1.3.7 Trojúhelník. Předpoklady:

Rozměr: px
Začít zobrazení ze stránky:

Download "1.3.7 Trojúhelník. Předpoklady:"

Transkript

1 1.3.7 Trojúhení Předpoady: Př. 1: Narýsuj tři body,,, teré neeží na přímce. Narýsuj všechny úsečy určené těmito třemi body. Jaý útvar vznine? Zísai jsme trojúhení. Ja přiše trojúhení e svému jménu? Má tři vrchoy (,, ), tři strany (a, b, c) a taé tři úhy ( α, β, γ ). b a c Každá strana trojúhenía může být označována dvěma způsoby: přímo nebo pomocí vrchoů. Často taé zaměňujeme označení strany a její déy, píšeme tedy a =, c =, ). Písmena řecé abecedy se používají označení úhů, aby byo ihned zřejmé, že označujeme úhy a ne vrchoy. V matematice nejčastěji používaná řecá písmena: α - afa β - beta γ - gama δ - deta ε - epsion ϕ - fí ω - omega Obvod trojúhenía je součet dée jeho stran: o = a + b + c. 1

2 Př. 2: Narýsuj trojúhení, de patí = 6cm, = 5cm, = 4cm postup onstruce. Jaý je jeho obvod?. Zapiš 1., = 6cm 2. ( ;4cm) 3. ( ;5cm) 4. - spoečný bod ružnic, 5. trojúhení Obvod: o = a + b + c = cm = 15cm. Př. 3: Pro trojúhení patí: = c = 6cm, = b = 2cm. Může strana mít ibovonou veiost nebo je její možná déa nějaým způsobem omezena? Nejdříve si situaci představ, pa svůj názor ověř rýsováním (pous se trojúhení narýsovat). Strana může být ratší než strana :. Poud se strany a mají potat, musí být dohromady deší než strana strana musí být deší než 4 cm. Strana může být deší než strana :. Poud se strany a mají potat, musí být strany a dohromady deší než strana strana musí být ratší než 8 cm. strana musí být deší než 4 cm a ratší než 8 cm. Odhad můžeme ověřit i onstrucí, terá je stejná jao v předchozím příadu. 2

3 Červeně jsou nareseny obě hraniční již špatné možnosti. Pedagogicá poznáma: Většina žáů začne rovnou rýsovat. Není to na závadu, e správnému vyřešení příad si stejně musí zejména představovat. Minimáně u něterých žáů bude součástí disuse i vyjasňování to, že 4,1 cm a víc není to samé jao víc než 4 cm. Pedagogicá poznáma: Část žáů vytasí rovnou trojúheníovou nerovnost. V tomto oamžiu ji neřešíme, jde o to, aby žáci rozmysei možné hodnoty samostatně, bez použití nějaého pravida. Naše zjištění si můžeme snadno ozoušet pomocí modeu v programu pro dynamicou geometrii GEOGER. Pedagogicá poznáma: Mode si ve třídě uazujeme a žáům se vemi íbí. Ne vša jao pomůcy pro řešení, ae jao potvrzení hotových závěrů. Tato poznáma patí obecně, používání modeů v podobných situacích, dy si žáci mají sami něco představit, vede tomu, že si nepředstavují nic a čeají, až jim řešení uáže počítač. Je třeba si uvědomit, že nemůžete dosáhnout žádného porou bez samostatné námahy a poud námahu přenecháte počítači, nezísáte romě výsedu nic. Př. 4: Narýsuj rovnoramenný trojúhení KLM, ta aby jeho obvod by 15 cm a rameno bya dvarát deší než záadna LM. Než začneme rýsovat, musíme určit déy stran. Rovnoramenný trojúhení má dvě ramena, aždé je dvarát deší než záadna rozděíme obvod na pět díů: 15 :5 = 3 patí: LM = 3, KM = KL = 6cm. 3

4 K L M 1. LM, LM = 3cm 2. ( L ;6cm) 3. ( M ;6cm) 4. K - spoečný bod ružnic, 5. trojúhení KLM Př. 5: Prohédni si trojúhení na obrázu a odhadni veiost strany. Narýsuj trojúhení, změř veiost strany a porovnej ji se svým odhadem. Zapiš postup onstruce. 4 cm 3 cm p 1., = 4cm 2. p, příma omá na, procházející bodem ;3cm 3. ( ) 4. - spoečný body ružnice a přímy p 5. trojúhení 4

5 Déa strany je 5 cm. Pedagogicá poznáma: Správnou déu strany si říáme a používáme ji e ontroe správnosti rýsování. Př. 6: Narýsuj rovnoramenný pravoúhý trojúhení s déou ramene 3 cm. Záadnu zonstruovaného trojúheníu využij jao rameno pro onstruci dašího rovnoramenného pravoúhého trojúheníu. Změř déu záadny druhého zonstruovaného trojúheníu. q D p 1., = 3cm 2. p, příma omá na, procházející bodem ;3cm 3. ( ) 4. - spoečný body ružnice a přímy p 5. trojúhení 6. q, příma omá na, procházející bodem 7. ( ; ) 8. D - spoečný body ružnice a přímy q 9. trojúhení D Déa záadny trojúheníu D (strany ) je 6 cm. Pedagogicá poznáma: Jména vrchoů nejsou v příadu uvedena záměrně, žáci si je mají zvoit pode ibosti. Př. 7: Pous se najít jiný pravoúhý trojúhení s ceočísenými stranami (využij mode připravený v programu Geogebra). Pedagogicá poznáma: Posední příad je pouze úoem pro zamyšení pro nejepší žáy. Je možné zafixovat obraz z projetoru na zadání příadů pro třídu a ty nejrychejší pustit učitesému počítači, de si mohou hrát s modeem. Jde určitě o přípravu na Pythagorovu větu, ae v tomto oamžiu to nerozvíjíme dáe. 5

6 Shrnutí: 6

1.4.7 Trojúhelník. Předpoklady:

1.4.7 Trojúhelník. Předpoklady: 1.4.7 Trojúhelník Předpoklady: 010406 Př. 1: Narýsuj tři body,,, které neleží na přímce. Narýsuj všechny úsečky určené těmito třemi body. Jaký útvar vznikne? Získali jsme trojúhelník. Jak přišel trojúhelník

Více

Kružnice, kruh

Kružnice, kruh 2101 Kružnice, ruh Předpoady: 010405 Př 1: Je dán bod Narýsuj černou tužou ( ;4cm) Na sestroj bod T Narýsuj a vytáhni modrou pasteou K ( T ;3cm) L T Maé písmeno: ružnice (pouze čára) Veé písmeno: ruh (pocha)

Více

Konstrukce trojúhelníků II

Konstrukce trojúhelníků II .7.0 Konstruce trojúhelníů II Předpolady: 00709 Minulá hodina: Tři věty o shodnosti (odpovídají jednoznačným postupům pro onstruci trojúhelníu): Věta sss: Shodují-li se dva trojúhelníy ve všech třech stranách,

Více

3.3.4 Thaletova věta. Předpoklady:

3.3.4 Thaletova věta. Předpoklady: 3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální

Více

3.2.9 Věta o středovém a obvodovém úhlu

3.2.9 Věta o středovém a obvodovém úhlu 3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly

Více

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm) 3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (

Více

1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm.

1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm. 1.3.5 Kružnice, ruh Předpolady: 010304 Př. 1: Narýsuj bod. Kružítem narýsuj ružnici se středem v bodu a poloměrem 3 cm. tejně jao přímy označujeme ružnice malým písmenem (většinou začínáme písmenem ;3cm,

Více

Konstrukce kružnic

Konstrukce kružnic 3.4.10 Konstruce ružnic Předolady: 3404 Př. 1: Jsou dány body K, L a M. Narýsuj všechny ružnice, teré rochází těmito třemi body. Kružnice - množina bodů, teré mají stejnou vzdálenost od středu ružnice

Více

Souhlasné a střídavé úhly

Souhlasné a střídavé úhly 1.5.14 Souhlasné a střídavé úhly Předpoklady: 010513 Př. 1: Na obrázku jsou tři přímky p, q, r. p q r Přerýsuj obrázek do sešitu a změř všechny úhly. Naměřené hodnoty zapiš do obrázku. Které shody vyplývají

Více

ORIENTOVANÝ ÚHEL. Popis způsobu použití:

ORIENTOVANÝ ÚHEL. Popis způsobu použití: 2014 RIENTVANÝ ÚHEL opis způsobu použití: teorie samostudiu (i- earning) pro 3. roční střední šo technicého zaměření, teorie e onzutacím dáového studia Vpracovaa: Ivana ozová Datum vpracování: 4. edna

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU

Konstrukční úlohy metodická řada pro konstrukci trojúhelníku Irena Budínová Pedagogická fakulta MU Konstruční úlohy metodicá řada ro onstruci trojúhelníu Irena udínová Pedagogicá faulta MU irena.budinova@seznam.cz Konstruční úlohy tvoří jednu z důležitých součástí geometrie, neboť obsahují mnoho rozvíjejících

Více

3.2.9 Věta o středovém a obvodovém úhlu

3.2.9 Věta o středovém a obvodovém úhlu 3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly

Více

3.6.3 Prvky trojúhelníků

3.6.3 Prvky trojúhelníků 3.6.3 Prvy trojúhelníů Předpolady: 030602 Př. 1: Narýsuj trojúhelní, je-li dáno: = 5m, β = 110, a = 6m. Změř veliosti vnitřníh úhlů a strany b. Zontroluj, zda platí vzore pro součet úhlů v trojúhelníu.

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,

Více

2.4.6 Věta usu. Předpoklady:

2.4.6 Věta usu. Předpoklady: 2.4.6 Věta usu Předpoklady: 020405 Př. 1: Narýsuj trojúhelník, a = 7cm, β = 100, γ = 35. Je trojúhelník zadán jednoznačně? Zkontroluj se sousedem, zda jsou Vaše trojúhelníky shodné. Zapiš postup konstrukce

Více

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici 3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti

Více

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici 3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ

Více

Části kruhu. Předpoklady:

Části kruhu. Předpoklady: 2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální

Více

. Označ průsečíky obou kružnic jako C, D. Co platí pro vzdálenosti CA, CB, DA, DB? Proč? Narýsuj kružnice m( A ;3cm) vzdálenosti EA, EB, FA, FB?

. Označ průsečíky obou kružnic jako C, D. Co platí pro vzdálenosti CA, CB, DA, DB? Proč? Narýsuj kružnice m( A ;3cm) vzdálenosti EA, EB, FA, FB? 1.3.6 Osa úsečy Předady: 010305 Pedaggicá znáa: Hdinu je třeba ridvat ta, aby se stiha ntra záis v říadu 4. Př. 1: Narýsuj úseču, 5c =. Narýsuj ružnice ( ;4c), ( ;4c). Označ růsečíy bu ružnic ja,. atí

Více

Vedlejší a vrcholové úhly

Vedlejší a vrcholové úhly 1.5.13 Vedlejší a vrcholové úhly Předpoklady: 010512 Pedagogická poznámka: Předem je dobré upozornit, že hlavním oříškem hodiny není zavedení pojmu a odvození pravidel. Obojí žáci zvládnou bez problémů

Více

Pythagorova věta

Pythagorova věta .8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:

Více

{ } Konstrukce trojúhelníků I. Předpoklady: 3404

{ } Konstrukce trojúhelníků I. Předpoklady: 3404 3.4.5 Konstrue trojúhelníů I Předolady: 3404 U onstručníh úloh rozeznáváme dva záladní tyy: olohové úlohy: jejih zadání většinou začíná slovy Je dána.. Tato věta znamená, že onstrui musíme začít rvem,

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL Pořadové číslo DUM 147 Jméno autora Mgr. Romana BLÁHOVÁ Datum, ve kterém byl DUM vytvořen 26.3. 2012 Ročník, pro který je DUM určen 4. Vzdělávací oblast (klíčová slova) MATEMATIKA

Více

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P. 756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

ZDM RÁMOVÉ KONSTRUKCE

ZDM RÁMOVÉ KONSTRUKCE ioš Hüttner SR D rámové onstruce cvičení 0 adání D RÁOVÉ KONSTRUKCE Příad č. Vyresete průběhy vnitřních si na onstruci zobrazené na Obr.. Příad převzat z atedrové wiipedie (originá e stažení zde http://mech.fsv.cvut.cz/wii/images/d/de/dm_.pdf).

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Žeezniční přechodnice Kubicá paaboa Největšího ozšíření jao přechodnice dosáha ubicá paaboa, navžená němecým geodetem a matematiem F. Hemetem ). Jsou-

Žeezniční přechodnice Kubicá paaboa Největšího ozšíření jao přechodnice dosáha ubicá paaboa, navžená němecým geodetem a matematiem F. Hemetem ). Jsou- Označování použitých matematicých veičin c n d - integační onstanty - déa subtangenty - vzepětí užnice - řivost ovinné řivy - déa přechodnice po tečně - déa přechodnice v ose m - odsun osuační užnice v

Více

2 HODINY. ? Na kolik trojúhelník Ti úhlopíka rozdlí AC lichobžník ABCD? Na dva trojúhelníky ABC, ACD

2 HODINY. ? Na kolik trojúhelník Ti úhlopíka rozdlí AC lichobžník ABCD? Na dva trojúhelníky ABC, ACD K O N S T R U K E L I H O B Ž N Í K U 2 HOINY Než istouíš samotným onstrucím, zoauj si nejdíve vše, co víš o lichobžnících co to vlastn lichobžní je, záladní druhy lichobžní a jejich vlastnosti. ále si

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

Cvičení č. 1 - Základní materiálové parametry porézních stavebních materiálů

Cvičení č. 1 - Základní materiálové parametry porézních stavebních materiálů Cvičení č. 1 - Záadní eriáové parametry porézních stavebních eriáů Materiáy můžeme de různých ritérií, např. vastností, převažující funce, chemicého sožení atd., děit na záadní supiny: 1) anorganicé eriáy

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

9 Stupně vrcholů, Věta Havla-Hakimiho

9 Stupně vrcholů, Věta Havla-Hakimiho Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

1.7.3 Výšky v trojúhelníku I

1.7.3 Výšky v trojúhelníku I 1.7.3 Výšky v trojúhelníku I Předpoklady: 010702 Pedagogická poznámka: Měřítka prvních tří obrázků jsou zapsána tak, aby žáci spočítali přibližné výšky skutečných památek. U posledního obrázku se mi nepodařilo

Více

1.7.5 Těžnice trojúhelníku I

1.7.5 Těžnice trojúhelníku I 1.7.5 Těžnice trojúhelníku I Předpoklady: 010704 Pedagogická poznámka: Na vystřihování trojúhelníků přinesu do třídy už o přestávce velkou kraici nastřihanou na několik kusů. Pustím žákům zadání a ukážu

Více

Binomická věta

Binomická věta 97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 63. roční matematicé olympiády Úlohy rajsého ola ategorie A 1. Najděte všechna celá ladná čísla, terá nejsou mocninou čísla 2 a terá se rovnají součtu trojnásobu svého největšího lichého dělitele a pětinásobu

Více

6 5 = 0, = 0, = 0, = 0, 0032

6 5 = 0, = 0, = 0, = 0, 0032 III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii

Více

1.7.9 Shodnost trojúhelníků

1.7.9 Shodnost trojúhelníků 1.7.9 Shodnost trojúhelníků Předpoklady: 010708 Pedagogická poznámka: V této a několika následujících hodinách využíváme brčkovou stavebnici. Základem jsou barevná nastřihaná brčka (jedna barva znamená

Více

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu

Více

3.4.9 Konstrukce čtyřúhelníků

3.4.9 Konstrukce čtyřúhelníků 3.4.9 Konstruce čtyřúhelníů Předpoldy: 030408 Trojúhelníy byly určeny třemi prvy. Př. 1: Obecný čtyřúhelní je dán délmi všech svých čtyř strn. Rozhodni, zd je určen nebo ne. Nejjednodušší je vzít čtyři

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

PLANIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE

PLANIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE Předmět: Roční: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr Tomáš MŇÁK 17 větna 2012 Název zpracovaného celu: PLNIMETRIE ÚHLY V KRUŽNICÍCH KRUŽNICE Kružnice je množina všech bodů X v rovině, teré mají od daného

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Číselné charateristiy náhodných proměnných Charateristiy náhodných proměnných dělíme nejčastěji na charateristiy polohy a variability. Mezi charateristiy polohy se nejčastěji

Více

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu:

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu: Název šoly: ZŠ MŠ ÚOLÍ ESNÉ, RUŽSTEVNÍ 125, RPOTÍN Název rojetu: Ve svazové šole ativně - interativně Číslo rojetu: Z.1.07/1.4.00/21.3465 utor: Mgr. Monia Vavříová Tematicý oruh: Geometrie 8 Název:VY_32_INOVE_20_Konstruční

Více

1 Seznamová barevnost úplných bipartitních

1 Seznamová barevnost úplných bipartitních Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

MATEMATIKA III. Program - Křivkový integrál

MATEMATIKA III. Program - Křivkový integrál Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a

Více

ROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ:

ROVINNÁ GEOMETRIE. Klasická úloha na obvodové a středové úhly v kružnici. ŘEŠENÍ: ROVIÁ GEOETRIE.. Vypočítej veliosti všech vnitřních úhlů tětivového čtyřúhelníu a veliosti úhlů sevřených jeho úhlopříčami. Vrcholy čtyřúhelníu leží v bodech, teré na obvodu ciferníu hodin znázorňují údaje,,,.

Více

1.5.6 Osa úhlu. Předpoklady:

1.5.6 Osa úhlu. Předpoklady: 1.5.6 Osa úhlu Předpklady: 010505 Pedaggická pznámka: Následující příklad je pakvání, které pužívám jak cvičení dhadu. Nechám žáky dhadnut veliksti a při kntrle si pčítají bdy (chyba d 5-3 bdy, d 10-2

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

Podobnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace

Podobnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, , příspěvková organizace Podobnost pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

Mgr. Monika Urbancová. a vepsané trojúhelníku

Mgr. Monika Urbancová. a vepsané trojúhelníku Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Monika Urbancová Datum 28. 8. 2014 Ročník 6. ročník Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA

Více

Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM

Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/ EU PENÍZE ŠKOLÁM ZÁKLDNÍ ŠKOL OLOMOU příspěvková organizace MOZRTOV 48, 779 00 OLOMOU tel.: 585 427 142, 775 116 442; fax: 585 422 713 email: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOL RDOSTI, ŠKOL KVLITY Registrační

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení roviny, jejích částí a vztahů mezi nimi. Úhel ostrý a tupý

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení roviny, jejích částí a vztahů mezi nimi. Úhel ostrý a tupý METODICKÝ LIST DA49 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Úhly I. typy úhlů Astaloš Dušan Matematika šestý fixační, frontální, individuální

Více

DIDAKTIKA MATEMATIKY

DIDAKTIKA MATEMATIKY DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

NUMP403 (Pravděpodobnost a Matematická statistika I)

NUMP403 (Pravděpodobnost a Matematická statistika I) NUMP0 (Pravděpodobnost a Matematicá statistia I Střední hodnota disrétního rozdělení. V apce máte jednu desetiorunu, dvě dvacetioruny a jednu padesátiorunu. Zloděj Vám z apsy náhodně vybere tři mince.

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo. přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme

Více

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Kružnice opsaná a kružnice vepsaná

Kružnice opsaná a kružnice vepsaná 1.7.13 Kružnice opsaná a kružnice vepsaná Předpoklady: 010712 Př. 1: Na obrázcích jsou znázorněny shodné trojúhelníky a různé kružnice k. Dvě z kružnic jsou speciální (jedinečné). Překresli obrázky těchto

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 8. MARKUP Druhá mocnina a odmocnina FY Tabulky, kalkulátor Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Učební materiály (využívány průběžně): Poznámky Umí provádět operace

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi

Více

1.5.5 Přenášení úhlů. Předpoklady:

1.5.5 Přenášení úhlů. Předpoklady: .5.5 Přenášení úhlů Předpoklady: 00504 Pedagogická poznámka: Úvodní příklad neslouží pouze k navedení na postup, kterým se přenáší úhly, ale i jako jedno z prvních setkání s úměrností a poměrem. Přesto

Více

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo

Více

Základní geometrické tvary

Základní geometrické tvary Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

1.7.10 Střední příčky trojúhelníku

1.7.10 Střední příčky trojúhelníku 1710 Střední příčky trojúhelníku Předpoklady: Př 1: Narýsuj libovolný trojúhelník (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused) Najdi středy všech stran S a, S b a S c

Více

( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207

( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207 78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

3.3.5 Množiny bodů dané vlastnosti II (osa úsečky)

3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) 3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) Předpoklady: 030304 Př. 1: Je dána úsečka, = 5,5cm. Narýsuj osu úsečky. Jakou vlastnost mají body ležící na této přímce? Pro všechny body na ose úsečky,

Více

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno

7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno 7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje

Více

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) ) Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více