Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19"

Transkript

1 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz Upozonění: Tato látka se překývá s otázkami 9 a. Poznámka: Zkatka EM označuje v textu obecně všechny tvay složenin elekto-magnetický, elekto-magnetismus apod. Úvod Matematický model EM pole fomuloval J. C. Maxwell (*83 879) v tzv. Maxwellových ovnicích. Všechny známé jevy spojené s EM polem lze z těchto ovnic odvodit. Někteé jeho pojevy (např. EM vlny) byly na základě těchto ovnic odvozeny dříve, než byly pozoovány. Maxwellova teoie popisuje pouze makoskopické pojevy EM pole (tzv. klasická teoie EM pole), ačkoliv chaakte elektomagnetismu je obecně kvantový. Elektický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel poton), záponý (nositel elekton) 9 - elementání kvantum náboje e =,69 [ C], jednotka C - coulomb - platí zákon o zachování náboje q 3 Objemová hustota náboje ρ = lim [ C m ] V V ρ dv Náboj obsažený v objemu q [ C] = V Plošná hustota náboje σ = lim q [ C m ] σ d Náboj obsažený v ploše q [ C] = Liniová hustota náboje q τ = lim [ C m ] l τ dl l Náboj obsažený v přímce q [ C] = l Bodový náboj [Q] myšlenková abstakce, kteou zavádíme v případě, že ozměy objektu, v němž je náboj soustředěn, jsou z makoskopického hlediska v dané úloze zanedbatelné. Poud [I] pohyb náboje. Za jednotku času pojde plochou d poud náboje o hustotě ρ a ychlosti v : Q di = = ρv d = J d, t kde je vekto hustoty konvekčního poudu. I = J d A, jednotka A - ampé J [ ] EM pole za zdoj pole lze považovat náboj. Uvažujeme pole: tatické všechny náboje jsou v klidu. tacionání náboje se pohybují tak, že vytvářejí stacionání (stejnosměné) poudy.

2 Kvazistacionání zjednodušení nestacionáního pole zanedbáním posuvných poudů opoti poudům volných elektonů. Nestacionání obecné EM pole. EM pole je neozdělitelné v tom smyslu, že se vždy jedná o ůzné pojevy téže fyzikální skutečnosti. Helmholtzův teoém aby bylo vektoové pole jednoznačně učeno, musí být v celé uvažované oblasti učena jeho divegence i jeho otace. Elektostatické pole ílu, kteou na sebe působí dva bodové náboje, učuje Coulombův zákon: QQ F =. 4πε ouhlasné náboje se odpuzují a opačné přitahují. Při řešení složitějších soustav se používá pincip supepozice. F Q q Intenzita elektického pole E = = [Vm - ]. Platí Gaussova věta: E d = Q 4πε. Ta ε přiřazuje tok vektou intenzity elektického pole uzavřenou plochou k nábojům plochou ρ ohaničeným. V difeenciálním tvau pak zní: div E =. ε E v někteých geometiích (řešeno Gaussovou větou): 3 ρ ρr Nabitá koule (dielektická) o poloměu R: E = < R; E = > R. 3ε 3ε σ Nabitá ovina E =. ε τ Nabitá přímka E = πε Páce na přenesení náboje v elektickém poli nezávisí na délce křivky pohybu, ale jen na jejím koncovém a počátečním bodě E d l = neboli ot E =. Elektostatické pole je tedy zřídlové a nevíové. B Potenciál φ = E d l. Napětí U AB = φ A φb = E d l, jednotkou je [V] - volt. Dále: A E = gad φ. Potenciál někteých geometií (řešeno dle definice integací intenzity): Q Bodový náboj φ = + K. 4 πε σ σ Nabitá ovina φ = x + K x > ; φ = x + K x <. ε ε

3 τ Nabitá přímka φ = ln + K. πε Velikost konstanty K volíme podle podmínek úlohy. Elektický dipól je tvořen blízkými náboji stejné velikosti a opačného znaménka. Lze-li zanedbat vzdálenost nábojů vzhledem ke vzdálenosti pozoování, mluvíme pak o tzv. elementáním dipólu. Moment elektického dipólu je: p = Qd. Jeho potenciál pak: p φ = 4πε Rozlišujeme tyto mateiály: Vodiče Izolanty (dielektika). Vodivé těleso je ve statickém poli vždy ekvipotenciálou. Ve vodiči pozoujeme elektostatickou indukci. V dielektiku pozoujeme polaizaci. Zavádíme vekto polaizace: div P = ρv. V mateiálu učuje míu polaizace. V elekticky izotopní a lineání látce platí: P = εχe, kde ε je pemitivita a χ je elektická susceptibilita [-]. Platí: D = ε ( + χ m ) E = εε E = εe D = εe + P Gaussova věta po vekto elektické indukce: D d = Q a div D = ρ Na ozhaní dvou postředí platí: D = D E = E n n t t Q Kapacita, schopnost pojmout náboj, je definována: C =, jednotka [F] faad. U Kapacita někteých geometií (řešeno dle definice z potenciálu (napětí) na geometii): Deskové elektody C = ε, d je vzdálenost desek a jejich plocha. Koaxiál C πε = l ln d, polomě vnitřního, vnějšího vodiče. C πε Dvoulinka =, a je vzdálenost a polomě vodičů. l a ln Koule C = 4πεR, R je její polomě. Při séiovém řazení kapacitoů sčítáme převácené hodnoty jednotlivých kapacit a výslednou hodnotu učíme jako převácenou hodnotu výsledku sčítání. Při paalelním řazení je výsledná kapacita součet kapacit. N n= Enegii v el.stat. poli lze vyjádřit jako: W = W = ρφdv = φd d + D EdV V V D Hustota enegie elektického pole: w e = D E = σe =. σ Q n φ n. Je-li náboj ozložen spojitě, pak:. Pozn.: po je D = φ d.

4 Enegie obsažená v kapacitou je: W = CU. Při řešení elektostatických polí se používá metoda vituálních pací. Oblíbené příklady: íly mezi náboji.výpočet intenzity a indukce po ůzné geometie. Kapacity ůzných geometií. Vliv pemitivity na kapacitu. tacionání poudové pole Rozlišujeme poudy: Kondukční pohyb elektonů nebo dě ve vodičích a polovodičích. Konvekční pohyb elektonů nebo iontů ve vakuu. Ve stacionáním poudovém poli se nemůže poud v objemu homadit platí kontinuita poudu. Vyjadřuje ji ce.: div J = a je známá jako jeden z Kichhoffových zákonů (J je hustota poudu [Am - ]). Platí: I = J d = vodivost). Tva integální je J n d. Rovnice U = RI. J = σe je Ohmův zákon v difeenciálním tvau (σ je dl R značí elektický odpo [Ω] d R =. Při séiovém řazení odpoů je celkový odpo součet σd jednotlivých odpoů. Při řazení odpoů sčítáme převácené hodnoty. Vně zdojů je stacionání poudové pole nevíové. Objemová hustota výkonu stacionáního poudu je spotřebovaný ve vodiči P=UI. dp dv = E J = σe = J σ a výkon Na ozhaní dvou postředí platí: J = J E = E n n t t Oblíbené příklady: Teplotní závislost odpou. Poměy v koaxiálu. Odpo těles složitých tvaů. Elektody v zemi a kokové napětí. tacionání magnetické pole Rozlišujeme stacionání mag. pole poudu a pole pemanentních magnetů (obě mají původ v pohybu náboje). Magnetické pole vektou magnetické indukce B (jednotka T tesla) je nezřídlové. íla působící na náboj na náboj o velikosti q a ychlosti v v magnetickém poli o magnetické indukci B : d F m = dq( v B), esp. na poudový element d F m = I dl B Celková EM síla působící na náboj je vyjádřena Loentzovou ovnicí: d F = df + df = dq E + v B. e m ( )

5 Magnetický tok (tok vektou magnetické indukce plochou): Φ = B d. i dl íla mezi na obázku zobazenými poudovými elementy je: µ df = idl i dl sinδ 4π δ Biot-avatův zákon říká totéž pomocí i dl veličin pole. V difeenciálním tvau zní: µ idl db =, 4π i i µ idl a ve tvau integálním: B =. 4π mě vektou indukce se učuje pomocí pavidla pavé uky. íla mezi dvěma ovnoběžnými vodiči se stejným poudem a vzdáleností a : F l µ I = BI =. π a Helmholtzovy cívky dva závity, mezi kteými je poměně homogenní pole. olenoid nekonečně dlouhá ovná cívka, B N na ose cívky: B = µ ni, n =. l I Přímý (nekonečný) poudovodič pole ve vzdálenosti h : B = µ. πh NI Tooid pstencová uzavřená cívka, pole má jen uvnitř cívky: B = µ. π V mateiálu učuje míu magnetizace vekto magnetické magnetizace M, což je objemová hustota magnetických momentů. V magneticky izotopní a lineání látce platí: M = χ H, kde χ m je magnetická susceptibilita [-]. Platí: B B = µ ( + χ m ) H = µ µ H = µh H = M, µ kde µ je pemeabilita (vakua a elativní). Rozlišujeme mateiály: Diamagnetika µ < (míně zmenšují indukci). Paamagnetika µ > (míně zvětšují indukci). Feomagnetika >> (výazně zvětšují indukci). µ Závislost intenzity na indukci při magnetování feomagnetika udává hysteezní smyčka, kteá je po mag. měkké mateiály úzká a po mag. tvdé šioká. Na ozhaní dvou postředí platí: B n = Bn Ht = Ht. Při řešení je někdy vhodné zavést tzv. plošný poud. Dále se řeší lom idukčních ča. Taktéž se používá metoda zcadlení. Do této oblasti spadají dále (zde neozvedené) magnetické obvody. m

6 Oblíbené příklady: Pohyb elektonu v magnetickém poli, polomě kužnice jeho tajektoie. Mag. pole závitu. Magnetické obvody. Kvazistacionání EM pole Faadayův indukční zákon napětí indukované na uzavřené smyčce c o ploše : v dφc d B Ue = E d l = = B E = t t d ot d d c N = =, R na sekundáu z pohledu pimáu ( ) R ef = R N N u i Tansfomáto - N u i Ztáty vířivými poudy, magnetizací atd. Na pohyblivém vodiči ve stacionáním magnetickém poli se indukuje napětí: U = v B. ( ) dl Φc di Vlastní indukčnost statická definice L = [ H] -heny, dynamická definice u L = L. I dt Indukčnosti: L µ Koaxiální kabel: = ln, -polomě vnitřního, -vnějšího vodiče l π L µ d Dvouvodičové vedení: = ln, d-vzdálenost, a-polomě vodičů l π a N Tooidní cívka: L = µ, -polomě cívky, ostatní ozměy jsou vůči němu zanedbatelné. π Enegie pole indukční cívky: W = LI Vnitřní indukčnost uvažuje magnetický tok v samotném vodiči ze kteého ji lze vypočíst. Φc Φ c Vzájemná indukčnost: M = M = = I I Enegie pole vzájemných indukčností: W = LI + L I + MI I Enegie magnetického pole: W = H B dv dw B Hustota enegie magnetického pole: w m = = BH = µh = dv µ L( x ) íly vznikající při změně indukčnosti vlivem pohybu části magnet. obvodu: F d = I dx Oblíbené příklady: Cívka u vodiče s poměnlivým poudem, učit počet závitů nebo indukované napětí. Tansfomáto, učit počty závitů, jak se jeví odpo na sekundáu z hlediska pimáu... Vodič se pohybuje v magnetickém poli, učit indukované napětí. Tyčinka se odvaluje po kolejničkách v mag. poli... Cívka se otáčí v mag. poli... Učování indukčnosti koaxiálu, tooidní cívky. Vodní příkop.

7 Nestacionání EM pole Maxwellovy ovnice Difeenciální tva: Integální tva: div B = B d = div D = ρ D d = Q D ot H = J + dψ H dl = I + dt B ot E = dφ E dl = dt Při hamonickém půběhu veličin zavádíme tzv. fázoy vektoů tak, že platí: E x E x, a Maxwellovy ovnice přecházejí na tva: Difeenciální tva: ˆ div B = ˆ div D = ρ ˆ ˆ ˆ ot H = J + jωd ˆ ˆ ot E = jωb ˆ { } e j ω t (, y, z, t ) = Im E( x, y, z ) ˆ ( ( y, z, t )) jωe( x, y, z ) ˆ E ( ( )) ( x, y, z ) E x, y, z, t dt jω Integální tva: ˆ B d = ˆ D d = ρ dv ˆ H dl = I + jωψ ˆ E dl = jωφ Poyntingův teoém udává bilanci enegie EM pole v obecném bodu postou: w v = E J + div( E H ) W v = ( E J ) dv ( E H ) d [ W] t + V Časový úbytek enegie na jednotku objemu se ovná součtu Jouleových ztát a vyzářeného výkonu. Poyntingův vekto okamžitá hodnota plošné hustoty výkonu. v - = E H [ W m ] Po hamonická pole: v ˆ ˆ * - TŘ = Re{ E H } = EmaxHmax cosφ s [ W m ] Oblíbené příklady: Učit výkon přenášený vlnou. Učit fázový posun mezi E a H, když známe. Upozonění: Do oblasti nestacionáního EM pole patří také EM vlny, jejich vyzařování atd. Tato tematika je řešena odděleně v otázkách 5, 35, 36, 37, 38 a 39.

8 Klasifikace postředí EM vlastnosti postředí z makoskopického hlediska popisují paamety: Pemitivita ε - [Fm ] Pemeabilita µ [Hm - ] - Konduktivita σ [m ] D = D E, B = B H, J = J E. kze tyto paamety jsou definovány mateiálové vztahy: ( ) ( ) ( ) Podle chaakteu paametů klasifikujeme postředí z hlediska lineaity, homogenity, izotopie a dispeze. Lineání postředí paamety jsou nezávislé na intenzitách pole (např. většina mateiálů při malých intenzitách pole nebo jejích malých změnách). Nelineání postředí všechny nebo někteé paamety jsou funkcemi intenzit pole (např. µ µ H ε ε E σ = σ E ). feomagnetika: = ( ), feoelektika: = ( ), většina polovodičů ( ) Homogenní postředí paamety jsou v celém objemu konstantní, postoově nezávislé. Nehomogenní postředí paamety se v postou mění (např. optické vlnovody). Rozeznáváme změnu plynulou a skokovou. Izotopní postředí paamety postředí jsou nezávislé na směu vektoů pole. Platí: D = ε ε E = εe, B = µ µ H = µh, J = σe D E, B H, J E Anizotopní postředí paamety (někteé nebo všechny) závisí na směu vektoů pole. Paamety postředí mají chaakte tenzou. Platí: D = εe, B = µh, J = σe, ε xx εxy εxz kde např.: ε = ε yx ε yy ε yz. εzx εzy εzz Je-li ε tenzo a µ skalá D E, B H, pak hovoříme o elekticky anizotopním postředí (např. plazma, ionosféa, někteé kystaly). Je-li µ tenzo a ε skalá D E, B H, pak hovoříme o magneticky anizotopním postředí (např. feity). Nedispezní postředí fázová ychlost vlny v postředí nezávisí na fekvenci (např. ideální dielektikum). Dispezní postředí fázová ychlost vlny na fekvenci v postředí závisí (např. eálná dielektika). Použitá a dopoučená liteatua [] NOVOTNÝ, K.: Teoie elektomagnetického pole I. Vydavatelství ČVUT, Paha 5. IBN [] TRATTON, J. A.: Teoie elektomagnetického pole. NTL, Paha 96. [3] NOVOTNÝ, K. a kol.: Vlny a vedení. Vydavatelství ČVUT, Paha 5. IBN

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum IV. Magnetické pole ve vakuu a v magnetiku Osnova: 1. Magnetické pole el. poudu 2. Vlastnosti mg. pole 3. Magnetikum 1. Magnetické pole el. poudu histoický úvod podivné expeimenty ukazující neznámé silové

Více

ELT1 - Přednáška č. 4

ELT1 - Přednáška č. 4 ELT1 - Přednáška č. 4 Statická elektřina a vodivost 2/2 Rozložení elektostatických nábojů Potenciál el. pole, el. napětí, páce Coulombův zákon Bodový náboj - opakování Coulombův zákon - síla, kteou působí

Více

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el. Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu? . LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,

Více

14. Základy elektrostatiky

14. Základy elektrostatiky 4. Základy elektostatiky lektostatické pole existuje kolem všech elekticky nabitých tles. Tato tlesa na sebe vzájemn jeho postednictvím psobí. lektický náboj dva významy: a) vyjaduje stav elekticky nabitých

Více

ELEKTROSTATIKA. Obsah. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Úvod 3

ELEKTROSTATIKA. Obsah. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Úvod 3 ELEKTROTATIKA tudijní text po řešitele FO a ostatní zájemce o fyziku Bohumil Vybíal Obsah Úvod 3 Elektostatické pole ve vakuu 5 Elektický náboj 5 Coulombův zákon 7 3 Intenzita elektického pole 7 Příklad

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů

4. Magnetické pole. 4.1. Fyzikální podstata magnetismu. je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4. Magnetické pole je silové pole, které vzniká v důsledku pohybu elektrických nábojů 4.1. Fyzikální podstata magnetismu Magnetické pole vytváří permanentní (stálý) magnet, nebo elektromagnet. Stálý magnet,

Více

Pedagogická fakulta. Katedra fyziky. Měření stacionárního magnetického pole Measurement of the stationary magnetic field

Pedagogická fakulta. Katedra fyziky. Měření stacionárního magnetického pole Measurement of the stationary magnetic field JIHOČESKÁ UNIVERZITA v Českých Budějovicích Pedagogická fakulta Kateda fyziky Měření stacionáního magnetického pole Measuement of the stationay magnetic field Diplomová páce Pavel Stibo Vedoucí diplomové

Více

ELEKTROSTATICKÉ POLE V LÁTKÁCH

ELEKTROSTATICKÉ POLE V LÁTKÁCH LKTROSTATIKÉ POL V LÁTKÁH A) LKTROSTATIKÉ POL V VODIČÍH VODIČ látka obsahující volné elektrické náboje náboje se po vložení látky do pole budou pohybovat až do vytvoření ustáleného stavu, kdy je uvnitř

Více

3.7. Magnetické pole elektrického proudu

3.7. Magnetické pole elektrického proudu 3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam

Více

Měření koaxiálních kabelů a antén

Měření koaxiálních kabelů a antén Jihočeská Univezita v Českých Budějovicích Pedagogická fakulta Kateda fyziky Měření koaxiálních kabelů a antén BAKALÁŘSKÁ PRÁCE České Budějovice 2010 Vedoucí páce: Ing. Michal Šeý Auto: Zdeněk Zeman Anotace

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektické a magnetické pole zdoje polí Co je podstatou elektomagnetických jevů Co jsou elektické náboje a jaké mají vlastnosti Co je elementání náboj a bodový elektický náboj Jak veliká je elektická síla

Více

ε ε [ 8, N, 3, N ]

ε ε [ 8, N, 3, N ] 1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m

Více

Geometrická optika. Aberace (vady) optických soustav

Geometrická optika. Aberace (vady) optických soustav Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,

Více

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln Otázka 17 Základy vyzařování elektomagnetických vln, přehled základních duhů antén a jejich základní paamety (vstupní impedance, směový diagam, zisk) liniové, plošné, eflektoové stuktuy, anténní řady.

Více

Elektromagnetické vlny, antény a vedení

Elektromagnetické vlny, antény a vedení FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Eletomagneticé vlny, antény a vedení Přednášy Gaant předmětu: Doc. Ing. Zdeně Nováče, CSc. Auto textu: Doc. Ing. Zdeně

Více

Kapacita. Gaussův zákon elektrostatiky

Kapacita. Gaussův zákon elektrostatiky Kapacita Dosud jsme se zabývali vztahy mezi náboji ve vakuu. Prostředí mezi náboji jsme charakterizovali permitivitou ε a uvedli jsme, že ve vakuu je ε = 8,854.1-1 C.V -1.m -1. V této kapitole se budeme

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

Elektřina a magnetismus Elektrostatické pole

Elektřina a magnetismus Elektrostatické pole Elektostatické pole Elektostatické pole je posto (v okolí elekticky nabitých částic/těles), ve kteém na sebe náboje působí elektickými silami. Zdojem elektostatického pole jsou elektické náboje (vázané

Více

3.2. Elektrický proud v kovových vodičích

3.2. Elektrický proud v kovových vodičích 3.. Elektrický proud v kovových vodičích Kapitola 3.. byla bez výhrad věnována popisu elektrických nábojů v klidu, nyní se budeme zabývat pohybujícími se nabitými částicemi. 3... Základní pojmy Elektrický

Více

Elektrický náboj, Elektrické pole Elektrický potenciál a elektrické napětí Kapacita vodiče

Elektrický náboj, Elektrické pole Elektrický potenciál a elektrické napětí Kapacita vodiče Elektrické pole Elektrický náboj, Elektrické pole Elektrický potenciál a elektrické napětí Kapacita vodiče Elektrický náboj Elektrování těles: a) třením b) přímým dotykem jevy = elektrické příčinou - elektrický

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

Fabryův-Perotův rezonátor

Fabryův-Perotův rezonátor Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry

Měřicí a řídicí technika Bakalářské studium 2007/2008. odezva. odhad chování procesu. formální matematický vztah s neznámými parametry MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

stránka 101 Obr. 5-12c Obr. 5-12d Obr. 5-12e

stránka 101 Obr. 5-12c Obr. 5-12d Obr. 5-12e BIPOLÁRNÍ TRANZISTOR: Polovodičová součástka se dvěma přechody PN a se třemi oblastmi s příměsovou vodivostí (NPN, popř. PNP, K kolekor, B báze, E emitor) u níž lze proudem procházejícím v propustném směru

Více

, F je síla působící mezi náboji, Q je velikost nábojů, r je jejich r vzdálenost, k je konstanta

, F je síla působící mezi náboji, Q je velikost nábojů, r je jejich r vzdálenost, k je konstanta Elektřina a magnetismus elektický náboj el. síla el. pole el. poud ohmův z. mag. pole mag. pole el. poudu elmag. indukce vznik střídavého poudu přenos střídavého poudu Elektřina světem hýbe Elektický náboj

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektotechniky 8. přednáška Elektoagnetisus Elektoagnetisus Elektoagnetisus - agnetické účinky el. poudu Biot - Savatův zákon (zákon celkového poudu) Magnetická indukce Magnetický tok Apéův zákon

Více

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Více

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal 4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ V celé této kapitole budeme předpokládat, že se pohybujeme v neomezeném lineáním homogenním izotopním postředí s pemitivitou = 0, pemeabilitou = 0 a měnou vodivostí.

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

R w I ź G w ==> E. Přij.

R w I ź G w ==> E. Přij. 1. Na baterii se napojily 2 stejné ohřívače s odporem =10 Ω každý. Jaký je vnitřní odpor w baterie, jestliže výkon vznikající na obou ohřívačích nezávisí na způsobu jejich napojení (sériově nebo paralelně)?

Více

V ZÁKON ELEKTRICKÝ ODPOR

V ZÁKON ELEKTRICKÝ ODPOR Fyzika elektrotechnika 1.část Ing. Jiří Vlček Tento soubor je doplňkem mojí publikace Středoškolská fyzika. Je určen studentům středních škol neelektrických oborů pro velmi stručné seznámení s tímto oborem.

Více

5. Elektromagnetické kmitání a vlnění

5. Elektromagnetické kmitání a vlnění 5. Elektomagnetické kmitání a vlnění 5.1 Oscilační obvod Altenáto vyábí střídavý poud o fekvenci 50 Hz. V paxi potřebujeme napětí ůzných fekvencí. Místo fekvence používáme pojem kmitočet. Různé fekvence

Více

Princip magnetického záznamuznamu

Princip magnetického záznamuznamu Princip magnetického záznamuznamu Obrázky: IBM, Hitachi 1 Magnetické materiály (1) n I H = l B = μ H B l μ μ = μ μ 0 0 μ = 4π 10 r 7 2 [ N A ] n I Diamagnetické materiály: µ r < 1 (Au, Cu) Paramagnetické

Více

Vibrace vícečásticových soustav v harmonické aproximaci. ( r)

Vibrace vícečásticových soustav v harmonické aproximaci. ( r) Paktikum z počítačového modelování ve fyzice a chemii Úloha č. 5 Vibace vícečásticových soustav v hamonické apoximaci Úkol Po zadané potenciály nalezněte vibační fekvence soustavy několika částic diagonalizací

Více

Rychlostní a objemové snímače průtoku tekutin

Rychlostní a objemové snímače průtoku tekutin Rychlostní a objemové snímače průtoku tekutin Rychlostní snímače průtoku Rychlostní snímače průtoku vyhodnocují průtok nepřímo měřením střední rychlosti proudu tekutiny v STŘ. Ta závisí vzhledem k rychlostnímu

Více

Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v

Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v Páce vykonaná v eektickém poi, napětí, potenciá Vzájemná souvisost mezi intenzitou eektického poe, napětím a potenciáem Páce vykonaná v eektostatickém poi po uzavřené dáze Gadient skaání funkce Skaání

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu EKONOMIKA V ZEMĚMĚŘICTVÍ A KATASTRU číslo úlohy 1. název úlohy NEMOVITOSTÍ Analýza

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

Studie rozložení teplotních polí v dielektricky ohřívaných kaučucích. Bc. Jan Kartousek

Studie rozložení teplotních polí v dielektricky ohřívaných kaučucích. Bc. Jan Kartousek Studie rozložení teplotních polí v dielektricky ohřívaných kaučucích Bc. Jan Kartousek Diplomová práce 2008 ABSTRAKT Diplomová práce se zabývá studiem rozložení teplotních polí uvnitř dielektricky ohřívaných

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

Stavba atomu: Atomové jádro

Stavba atomu: Atomové jádro Stavba atomu: tomové jádo Výzkum stuktuy hmoty: Histoie Jen zdánlivě existuje hořké či sladké, chladné či hoké, ve skutečnosti jsou pouze atomy a pázdno. Démokitos, 46 37 př. n.l. Heni Becqueel 85 98 objev

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-3-3-01 III/2-3-3-02 III/2-3-3-03 III/2-3-3-04 III/2-3-3-05 III/2-3-3-06 III/2-3-3-07 III/2-3-3-08 Název DUMu Elektrický náboj a jeho vlastnosti Silové působení

Více

podíl permeability daného materiálu a permeability vakua (4π10-7 )

podíl permeability daného materiálu a permeability vakua (4π10-7 ) ELEKTROTECHNICKÉ MATERIÁLY 1) Uveďte charakteristické parametry magnetických látek Existence magnetického momentu: základním předpoklad, aby látky měly magnetické vlastnosti tvořen součtem orbitálního

Více

6 NÁVRH A EXPERIMENTÁLNÍ OVĚŘENÍ ELEKTROMAGNETICKÉHO AKTUÁTORU. František MACH

6 NÁVRH A EXPERIMENTÁLNÍ OVĚŘENÍ ELEKTROMAGNETICKÉHO AKTUÁTORU. František MACH 1. Úvod do řešené problematiky 6 NÁVRH A EXPERIMENTÁLNÍ OVĚŘENÍ ELEKTROMAGNETICKÉHO AKTUÁTORU František MACH ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta elektrotechnická Katedra teoretické elektrotechniky Aktuátor,

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Osnova kurzu. Základy teorie elektrického pole 2

Osnova kurzu. Základy teorie elektrického pole 2 Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie

Více

AKUSTICK E JEVY V KONTINU ICH Petr Hora 30. kvˇ etna 2001

AKUSTICK E JEVY V KONTINU ICH Petr Hora 30. kvˇ etna 2001 AKUSTICKÉ JEVY V KONTINUÍCH Petr Hora 30. května 2001 Tento text obsahuje sylabus přednášek z předmětu Akustické jevy v kontinuích (AJK), který se přednáší na Fakultě aplikovaných věd Západočeské univerzity

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole

Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole Elektomagnetické jevy, elektické jevy 4. Elektický náboj, elektické pole 4. Základní poznatky (duhy el. náboje, vodiče, izolanty) Někteé látky se třením dostávají do zvláštního stavu přitahují lehká tělíska.

Více

Základní radiometrické veličiny

Základní radiometrické veličiny Základní radiometrické veličiny Radiometrické veličiny se v textech, se kterými jsem se setkal, zavádějí velmi formálně, např. iradiance E= dφ da.pokusiljsemsepřesnějipopsat,cojednotlivéfunkceznamenají.formálnízápisyjsouzde

Více

Měření v elektrotechnice

Měření v elektrotechnice FAKULTA ELEKTOTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BNĚ Měření v elektrotechnice Garant předmětu: Doc.Ing.Ludvík Bejček, CSc. Autoři textu: Doc.Ing.Ludvík Bejček, CSc. Ing. Miloslav

Více

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek Spš lko PŘÍKOPY El. viční z základů lkochniky. očník Podl knihy Blahovc Základy lkochniky v příkladch a úlohách zpacoval ing. Eduad ladislav Kulhánk yšší odboná a sřdní půmyslová škola lkochnická Faniška

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

2. Pasivní snímače. 2.1 Odporové snímače

2. Pasivní snímače. 2.1 Odporové snímače . Pasivní snímače Pasivní snímače mění při působení měřené některou svoji charakteristickou vlastnost. Její změna je pak mírou hodnoty měřené veličiny a ta potom ovlivní tok elektrické energie ve vyhodnocovacím

Více

Elektřina a magnetismus Elektrostatické pole

Elektřina a magnetismus Elektrostatické pole Elektrostatické pole Elektrostatické pole je prostor (v okolí elektricky nabitých částic/těles), ve které na sebe náboje působí elektrickýi silai. Zdroje elektrostatického pole jsou elektrické náboje (vázané

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

2. Pasivní snímače. 2.1 Odporové snímače

2. Pasivní snímače. 2.1 Odporové snímače . Pasivní snímače Pasivní snímače při působení měřené veličiny mění svoji charakteristickou vlastnost, která potom ovlivní tok elektrické energie. Její změna je pak mírou hodnoty měřené veličiny. Pasivní

Více

ELEKTRICKÉ SVĚTLO 1 Řešené příklady

ELEKTRICKÉ SVĚTLO 1 Řešené příklady ČESKÉ VYSOKÉ UČENÍ TECHNCKÉ V PRAE FAKULTA ELEKTROTECHNCKÁ magisterský studijní program nteligentní budovy ELEKTRCKÉ SVĚTLO Řešené příklady Prof. ng. Jiří Habel DrSc. a kolektiv Praha Předmluva Předkládaná

Více

v 1 = at 1, (1) t 1 = v 1

v 1 = at 1, (1) t 1 = v 1 Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného

Více

zařízení 3. přednáška Fakulta elektrotechniky a informatiky prof.ing. Petr Chlebiš, CSc.

zařízení 3. přednáška Fakulta elektrotechniky a informatiky prof.ing. Petr Chlebiš, CSc. Konstrukce elektronických zařízení 3. přednáška prof.ing. Petr Chlebiš, CSc. Konstrukce signálových spojů Podle počtu vodičů a způsobu buzení signálové spoje dále dělíme na: - nesymetrická vedení - symetrická

Více

Metody založené na měření elektrických vlastností roztoků

Metody založené na měření elektrických vlastností roztoků Metody založené na měření elektických vlastností oztoků KODUKTOMETRIE Pincip: Měří se elektická vodivost oztoků elektolytů mezi dvěma platinovými elektodami za půchodu střídavého poudu. Rozdíl poti ostatním

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3

Více

Magnetická metoda prášková DZM 2013

Magnetická metoda prášková DZM 2013 Magnetická metoda prášková DZM 2013 1 2 ROZPTYL MAGNETICKÉHO POLE Metoda je založena na skutečnosti, že ve zmagnetovaném feromagnetickém materiálu se v místě necelistvosti (nebo náhlé změny magnetických

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Návrh aktuátoru s permanentním magnetem Martin Kurfiřt 2014 Abstrakt Tato bakalářská

Více

5. ELEKTRICKÁ MĚŘENÍ

5. ELEKTRICKÁ MĚŘENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 5. ELEKTCKÁ MĚŘENÍ rčeno pro posluchače všech bakalářských studijních programů FS 5.1 Úvod 5. Chyby měření 5.3 Elektrické

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV VÝROBNÍCH STROJŮ, SYSTÉMŮ A ROBOTIKY KONSTRUKČNÍ A PROCESNÍ INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

Projekty do předmětu MF

Projekty do předmětu MF Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra optiky ZÁVĚREČNÁ PRÁCE Projekty do předmětu MF Vypracoval: Miroslav Mlynář E-mail: mlynarm@centrum.cz Studijní program: B1701 Fyzika Studijní

Více

Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch

Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch Fáze I Fáze II FÁZOVÁ ROZHRANÍ a koloidy kolem nás z mikroskopického, molekulárního hlediska Fáze I Fáze II z makroskopického hlediska Podle skupenského stavu stýkajících se objemových fází: kapalina /

Více

1 Lineární stochastický systém a jeho vlastnosti. 2 Kovarianční funkce, výkonová spektrální hustota, spektrální faktorizace,

1 Lineární stochastický systém a jeho vlastnosti. 2 Kovarianční funkce, výkonová spektrální hustota, spektrální faktorizace, Lineární stochastický systém a jeho vlastnosti. Kovarianční funkce, výkonová spektrální hustota, spektrální faktorizace, tvarovací filtr šumu, bělicí filtr. Kalmanův filtr, formulace problemu, vlastnosti.

Více

Rutherfordův experiment s multikanálovým analyzátorem

Rutherfordův experiment s multikanálovým analyzátorem Ruthefodův expeiment s multikanálovým analyzátoem Úkol Ověřte Ruthefodův vztah po ozptyl poměřením počtu alfa částic ozptýlených tenkou zlatou fólií do ůzných úhlů mezi cca 0 a 90. Zjistěte, jak ovlivňuje

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta eská zemdlská unvezta v Paze, Techncká fakulta 9. lektcké pole 9. lektcký náboj Každá látka je vytvoena z tzv. elementáních ástc, kteé vytváejí složtjší stuktuy. ástce na sebe vzájemn psobí slam, kteé

Více

Magnetické pole najdeme kolem permanentního magnetu (i kolem Země) a zároveň kolem každého vodiče, kterým prochází elektrický proud.

Magnetické pole najdeme kolem permanentního magnetu (i kolem Země) a zároveň kolem každého vodiče, kterým prochází elektrický proud. MAGNETCKÉ POLE 1. Základní chaakteistiky Magnetické pole se tvoří kolem každé částice s nábojem Q, kteá je v pohybu. Tzn., že magnetismus látek je dán stuktuou atomů (elektony jsou v atomu v pohybu). Magnetické

Více

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH

VEDENÍ ELEKTRICKÉHO PROUDU V KOVECH I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í VEDENÍ ELEKTICKÉHO POD V KOVECH. Elektrický proud (I). Zdroje proudu elektrický proud uspořádaný pohyb volných částic s elektrickým nábojem mezi dvěma

Více

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas

Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené

Více

DIPLOMOVÁ PRÁCE. Západočeská univerzita v Plzni Fakulta elektrotechnická Katedra technologií a měření. Vyšetření permeability magnetických kapalin

DIPLOMOVÁ PRÁCE. Západočeská univerzita v Plzni Fakulta elektrotechnická Katedra technologií a měření. Vyšetření permeability magnetických kapalin Západočeská univerzita v Plzni Fakulta elektrotechnická Katedra technologií a měření DIPLOMOVÁ PRÁCE Vyšetření permeability magnetických kapalin Plzeň 2013 Bc. Miroslav Kubát 2 3 Abstrakt Tato práce se

Více

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,

Více

Senzory teploty. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti.

Senzory teploty. Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Senzory teploty Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. P. Ripka, 00 -teplota termodynamická stavová veličina -teplotní stupnice: Kelvinova (trojný bod vody 73,6 K), Celsiova,...

Více