Výfučtení: Blaise Pascal
|
|
- Gabriela Marešová
- před 6 lety
- Počet zobrazení:
Transkript
1 Výfučtení: Blaise Pascal Úvod Blaise Pascal se narodil 19. června 1623 v Clermontu ve Francii. Narodil se do zámožné a vzdělané rodiny jeho otec Etienne Pascal byl výběrčí daní a také velmi schopný matematik. Bohužel jeho matka zemřela brzy po jeho narození, a tak se o něj hlavně staral jeho otec, který však chtěl, aby se Pascal zaměřoval spíše na humanitní vědy. To se ale změnilo, když desetiletý Pascal odvodil několik pravidel Euklidovy geometrie. Toto změnilo názor jeho otce a začal ho podporovat ve vědecké kariéře. V dalších letech Blaise svoje nadání rozvíjí až do té míry, že některá jeho díla jsou považovány za práci jeho otce. V osmnácti vytváří první prototyp Pascaliny (předchůdce kalkulačky). Přelomovými byly hlavně jeho objevy v matematice. Položil základy kombinatoriky a teorie pravděpodobnosti a objevil pro Evropu jeden význačný trojúhelník, který od té doby nese jeho jméno. Později se začíná věnovat experimentům, navazuje na práci Evangelisty Torricelliho s rtuťovou trubicí a z výsledných poznatků zformuluje Pascalův zákon. Bohužel má v průběhu života chatrné zdraví a v roce 1647 dokonce krátkodobě ochrne. Nedlouho poté jeho otec umírá a sám Pascal málem zemře, když se při vyjížďce v kočáře splaší koně a jeho kočár je téměř strhnut z mostu. Po těchto traumatických zážitcích se Pascal ke konci svého života odklání od exaktních věd a začíná se věnovat teologii a filosofii. Umírá 19. srpna 1662 v mladém věku 39 let na nádor mozku v klášteře. 1 Pascalina, předchůdce kalkulačky a počítače V devatenácti letech vynalezl první prototyp mechanické kalkulačky, Pascalinu. Sestrojil ji pro svého otce, kterému pomáhala při výkonu jeho povolání. Pascalina se skládala ze tří spojených válců, značících jednotky, desítky a stovky. Otáčením těmito válci se kalkulačce zadaly vstupní hodnoty, na jejichž základě spočítala hodnotu výstupní. Odmocninu nebo logaritmus byste na ní ale hledali marně. Přístroj dokázal čísla sečíst, anebo odečíst, v některých verzích dokonce i vynásobit. Přesto si našel své uplatnění a Pascal vyrobil několik desítek zdokonalených kusů. Někteří z vás možná znají programovací jazyk Pascal. Nyní už budete vědět, proč se tak jmenuje. Není to proto, že by s ním měl Pascal něco přímo společného. Světlo světa spatřil až více než tři století po jeho smrti a po Pascalovi jej pojmenovali právě kvůli jeho Pascalině, kterou je možné považovat nejen za předchůdce moderních kalkulaček, ale i počítačů. Pokusy se rtutí v trubici a Pascalův zákon Na okolní svět se snažil Blaise dívat racionálně (svět se řídí určitými fyzikálními pravidly, které jdou postupně intuitivně odhalit), a proto byl jedním z mála, který v této době ověřoval své 1 Obrázek Pascala převzat z Wikimedia Commons: pascal.jpg. 1
2 Obr. 1: Exemplář Pascaliny v muzeu vědy a techniky v Milánu. domněnky experimentálně. Všechny ostatní zdroje nepokládal za spolehlivé a svoje experimenty si vždy pečlivě připravil a přesně dokumentoval. Jak bylo zmíněno předtím, Pascal navázal na práci Torricelliho s rtuťovou trubicí a svým měřením vyvrátil jeden z přetrvávajících mýtů Horror vacui, který říkal, že příroda se bojí vakua (vždy se jej snaží vyplnit), a tudíž by mělo být nedosažitelné. Dokázal, že výška sloupce rtuti, který je schopen se udržet ve shora jednostranně zaslepené trubici (tj. očekávali bychom, že rtuť může vytéct spodem), závisí na gravitační síle působící na rtuť a na atmosférickém tlaku, který působí proti této síle. Pokud bude sloupec rtuti dostatečně vysoký (přes 76 cm), tak nebude atmosférický tlak dostatečně velký, aby gravitaci vykompenzoval a ve vrchní části trubice se vytvoří (téměř) vakuum. Následně Pascal zkoumal spojené nádoby a šíření tlaku v kapalinách. Na základě svých pozorování a experimentů zformuloval Pascalův zákon, který říká, že tlak v kapalině se šíří v každém bodě všemi směry stejně a tlak kapaliny je proto stejný v celém jejím objemu (pokud zanedbáme gravitační síly) to znamená, že libovolně tvarovaným potrubím můžeme tlak přenášet, což je základní princip hydrauliky. Pokrok v ní je z větší části založen na jasné formulaci následujícího zákona. Pokud si označíme tlak na libovolnou část stěny libovolné nádoby jako p 1 a tlak působící na druhou část stěny té samé nádoby jako p 2, můžeme využít výše zmíněných vlastností tlaku (stále bez ohledu na gravitační síly) a psát, že F 1/S 1 = F 2/, kde F je síla působící na část stěny nádoby a S povrch této části. Na počest Pascalovým objevům nosí jeho jméno jednotka tlaku [p] = Pa. Na závěr této části si uveďme jednoduchý příklad. Mějme dvojici pístů propojených vodotěsnou trubičkou ve stejné výšce a naplněných vodou. Průřez prvního pístu je S 1 = 0,6 m 2, druhý píst má průřez = 0,1 m 2 a je na něm položeno závaží o hmotnosti m 2 = 10 kg. Jakou silou F 1 musíme působit na první píst, aby soustava zůstala v klidu? Řešení: Pokud má soustava zůstat v klidu, musí být tlak ve všech místech kapaliny stejný. To vyplývá z Newtonova prvního zákona kdyby tlak nebyl stejný, působila by někde síla, která by kapalinou pohybovala. Platí tedy: p 1 = p 2, neboli tlak na každý z pístů je stejný. Dosazením podle Pascalova zákona dostáváme rovnost F 1/S 1 = F 2/. Teď už stačí jen dosadit 2
3 za F 2 součin hmotnosti m 2 a gravitačního zrychlení, vyjádřit si sílu F 1 a dopočítat ji. F 1 S 1 = F2 = m2g F 1 = S1m2g = 0,6 m2 10 kg 9,81 m s 2 0,1 m 2. = 588,6 N Zjistili jsme, že na druhý píst je potřeba tlačit silou F 1 = 588,6 N. To je šestinásobek síly, kterou působí závaží na druhý píst. Je vidět, že píst nám umožňuje zvětšovat/zmenšovat potřebnou sílu na vykonání práce. Přesně toho se využívá v hydraulice. Teorie pravděpodobnosti Jak už bylo zmíněno, Blaise Pascal se mimo jiné věnoval také matematice. Společně se svým současníkem Pierrem Fermatem položil Pascal základy teorie pravděpodobnosti. Je zajímavé, že tato oblast matematiky vznikla na základě úvah o pravděpodobnosti výhry v hazardních hrách. Oba matematici byli totiž vášnivými hráči a zajímalo je, proč některé strategie dlouhodobě prohrávají, zatímco jiné vyhrávají. Lidé samozřejmě o pravděpodobnosti přemýšleli v souvislosti s hazardem i dříve. Patřičného vysvětlení se ale mnohým zdánlivě paradoxním jevům dostalo až s popisem pomocí matematiky. Pascal s Fermatem se zabývali například problémem, jak mezi hráče spravedlivě rozdělit vsazené peníze, pokud musí být hra nečekaně přerušena. Nabízí se rozdělit si je ve stejném poměru, v jakém byly pravděpodobnosti výhry jednotlivých hráčů v okamžiku přerušení hry. Aby byl tento postup uskutečnitelný, je potřeba umět tyto pravděpodobnosti přesně spočítat. A právě o to se Pascal s Fermatem pokusili. Nově tak definovali střední hodnotu, které se občas říká také očekávaný výnos. Střední hodnota je průměr hodnot náhodné veličiny. Náhodná veličina je například číslo, které padne při hodu kostkou. V takovém případě by byla střední hodnota 3,5, neboť všechny hodnoty od 1 do 6 mají stejnou šanci na padnutí. Střední hodnota je v tomto případě aritmetický průměr. Pascalův trojúhelník Na závěr povídání o Pascalovi se podíváme na s pravděpodobností související trojúhelník, který nese jeho jméno. Opět to není proto, že by jej Pascal objevil. Matematici napříč celým světem jej studovali staletí před ním. Pascal byl ale první, kdo jej dokázal využít právě v teorii pravděpodobnosti a nalézt a popsat mnoho jeho více či méně užitečných vlastností. Co to ale vlastně ten Pascalův trojúhelník je? Abychom jej mohli využívat, nepotřebujeme znát přesnou definici pomocí tzv. kombinačních čísel. Vystačíme si s tím, že se jedná o schéma, které dostaneme tak, že si do prvního řádku napíšeme trojici čísel 0, 1 a 0. Další řádky pak postupně tvoříme tak, že každou dvojici čísel nacházejících se vedle sebe sečteme. Místo ní následně napíšeme mezi tato dvě čísla do dalšího řádku jejich součet. Nuly v prvním řádku ignorujeme, netvoří Pascalův trojúhelník, pouze nám jej pomáhají zjednodušeně definovat. Jedničky musíme psát na oba konce každého řádku dodatečně. Příklad Pascalova trojúhelníku o šesti řádcích: 3
4 K zajímavým vlastnostem Pascalova trojúhelníku patří například to, že součet čísel v n-tém řádku dá (n 1)-ní mocninu dvojky. Také je možné si všimnout, že pokud obarvíme všechna lichá čísla, vznikne nám Sierpińského trojúhelník, což je fraktál, obrazec, ve kterém se určité motivy do nekonečna opakují. Obr. 2: Sierpińského trojúhelník My si nyní uvedeme dvě možná jednoduchá praktická využití tohoto schématu. Nejdříve si představme, že potřebujeme umocnit součet libovolných dvou čísel (nazveme si je a a b) na n. Pokud n = 2, nejspíše si vzpomeneme na známý vzorec (a + b) n = a 2 + 2ab + b 2. Pokud je n = 3, nebo 4, zvládneme mezi sebou jednotlivé opakující se členy ještě vynásobit a následně sčítance se stejnými mocninami sečíst. Co ale dělat, pokud n = 6 a my nechceme strávit nad výpočty zbytečně moc času? Odpověď nám dává právě Pascalův trojúhelník. Pokud jsme si zkusili umocnit součet čísel a a b postupně na n = 2, 3 a 4, mohli jsme si všimnout, že číselné koeficienty u jednotlivých členů se nápadně shodují s čísly v Pascalově trojúhelníku. Pokud chceme umocnit (a + b) n, podíváme se do (n + 1)-ho řádku Pascalova trojúhelníku. Čísla v tomto řádku jsou pak po řadě koeficienty u jednotlivých sčítanců ve výsledném výrazu. Uveďme si příklad. Chceme umocnit na šestou výraz 2x+3. Abychom mohli využít Pascalova trojúhelníku, nechť 2x = a a 3 = b. Očekáváme výsledek ve tvaru ka 6 + la 5 b + ma 4 b 2 + na 3 b 3 + oa 2 b 4 + pab 5 + qb 6, kde k, l, m, n, o, p a q jsou koeficienty, které získáme z Pascalova trojúhelníka. Můžeme proto rovnou psát a 6 + 6a 5 b + 15a 4 b a 3 b a 2 b 4 + 6ab 5 + b 6. Dosadíme zpět za a a b a nakonec vynásobíme koeficienty získané umocněním a z Pascalova trojúhelníka. 4
5 (2x) 6 + 6(2x) (2x) (2x) (2x) (2x) x x x x x x Druhým o něco jednodušším příkladem využití Pascalova trojúhelníka je případ, kdy potřebujeme určit, kolika způsoby je možné vybrat k prvků z celkového počtu n prvků (pokud nám nezáleží na pořadí, ve kterém je vytáhneme, tj. zajímá nás pouze počet vytažených prvků). Stačí se jen podívat do (k+1)-vého řádku na (n+1)-ní číslo a toto číslo nám ihned udá výsledný počet výběrů. Tato vlastnost přímo vyplývá z definice Pascalova trojúhelníka pomocí kombinačních čísel, které ale přesahují rámec tohoto Výfučtení. Sami si například můžete ověřit, že pro n = 4 a k = 2 dostanete číslo 6. Stejný počet dostanete, když budete přemýšlet nad všemi možnými dvojicemi např. vybraných písmen ze seznamu 4 písmen abcd: Závěr abcd ab, ac, ad, bc, bd, cd (6 možností). Blaise Pascal žil ve stínu známějších současníků, jako byl například Isaac Newton, Galileo Galilei nebo Johannes Kepler. Přesto jsou jeho objevy a přínosy v mnohém průlomové a zpětně je nedocenit by byla velká chyba. Na jeho práci navázali tisíce dalších. Zasloužil se o vznik celého jednoho oboru matematiky, významně přispěl k pochopení základů hydrauliky a na výpočetní technice dnes stojí celá naše civilizace. I přes svůj krátký život Blaise Pascal významně zasáhl do mnoha oborů a svým přístupem k experimentům položil základ, který vedl k přesnějším a objektivnějším výsledkům. Viktor Materna Patrik Kašpárek Korespondenční seminář Výfuk je organizován studenty a přáteli MFF UK. Je zastřešen Oddělením propagace a mediální komunikace MFF UK a podporován Katedrou didaktiky fyziky MFF UK, jejími zaměstnanci a Jednotou českých matematiků a fyziků. Toto dílo je šířeno pod licencí Creative Commons Attribution-Share Alike 3.0 Unported. Pro zobrazení kopie této licence navštivte 5
Seriál II.II Vektory. Výfučtení: Vektory
Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,
Blaise Pascal Blaise Pascal. Blaise Pascal
Blaise Pascal Mezi významné osobnosti, které v období renezance ovlivnily rozvoj přírodních věd, zvláště matematiky a fyziky, patří francouzský vědec a filosof Blaise Pascal. Žil jen krátce, zemřel ve
Název projektového úkolu: Experimentujeme s tlakem I Třída: 7.
Pracovní list Název projektového úkolu: Experimentujeme s tlakem I Třída: 7. Název společného projektu: TLAK Název pracovního týmu: Členové pracovního týmu: Zadání úkolu: Pascal (značka Pa) je jednotka
Fyzikální korespondenční seminář MFF UK
Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná
Fyzikální korespondenční seminář MFF UK
Úloha I.E... Pechschnitte 12 bodů; (chybí statistiky) Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu
HYDRAULICKÉ ZAŘÍZENÍ
METODICKÝ LIST /8 HYDRAULICKÉ ZAŘÍZENÍ Tematický okruh Učivo Ročník Časová dotace Klíčové kompetence MECHANICKÉ VLASTNOSTI KAPALIN HYDRAULICKÉ ZAŘÍZENÍ 7. vyučovací hodiny. Kompetence k učení - pozorováním
Středoškolská technika Robotická ruka a automat na nápoje
Středoškolská technika 2018 Setkání a prezentace prací středoškolských studentů na ČVUT Robotická ruka a automat na nápoje Karolína Miczková, Karolína Říčanová Gymnázium Josefa Božka Frýdecká 689/30, Český
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
pro každé i. Proto je takových čísel m právě N ai 1 +. k k p
KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,
Výfučtení: Mocniny a kvadratické rovnice
Výfučtení: Mocniny a kvadratické rovnice S čísly a základními operacemi, tedy se sčítáním, odčítáním, násobením a dělením, jsme se seznámili už dávno během prvních let naší školní docházky. Každý z nás
Vektory aneb když jedno číslo nestačí
V posledním studijním textu letošního ročníku si zopakujeme několik poznatků z předchozích sérií a doplníme je novými, abychom si následně mohli spočítat základní pohyby v homogenním tíhovém poli. Vektory
Pracovní list: Opakování učiva sedmého ročníku. Fyzikální veličiny. Fyzikální jednotky. Fyzikální zákony. Vzorce pro výpočty 100 200.
Pracovní list: Opakování učiva sedmého ročníku 1. Odpovězte na otázky: Fyzikální veličiny Fyzikální jednotky Fyzikální zákony Měřidla Vysvětli pojmy Převody jednotek Vzorce pro výpočty Slavné osobnosti
SEMINÁRNÍ PRÁCE Z MATEMATIKY
SEMINÁRNÍ PRÁCE Z MATEMATIKY PETROHRADSKÝ PARADOX TEREZA KIŠOVÁ 4.B 28.10.2016 MOTIVACE: K napsání této práce mě inspiroval název tématu. Když jsem si o petrohradském paradoxu zjistila nějaké informace
Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).
Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
Typy násobení z různých koutů světa
Typy násobení z různých koutů světa Anotace: Násobíme chytře? Algoritmů pro násobení je na světě nesmírné množství, ale nelze určit, který je nejchytřejší, nejrychlejší a tím pádem nejefektivnější. Každý
Výfučtení: Kapaliny aneb Hydročtení
Výfučtení: Kapaliny aneb Hydročtení Proč studujeme kapaliny? Víc než 70 % povrchu Země tvoří voda. Ta je nezbytnou součástí života na Zemi rostliny, zvířata a ani my bychom bez ní nepřežili. Kapaliny jsou
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem
Pythagorova věta
.8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
3.2.3 Podobnost trojúhelníků I
.. Podobnost trojúhelníků I Předpoklady: 01 Shodné útvary je možné je přemístěním ztotožnit, lidově řečeno jsou stejné Co splňují útvary, které jsou podobné? Mají stejný tvar, ale různou velikost. Kdybychom
V čem dělat prezentaci?
Jak na prezentace? Osnova: - v čem dělat prezentaci - velikosti písma - barva písma a pozadí - typ písma a zvýraznění - EFEKTY - vkládání obrázků - externí soubory - závěrečný export - příklady ze života
Zlatý řez nejen v matematice
Zlatý řez nejen v matematice Zlaté číslo a jeho vlastnosti In: Vlasta Chmelíková author): Zlatý řez nejen v matematice Czech) Praha: Katedra didaktiky matematiky MFF UK, 009 pp 7 Persistent URL: http://dmlcz/dmlcz/40079
2.8.6 Čísla iracionální, čísla reálná
.8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00
Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.
Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...
34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı
Jihomoravske centrum mezina rodnı mobility T-exkurze Teorie c ı sel, aneb elektronicky podpis a s ifrova nı Brno 2013 Petr Pupı k Obsah Obsah 2 Šifrovací algoritmy RSA a ElGamal 12 2.1 Algoritmus RSA.................................
( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207
78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Fyzikální korespondenční seminář MFF UK
Úloha V.E... gumipuk 8 bodů; průměr 4,40; řešilo 25 studentů Závaží o hmotnosti m na gumičce délk l 0 je zavěšeno v pevném bodě o souřadnicích = = 0 a = 0. Z os, která je horizontálně, závaží pouštíme.
IB112 Základy matematiky
IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez
KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině
KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme
13. cvičení z PSI ledna 2017
cvičení z PSI - 7 ledna 07 Asymptotické pravděpodobnosti stavů Najděte asymptotické pravděpodobnosti stavů Markovova řetězce s maticí přechodu / / / 0 P / / 0 / 0 0 0 0 0 0 jestliže počáteční stav je Řešení:
4. Kombinatorika a matice
4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel
Magdeburské polokoule práce s textem
Magdeburské polokoule práce s textem Shrnující text Ve středověku byla pouhá úvaha o vakuu obecně pojímána jako myšlenka amorální či dokonce i kacířská. Přijmout myšlenku nepřítomnosti něčeho by totiž
Goniometrické rovnice
Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Fz =a z + a z +...+a z +a z =
Polyadické číselné soustavy - převody M-místná skupina prvků se z-stavovou abecedou umožňuje zobrazit z m čísel. Zjistíme, že stačí vhodně zvolit číslo m, abychom mohli zobrazit libovolné číslo menší než
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
Lingebraické kapitolky - Počítání s maticemi
Lingebraické kapitolky - Počítání s maticemi Jaroslav Horáček KAM MFF UK 20 Rozehřívačka: Definice sčítání dvou matic a násobení matice skalárem, transpozice Řešení: (A + B ij A ij + B ij (αa ij α(a ij
Kombinatorický předpis
Gravitace : Kombinatorický předpis Petr Neudek 1 Kombinatorický předpis Kombinatorický předpis je rozšířením Teorie pravděpodobnosti kapitola Kombinatorický strom. Její praktický význam je zřejmý právě
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
Pohyby HB v některých význačných silových polích
Pohyby HB v některých význačných silových polích Pohyby HB Gravitační pole Gravitační pole v blízkém okolí Země tíhové pole Pohyb v gravitačním silovém poli Keplerova úloha (podrobné řešení na semináři)
( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
II. kolo kategorie Z6
Z6 II 1 Pat napsal na tabuli příklad: 62. ročník Matematické olympiády II. kolo kategorie Z6 589+544+80=2013. Mat chtěl příklad opravit, aby se obě strany skutečně rovnaly, a pátral po neznámém čísle,
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Mechanika kapalin a plynů
Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný
KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)
KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Blaise PASCAL. Základní škola a Mateřská škola Nikolčice, příspěvková organizace
CZ.1.07/1.4.00/21.2490 VY_32_INOVACE_15_F8 Blaise PASCAL Základní škola a Mateřská škola Nikolčice, příspěvková organizace Mgr. Jiří Slavík Blaise Pascal Narozen - 19. června 1623, Clermont Zemřel 19.
55. ročník matematické olympiády
. ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě
Výfučtení: Původ různých sil
Výfučtení: Původ různých sil S nejrůznějším silovým působením se setkáváme v každém okamžiku našeho života, aniž bychom si to třeba vůbec uvědomovali. Ze zkušenosti dobře víme, že gravitace nás drží pevně
Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.
Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat
Tři experimenty, které se nevejdou do školní třídy. Mgr. Kateřina Vondřejcová
Tři experimenty, které se nevejdou do školní třídy Mgr. Kateřina Vondřejcová Centrum talentů M&F&I, Univerzita Hradec Králové, 2010 1.. experiiment:: Změř s Thallésem výšku svojjíí školly Obr. 1: Thalés
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
VY_32_INOVACE_05_II./11._Atmosférický tlak
VY_32_INOVACE_05_II./11._Atmosférický tlak Atmosférický tlak a jeho měření Magdeburské polokoule Otto von Guericke, starosta města Magdeburgu, v roce 1654 předvedl dramatický experiment, ve kterém ukázal
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České
Výfučtení: Jednoduché optické soustavy
Výfučtení: Jednoduché optické soustavy Na následujících stránkách vám představíme pravidla, kterými se řídí světlo při průchodu různými optickými prvky. Část fyziky, která se těmito jevy zabývá, se nazývá
Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů
Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické
3.2.3 Podobnost trojúhelníků I
.. Podobnost trojúhelníků I Předpoklady: 01 Shodné útvary je možné je přemístěním ztotožnit, lidově řečeno jsou stejné Co splňují útvary, které jsou podobné? Mají stejný tvar, ale různou velikost. Kdybychom
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
Úlohy krajského kola kategorie C
67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly
METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:
II. kolo kategorie Z9
60. ročník Matematické olympiády II. kolo kategorie Z9 Z9 II 1 Čtyřmístným palindromem nazveme každé čtyřmístné přirozené číslo, které má na místě jednotek stejnou číslici jako na místě tisíců a které
Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně
Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka
Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Fyzikální veličiny. - Obecně - Fyzikální veličiny - Zápis fyzikální veličiny - Rozměr fyzikální veličiny. Obecně
Fyzikální veličiny - Obecně - Fyzikální veličiny - Zápis fyzikální veličiny - Rozměr fyzikální veličiny Obecně Fyzika zkoumá objektivní realitu - hmotu - z určité stránky. Zabývá se její látkovou formou
Korespondenční seminář MFF UK pro základní školy ročník VIII číslo 3/7
Milí kamarádi, v této brožurce naleznete hned několik zajímavých věcí. V první řadě jsou to zadání již 3. série úloh v tomto ročníku. Jsou laděny do historické tématiky, Výfučtení se bude věnovat dalšímu
Digitální učební materiál
Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Intuitivní pojem pravděpodobnosti
Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost
Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
Nápovědy k numerickému myšlení TSP MU
Nápovědy k numerickému myšlení TSP MU Numerické myšlení 2011/var. 01 26. Ciferné součty čísel v každém z kruhů mají tutéž hodnotu. Pozor, hledáme číslo, které se nehodí na místo otazníku. Jedná se o dvě
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:
Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy
Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina
Fyzika I. Něco málo o fyzice. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/20
Fyzika I. p. 1/20 Fyzika I. Něco málo o fyzice Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Fyzika I. p. 2/20 Fyzika Motto: Je-li to zelené, patří to do biologie. Smrdí-li to, je to chemie.
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
1. OBSAH, METODY A VÝZNAM FYZIKY -
IUVENTAS - SOUKROMÉ GYMNÁZIUM A STŘEDNÍ ODBORNÁ ŠKOLA 1. OBSAH, METODY A VÝZNAM FYZIKY - STUDIJNÍ TEXTY Frolíková Martina Augustynek Martin Adamec Ondřej OSTRAVA 2006 Budeme rádi, když nám jakékoliv případné
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Úlohy klauzurní části školního kola kategorie A
6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami