u = 0, v = 0). Ve vetknutí je zabráněno pootočení (ϕ = 0). D y Ve vetknutí vzniká vodorovná složka reakce D x i svislá složka reakce D y a moment M D.
21 Určení statické určitosti ze stupňů volnosti n počet stupňů volnosti volného hmotného objektu v počet stupňů volnosti, které ruší připojené vazby s stupeň tvarové variability vázaného objektu Potom rozlišujeme : s = n v jestliže s = 0. Staticky neurčité jestliže s < 0. Podle s rozlišujeme 1krát, 2krát, 3krát,... staticky neurčité. Staticky přeurčité jestliže s > 0 (jedná se o objekt vedený nebo volný, který se může pohybovat) V případě staticky určitých i neurčitých konstrukcí se nesmí jednat o výjimkový případ. reálných
22 reálných Výpočet reakcí u staticky určité Pro tuhou desku je možné sestavit 3 lineárně nezávislé podmínky rovnováhy, např.,, a nebo a, b, c. Pro hmotný bod je možné sestavit 2 lineárně nezávislé podmínky rovnováhy, např., nebo ve dvou jiných směrech ր, ց. Počet neznámých reakcí odpovídá počtu lineárně nezávislých rovnic podmínek rovnováhy. Proto u konstrukcí staticky určitých je možné stanovit velikost reakcí ze statických podmínek rovnováhy. Výpočet reakcí lze zkontrolovat ověřením podmínek rovnováhy, které nebyly použity pro jejich výpočet.
23 reálných ϕ u vznikají, jestliže soustava rovnic má lineárně závislé řádky, tzn. jedna rovnice je lineární kombinací ostatních rovnic. Hmotné těleso může konat zobecněný posun. u Reakce z podmínek rovnováhy nelze stanovit.
24 Spojité zatížení na nosníku Základní jednotka: N/m q reálných 1m w 1 (sání větru) g 1m 1m g V g N w 2 (tlak větru) 1m Stálé zatížení g působí svisle na jednotku délky nosníku. Užitné zatížení q působí svisle na jednotku půdorysného průmětu nosníku. Tlak nebo sání větru w působí kolmo na konstrukci na jednotku její délky.
25 Příklad staticky určité reálných Konzola (krakorec) F = 5kN A x A y a M A 2m n = 3 v = 3 s = 3 3 = 0 Jedná se o staticky určitou konstrukci. : A y F = 0 a : MA + F.2 = 0 : A x = 0
26 Příklad staticky určité Prostý nosník A x a A y Q = 2.q q = 4kN/m 2m 1m 1m F = 4kN α F = 80 b s = = 0 Jedná se o staticky určitou konstrukci. : A x F cosα F = 0 Q.1 {}}{ 1 a : 2 q F sinα F B.4 = 0 b : Ay.4+ Q {}}{ q f sinα F = 0 B reálných
27 Příklad staticky určité F = 6kN A x : A y a A y Q {}}{ q.1 = 0 q = 2kN/m 1m Q = 1.q a : F.0,5 Q.0,5 {}}{ 1 2 q.12 +B.1 = 0 : F B + A x = 0 b 0,5m 0,5m B n = 3 v = = 3 s = 3 3 = 0 Jedná se o staticky určitou konstrukci. reálných
28 reálných deska 1 deska 2 deska 1 deska 2 Hmotná tělesa mohou být navzájem spojena vnitřními vazbami. Ve vnitřních vazbách vznikají vnitřní reakce. Reakce ve vnitřních vazbách jsou vždy párovou veličinou na hmotné těleso 1 působí stejně velká síla jako na těleso 2, ale opačného směru. Takto spojená hmotná tělesa nazýváme soustavou staticky určitou, neurčitou nebo přeurčitou.
29 Vnitřní kloub - odebírá 2 volnosti deska 1 deska 2 reálných A y A x Je zabráněno vzájemnému vodorovnému i svislému posunu. Ve vnitřním kloubu působí vodorovná složka reakce A x i svislá složka A y. A x A y
30 Dvojnásobný kloub - odebírá 4 volnosti deska 1 deska 2 reálných deska 1 deska 3 B 1y B 1x B 2y deska 2 B 2x B 1y +B 2y Dvojnásobný kloub spojuje 3 tuhé desky. Je zabráněno vzájemnému vodorovnému i svislému posunu. Ve dvojnásobném kloubu působí 2 vodorovné složky reakce B 1x, B 2x a 2 svislé složky B 1y, B 2y. B 1x +B 2x deska 3
31 N-násobný kloub - odebírá 2N volnosti deska 2 reálných deska 1 deska 1 deska N deska N+1 C 1y C 1x C 2y deska 2 C 2x C Ny deska N C Nx C 1y +C 2y +...+C Ny N-násobný kloub spojuje tuhé desky v počtu N+1. Je zabráněno vzájemnému vodorovnému i svislému posunu. V N-násobmém kloubu působí N vodorovných složek C 1x, C 2x,..., C Nx a N svislých složek C 1y, C 2y,..., C Ny. C 1x +C 2x +...+C Nx deska N+1
32 Vnitřní kyvný prut (táhlo) - odebírá 1 volnosti reálných deska 1 deska 2 D D Vnitřní kyvný prut spojuje 2 hmotné objekty. Na vnitřní kyvný prut nepůsobí žádné síly kromě vnitřních reakcích na jeho koncích. Je zabráněno vzájemnému posunu ve směru střednice táhla. V kyvném prutu vzniká jediná reakce, síla v ose kyvného prutu D. Pokud je kyvný prut namáhán jen v tahu, nazýváme takový prut táhlo.
33 Určení statické určitosti n počet stupňů volnosti všech volných hmotných objektů v soustavě v počet stupňů volnosti, které ruší připojené vazby vnitřní i vnější s stupeň tvarové variability Potom rozlišujeme : s = n v jestliže s = 0. reálných Staticky neurčité jestliže s < 0. Staticky přeurčité jestliže s > 0. U staticky určitých i neurčitých soustav musí zároveň platit, že každý hmotný objekt, celá soustava nebo její samostatná část je staticky určitě podepřená a nejedná se o výjimkový případ.
34 příklady reálných
35 reálných Výpočet reakcí staticky určitých soustav Na každé samostatné tuhé desce jsou k dispozici 3 lineárně nezávislé podmínky rovnováhy, např.,, a. Pro každý samostatný hmotný bod jsou k dispozici 2 lineárně nezávislé podmínky rovnováhy a. Na celé soustavě jsou rovněž k dispozici 3 lineárně nezávislé podmínky rovnováhy. Počet neznámých reakcí odpovídá počtu lineárně nezávislých rovnic. Proto u staticky určitých soustav je možné stanovit velikost reakcí ze statických podmínek rovnováhy. Výpočet reakcí lze zkontrolovat ověřením podmínek rovnováhy, které nebyly použity pro jejich výpočet.
36 staticky určitých soustav Trojkloubový oblouk (trojkloubový rám) q = 3kN/m c deska 1 deska 2 3m q = 3kN/m deska 1 c C y C x C x c C y deska 2 reálných A x a b B x A x a b B x 2m 1m A y B y A y B y Celek: a: 1 2 q.22 B y.3 = 0 Deska 2: c : B y.1+b x.3 = 0 : C x B x = 0 : B y C y = 0 Celek: : A y + B y q.2 = 0 : A x B x = 0
37 staticky určitých soustav Oblouk s táhlem F = 10kN deska 1 c deska 2 2m F = 10kN c deska 1 C y C x C x c C y deska 2 reálných A x a táhlo b 1m A x a D D b A y 2m 1m B A y B Celek: : A x = 0 a: F.2 B.3 = 0 : A y + B F = 0 Deska 2: c : B.1+D.2 = 0 : B C y = 0 : D + C x = 0
38 staticky určitých soustav 3 desky F = 10kN F = 10kN reálných deska 1 c deska 2 deska 1 c C x C x c deska 2 A x A y d a q = 6kN/m deska 3 e b 2m 1m B 2m 1m d a A x A y D y D x D x C y q = 6kN/m d deska 3 D y E y e C y E y E x E x e b B Celek: :, a:, : Deska 3: d :, : Deska 2: c :, :, : Deska 3: : Kontrola: Podmínky rovnováhy na desce 1: :, :, c :
39 staticky určitých soustav Kloubové nosníky (Gerberovy nosníky) q F reálných deska 5 F deska 1 q deska 2 deska 3 deska 4 Vodorovné reakce se určí z : na deskách v pořadí deska 5, 4, 3, 2, 1 Ostatní reakce se určí z : a : na deskách v pořadí deska 5, (4 a 2), (1 a 3)
40 Kontrolní otázka Určete, zda se jedná o konstrukci: a) staticky určitou b) staticky neurčitou c) staticky přeurčitou nebo výjimkový případ reálných
41 Kontrolní otázka Určete, zda se jedná o konstrukci: a) staticky určitou b) staticky neurčitou c) staticky přeurčitou nebo výjimkový případ reálných
42 Konec přednášky reálných Děkuji za pozornost. Vysázeno systémem L A T E X. Obrázky vytvořeny v systému.
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví
5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými
Složené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)
Složené soustavy Vznikají spojením jednotlivých konstrukčních prvků Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Metoda: Konstrukci idealizujeme jako soustavu
Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky
Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.
7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý
Petr Kabele
4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural
Příhradové konstrukce
Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
Stupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
trojkloubový nosník bez táhla a s
Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a
STATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618
STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =
4.6.3 Příhradové konstrukce
4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen
4.6 Složené soustavy
4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu
Zjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.
Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
Kinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
Složené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
Podmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
Statika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
Statika tuhého tělesa Statika soustav těles. Petr Šidlof
Statika tuhého tělesa Statika soustav těles Petr Šidlof Rovnováha volného tuhého tělesa (1) Hmotný bod: v rovnováze když rovnováha sil F 0 Tuhé těleso: v rovnováze když rovnováha sil a momentů F 0, M 0
KONSTRUKCE POZEMNÍCH STAVEB
6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Statika tuhého tělesa Statika soustav těles
Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Téma 8 Příčně zatížený rám a rošt
Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Úvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.
1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y
Pohybové možnosti volných hmotných objektů v rovině
REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném
ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání
iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení
* Modelování (zjednodušení a popis) tvaru konstrukce. pruty
2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
α = 210 A x =... kn A y =... kn A M =... knm
Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Anežka Jurčíková, Martin Krejsa, Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA Vzdělávací pomůcka Ostrava
Pohybové možnosti volných hmotných objektů v rovině
REAKCE ohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. m [00] +x volný hmotný od v rovině: n v =2 (posun
A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10
Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30
p + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.
TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními
Rámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016
Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové
Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)
PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky
3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2
3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
Vliv okrajových podmínek na tvar ohybové čáry
Vliv okrajových podmínek na tvar ohybové čáry Petr Havlásek 213 1 Co budeme zkoumat? Tvar deformované střednice při zatížení osamělou silou v polovině rozpětí o prostě podepřeného nosníku (KK) o oboustranně
Materiály ke 12. přednášce z předmětu KME/MECHB
Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
Vnitřní síly v prutových konstrukcích
Vnitřní síly v prutových konstrukcích Síla je vektorová fyikální veličina, která vyjadřuje míru působení těles nebo polí. Zavedení síly v klasické Newtonově mechanice (popis pohybu těles) dp dv F = = m
Statika 2. & Stabilita tuhé konstrukce. Miroslav Vokáč 10. prosince ČVUT v Praze, Fakulta architektury.
6. přednáška & Stabilita tuhé konstrukce A. Desky podél Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 10. prosince 2015 jsou rovinné konstrukce zatížené kolmo na střednicovou
Téma 7 Rovinný kloubový příhradový nosník
Stavební statika,.ročník bakalářského studia Téma 7 Rovinný kloubový příhradový nosník Obecná a zjednodušená styčníková metoda Průsečná metoda Mimostyčníkové zatížení Katedra stavební mechaniky Fakulta
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
4 Halové objekty a zastřešení na velká rozpětí
4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické
PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny
Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.
3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...
SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y
5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je
Obsah. Opakování. Sylabus přednášek OCELOVÉ KONSTRUKCE. Kontaktní přípoje. Opakování Dělení hal Zatížení. Návrh prostorově tuhé konstrukce Prvky
Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Prof. Ing. František Wald, CSc., místnost B
Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).
Kapitola 4 Vnitřní síly přímého vodorovného nosníku 4.1 Analýza vnitřních sil na rovinných nosnících Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena rekapitulace
Rovinné nosníkové soustavy
Stvení sttik,.ročník kominovného studi Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový rám Trojklouový rám s táhlem Ktedr stvení mehniky
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
BL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE
BL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE doc. Ing. Miloš Zich, Ph.D. Ústav betonových a zděných konstrukcí VUT FAST Brno 1 TYPY MONTOVANÝCH PRUTOVÝCH SOUSTAV 1. HALOVÉ OBJEKTY
Stavební mechanika přednáška, 10. dubna 2017
Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola
ZÁKLADY STAVEBNÍ MECHANIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO3 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE
Předpjatý beton Přednáška 4
Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení
Téma 6 Rovinné nosníkové soustavy
Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky
Přednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze
4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady
Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia
Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita
Příklad č.1. BO002 Prvky kovových konstrukcí
Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina
Stavební mechanika 2 (K132SM02)
Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/
STATIKA STAVEBNÍCH KONSTRUKCÍ I
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka
5. Prutové soustavy /příhradové nosníky/
PŠ a VOŠ KLDNO MECHNIK I. - TTIK. Prutové soustavy /příhradové nosníky/ - nosné konstrukce mostů, jeřábů, stožárů, střech, letadel apod. - skládají se z prutů spojených nýty, šrouby nebo svary v kloubech
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
s01. Základy statiky nutné pro PP
s01 1 s01. Základy statiky nutné pro PP Poznámka: Tato stať není přehledem statiky, ale pouze připomenutím některých základních poznatků, bez nichž se v PP nelze obejít. s01.1. Mechanický pohyb Pohyb chápeme
Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky
7. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 6. ledna 2016 Síly se v měřítku vynáší do součtové čáry (diagram vpravo). Součtové podmínky rovnováhy jsou splněny,
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.
Konstrukční systémy I Třídění, typologie a stabilita objektů Ing. Petr Suchánek, Ph.D. Zatížení a namáhání Konstrukční prvky stavebního objektu jsou namáhány: vlastní hmotností užitným zatížením zatížením
SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce
Identifikátor materiálu: ICT příhradové konstrukce Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního
Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška
Těleso na podporách. Obsah přednášky : uvolňování jako jeden ze základních postupů mechaniky, statická určitost a neurčitost, vazby a jejich vlastnosti, řešení staticky neurčitých úloh Doba studia : asi
Numerická analýza dřevěných lávek pro pěší a cyklisty
Ing. Jana Bártová, Helika, a.s. Konference STATIKA 2014, 12. a 13. června Lávky Lávka přes Roklanský potok v Modravě 1 Lávka přes Roklanský potok v Modravě Technické parametry: Lávka převádí běžeckou trať
LANGERŮV TRÁM MOST HOLŠTEJN
LANGERŮV TRÁM MOST HOLŠTEJN Ing. Jiří Španihel, Firesta - Fišer, rekonstrukce, stavby a.s. Konference STATIKA 2014, 11. a 12. června POPIS KONSTRUKCE Most pozemní komunikace přes propadání potoka Bílá
Přijímací zkoušky na magisterské studium, obor M
Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní
Trojkloubový nosník. Rovinné nosníkové soustavy
Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr
VÝSTAVBA MOSTŮ (2018 / 2019) M. Rosmanit B 304 ŽB rámové mosty
Technická univerzita Ostrava 1 VÝSTAVBA MOSTŮ (2018 / 2019) M. Rosmanit B 304 miroslav.rosmanit@vsb.cz Charakteristika a oblast použití - vzniká zmonolitněním konstrukce deskového nebo trámového mostu
6. Statika rovnováha vázaného tělesa
6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly
Autor: Vladimír Švehla
Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta
Jednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,
Mechanismy - klasifikace, strukturální analýza, vazby Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - úvod Mechanismus je soustava těles, spojených
ZÁKLADY STAVEBNÍ MECHANIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO4 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE
Nosné stavební konstrukce Výpočet reakcí
Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení
úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,
Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit
ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI
ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB Halové stavby Konstrukční
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Pozemní stavitelství II. Konstrukce vyložen. Zpracoval: Filip Čmiel, Ing.
Pozemní stavitelství II. Konstrukce vyložen ené a ustupující Zpracoval: Filip Čmiel, Ing. Základnífunkce a požadavky Z hlediska účelu a funkce se mezi předsazené konstrukce řadí: balkóny lodžie pavlače
4. cvičení výpočet zatížení a vnitřních sil
4. cvičení výpočet zatížení a vnitřních sil Výpočet zatížení stropní deska Skladbu podlahy a hodnotu užitného zatížení převezměte z 1. úlohy. Uvažujte tloušťku ŽB desky, kterou jste sami navrhli ve 3.
Sylabus k přednášce předmětu BK30 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.
Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách
Sylabus k přednášce předmětu BK1 SCHODIŠTĚ Ing. Hana Hanzlová, CSc., Ing. Jitka Vašková, CSc.
Schodiště jsou souborem stavebních prvků (schodišťová ramena, podesty, mezipodesty, podestové nosníky, schodnice a schodišťové stěny), které umožňují komunikační spojení různých výškových úrovní. V budovách
Prostorové konstrukce - rošty
Prostorové konstrukce - rošty a) princip působení roštu, b) uspořádání nosníků v pravoúhlé c) kosoúhlé, d) šestiúhelníkové, e) trojúhelníkové osnově, f) příhradový rošt 14.4.2010 Nosné konstrukce III 1
PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ
PŘEHLED SVISLÉHO POHYBLIVÉHO ZATÍŽENÍ SILNIČNÍCH MOSTŮ 1 MOSTNÍ ŘÁD C.K. MINISTERSTVA ŽELEZNIC Z ROKU 1887 Pohyblivé zatížení mostů I. třídy (dynamické účinky se zanedbávají). Alternativy : 1) Čtyřkolové
Příklad č.1. BO002 Prvky kovových konstrukcí
Příklad č.1 Posuďte šroubový přípoj ocelového táhla ke styčníkovému plechu. Táhlo je namáháno osovou silou N Ed = 900 kn. Šrouby M20 5.6 d = mm d 0 = mm f ub = MPa f yb = MPa A s = mm 2 Střihová rovina
Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma,
NMAG66 LS 25 Inženýr, jeřáb a matice Výpočet sil v prutových soustavách styčníkovou metodou Úvod Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, a proto