Čitatel (určuje, o kolik částí se jedná kolik dílů je např. vybarvených) Zlomková čára Jmenovatel (říká, na kolik stejných částí je celek rozdělen)

Rozměr: px
Začít zobrazení ze stránky:

Download "Čitatel (určuje, o kolik částí se jedná kolik dílů je např. vybarvených) Zlomková čára Jmenovatel (říká, na kolik stejných částí je celek rozdělen)"

Transkript

1 . +. Zlomky + racionální čísla Zlomek je způsob vyjádření části z celku. ZÁPIS, ZNÁZORNĚNÍ Čitatel (určuje, o kolik částí se jedná kolik dílů je např. vybarvených) Zlomková čára Jmenovatel (říká, na kolik stejných částí je celek rozdělen) Př. Znázorni zlomky dvě šestiny, jedna polovina, jedna čtvrtina, jedna třetina, tři čtvrtiny, dvě osminy, dvě čtvrtiny a šest osmin. Nejsou si některé zlomky rovny? Př. Vyznač na číselné ose zlomky /; /; /; /. Př. Závodník už uběhl osm kol. Celkem má odběhnout kol dvanáct. Jakou část závodu již má za sebou?/ Zlomek je menší než, pokud je čitatel menší než jmenovatel. /; /; / Zlomek je roven jedné, pokud se rovná čitatel jmenovateli. /; /; / Zlomek je větší než jedna, pokud je čitatel větší než jmenovatel. /; /; / Takový zlomek je možné převést na smíšené číslo.

2 PS A / - 9 VÝPOČET ZLOMKU Z CELKU

3 Urči ¾ ze kilogramů. kg Urči 9/ ze 9. ZLOMKY A JEDNOTKY Vyučování trvá hodin. Jaká část dne to je? /=/ Kolik centimetrů je /00 metru? /00 ze 00 (m=00cm /00m)=cm Kolik gramů jsou /0 kilogramu? /0 z 000(kg=000g /0=00/000)=00g Kolik hodin jsou / dne?/z (den=hodin /=/)=hodin Kolik minut je /0 hodiny? /0 z 0=00.=9 min Kolik metrů je /00km? /00 z 000 = 0m PS A /0 -

4 Vyjádři zlomkem v metrech (m=00cm) a) cm /00m b) 0cm 0/00m Vyjádři zlomkem v hodinách (hod = 0min) a) min /0 hod b) min /0hod PS A / - Př. Urči celek, když a) / je m.=m b)/ je kg.=9kg c) / je h.=h d)/jekm.=km Př. Tyč je zabetonovaná / své délky v zemi. Nad zemí je centimetrů. Jak dlouhá je tyč? / je cm.= 9cm Př.V dílně se první den použila / materiálu, druhý den / toho, co první den. Na třetí den zbylo 0 kilogramů materiálu. Kolik materiálu bylo celkem na všechny tři dny?... 0 kg kg

5 ROZŠIŘOVÁNÍ ZLOMKŮ Různým od nuly!

6 Př. Rozšiř zlomky číslem Př. Uprav na zlomky se stejnými jmenovateli ¾ a / / a / / a / a ½ /0 a ¾ Spol. jmenovatel 0 9/ a / / a 0/ / a/ a/ /0a/0 PS A / - KRÁCENÍ ZLOMKŮ Př. Zapiš zlomkem, jaká část celku je vybarvena. Žáci dostanou obrázky na vlepení viz přílohy doc. Zlomek zkrátíme, když čitatele i jmenovatele zlomku vydělíme společným dělitelem čitatele i jmenovatele. Zlomky krátíme až na základní tvar.

7 Základní tvar zlomku je takový, kdy čitatel a jmenovatel jsou nesoudělná čísla (nemají žádného společného dělitele kromě čísla! Př. Doplň chybějící čísla Př. Zkrať na základní tvar /=/ 0/00=/0=/ /0=/ /9=/ /0=/ /9=už je v zákl. tvaru /=/ 0/=/9 /=/ 00/=0/9=0/ /=/ /0=/=/ Př. Urči a) kolik minut je /0hod=/0=min 0/00hod=/0=/0=min b) kolik metrů je 0/km=/=00/000=00m /hod=/=0/0=0min /0hod=/0=min 9/0=/0=0/00=00/000=00m Př. Zkrať dané zlomky

8 PS A 9/0 - POROVNÁVÁNÍ ZLOMKŮ a) se stejnými jmenovateli b) se stejnými čitateli c) s různými čitateli i jmenovateli Zlomky nejprve převedeme na společného jmenovatele a teprve potom porovnáme čitatele! Ze dvou zlomků se stejným jmenovatelem je větší ten, co má většího čitatele!

9 Př. Podobně můžeme porovnávat libovolný počet zlomků a seřazovat je vzestupně (od nejmenšího po největší) nebo sestupně (od největšího po nejmenší). Seřaď sestupně zlomky Nejmenším společným jmenovatelem je číslo 0. PS A / - 9 SMÍŠENÁ ČÍSLA Zlomky dělíme na pravé a nepravé. Každý nepravý zlomek se dá převést na celé číslo a zlomek smíšené číslo.

10 = (zb. ) Zlomek ve smíšeném čísle (za celým číslem) musí být v základním tvaru. Př. Převeď dané nepravé zlomky na smíšené číslo PS A 0/ Smíšené číslo lze převést na nepravý zlomek Jmenovatele nového zlomku pouze opíšeme. Čitatele nového zlomku získáme tak, že celým číslem vynásobíme jmenovatele a přičteme čitatele.. + =

11 PS A 0/ VZTAHY MEZI ZLOMKY A DESETINNÝMI ČÍSLY Jak zlomky, tak des. čísla (i procenta) slouží k vyjádření části celku. Ne každá část celku se dá vyjádřit (přesně, bez zaokrouhlení) pomocí desetinného čísla. Pomocí zlomku však ano! = 0, Zlomková čára je jiná forma zápisu dělení. =0, Zlomek převádíme na des. číslo tak, že čitatele dělíme jmenovatelem. Každý zlomek se dá zapsat jako dělení a po vydělení tedy jako desetinné číslo Ne každé dělení však má ukončený desetinný rozvoj, tzn. že má nulový zbytek. V takovém případě pak zlomek, tedy část celku, nejde zapsat ve tvaru desetinného čísla bez zaokrouhlení, tedy přesně! Potřebujeme-li tedy takovou část celku vyjádřit přesně, musíme použít zápis ve tvaru zlomku.

12 Výsledek můžeme také zaokrouhlit, např. na setiny 0, Ani jeden z uvedených výsledků však nevyjadřuje danou část celku přesně (iracionální číslo). Jediné přesné vyjádření je tedy vyjádření pomocí zlomku. A pro připomenutí Př. Převeď na des. číslo

13 PS A 0/ ; /9 Převod desetinného čísla na zlomek Každé desetinné číslo se dá zapsat jako desetinný zlomek, tzn. zlomek, který má ve jmenovateli 0, 00, Většina desetinných zlomků nepředstavuje základní tvar části daného celku, kterou vyjadřují. Do základního tvaru je uvedeme krácením.

14 Př. Převeď na zlomek PS A /; SČÍTÁNÍ A ODČÍTÁNÍ ZLOMKŮ a) se stejnými jmenovateli Zlomky (se stejnými jmenovateli) sčítáme (odčítáme) tak, že sečteme (odečteme) jejich čitatele a jmenovatele opíšeme. Výsledek zapíšeme v zákl. tvaru. (smíšeným číslem) PS A /; / /+/+/=/= / /-/=/=/ /+/-/=/ b) s různými jmenovateli Nemají-li sčítané (odečítané) zlomky stejné jmenovatele, nedokážeme určit výsledek!!! Postup ) Nejdříve určíme společného jmenovatele, to znamená číslo, které umístíme pod zlomkovou čáru obou zlomků. Nejlépe je najít přímo nejmenší společný násobek

15 obou jmenovatelů nejmenšího společného jmenovatele. ) Zadané zlomky rozšíříme na tohoto společného jmenovatele. ) Sečteme (odečteme) zlomky se stejným jmenovatelem viz bod a) ) Výsledek uvedeme do základního tvaru, příp. na smíšené číslo. Můžeme sčítat (odčítat) i více zlomků najednou /0 = /0 = / /-/=/-/=/=/ /-/=9/-/=/-/=/= / - /= / nebo /-/=/= / /0 = 0/0

16 PS A str. - NÁSOBENÍ ZLOMKŮ U násobení zlomků nemusíme zlomky převádět na společného jmenovatele. Během výpočtů je výhodné provádět krácení zlomků tzv. nad sebou (třeba už v zadání), nebo do kříže, abychom počítali stále s co nejmenšími čísly. Krátit lze ale pouze při násobení!!!. = 0 =

17 0 krácení pod sebou. = krácení do kříže Krátíme i během výpočtů, co se dá.. / = /. /=zkrátíme= /= ½ /. 0 = /. 0/=zkrátíme=/./=/= /. /=/./= zkrátíme=/./=9/= / Vypočítej / z. Předložku z nahradíme operací krát a vypočítáme jako /. /= zkrátíme=/./= Př. Vynásob s využitím krácení

18 PS A str - DĚLENÍ ZLOMKŮ Př. Urči převrácený zlomek ke zlomku Motivace

19 !!!!!! U násobení klasicky krátíme, můžeme-li. Zlomky dělíme tak, že první zlomek opíšeme, dělení nahradíme násobením a druhý zlomek převrátíme. Pak už postupujeme stejně jako při násobení zlomků.

20 PS A / - KOMBINACE POČETNÍCH OPERACÍ 0 0.

21 SLOŽENÝ ZLOMEK je zlomek, jehož čitatelem, popřípadě jmenovatelem, je opět zlomek. Při zápisu je důležité rozlišovat hlavní zlomkovou čáru (je na úrovni rovná se ) od ostatních zlomkových čar. Složené zlomky jsou jen jiný způsob zápisu dělení, kdy se místo znaménka početní operace dělení používá zlomková čára. Hlavní zlomkovou čáru můžeme nahradit znaménkem početní operace dělení. Vnější členy vynásobíme v čitateli výsledného zlomku. Vnitřní členy vynásobíme ve jmenovateli výsledného zlomku. Potom postupujeme jako při násobení zlomků.

22 / + / = (+)/ (+)/ = 0/. / = / = / / - /0 PS A /;. RACIONÁLNÍ ČÍSLA Taková čísla, která lze vyjádřit zlomkem, nazýváme RACIONÁLNÍ ČÍSLA. ½=/=/=/=/0=/= =-/-= =/=/=9/=/=/= -=-/=mínus může být před zl. čárou nebo před čitatelem, nebo před jmenovatele=-/ Nafotit pro nalepení do sešitu příklady.

23

24 Př. Př.

25 Př. PS A /- SČÍTÁNÍ A ODČÍTÁNÍ RACIONÁLNÍCH ČÍSEL (platí pravidla pro počítání s celými čísly, des. čísly a pro počítání se zlomky)

26 Př. PS A /- NÁSOBENÍ A DĚLENÍ RACIONÁLNÍCH ČÍSEL (platí pravidla pro počítání s celými čísly, des.čísly a pro počítání se zlomky) Př. 9 a) 0,. 0,0=0,0 b) -. 0,00= -0,0 c)-0,., = -0, d) -0,.(-00)=0 e)/.(-/)=- f)/./.(-0/0)=-/ Př. 0 a) -0,9(-0,)=0, b)(-)=--0, c)-,0,=-9 d)(-0,0)=-00 e)-/9/=-/ f)-/(-)= / Př. Př.

27 PS A 0/- DALŠÍ PŘÍKLADY

28

29 Porovnej http//dum.rvp.cz/materialy/zlomky-na-zs-.html http//dum.rvp.cz/materialy/zlomky-pracovni-list-.html http//dum.rvp.cz/materialy/rozsirovani-a-kracenizlomku.html http//dum.rvp.cz/materialy/pocitame-se-zlomky.html http//dum.rvp.cz/materialy/kraceni-zlomku.html 0 ; 0 0 ; 0 ; 0 ; 0 0 ; 0 ; ; ; ; ;

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený

Více

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára 9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára

Více

čitatel jmenovatel 2 5,

čitatel jmenovatel 2 5, . ZLOMKY Zlomek má následující tvar čitatel jmenovatel Příkladem zlomku může být například zlomek, tedy dvě pětiny. Jmenovateli se říká jmenovatel proto, že pojmenovává zlomek. Pětina, třetina, šestina

Více

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky 0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná

Více

Početní operace se zlomky

Početní operace se zlomky Početní operace se zlomky 1. Sčítání a. zlomků - upravíme zlomky na stejného jmenovatele (rozšiřováním, v některých případech krácením) hledáme společný násobek všech jmenovatelů (nejlépe nejmenší společný

Více

5 čitatel zlomková čára 13 jmenovatel

5 čitatel zlomková čára 13 jmenovatel Aritmetika sekunda 1 Zlomky Celek a jeho část Zlomek je speciální zápis čísla v podílovém tvaru. Zlomek obsahuje čitatele a jmenovatele, kteří jsou od sebe odděleni zlomkovou čarou. Zlomek pět třináctin

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky smíšené číslo, složené zlomky a převod na desetinná čísla Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se teorie řešené úlohy cvičení tipy k maturitě výsledky Víš, že racionální v matematice znamená poměrový nebo podílový, zatímco v běžné řeči ho užíváme spíše ve významu rozumový? zlomky používali již staří

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Zlomky. Složitější složené zlomky

Zlomky. Složitější složené zlomky Zlomky Složitější složené zlomky Dostupné z Metodického portálu www.rvp.cz, ISSN: 0-, financovaného z ESF a státního rozpočtu Složený zlomek Složené zlomky jsou jen jiný způsob zápisu dělení zlomků, kdy

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

{ 4} 2.2.7 Krácení a rozšiřování zlomků. Předpoklady: 010217. Zlomky 1 2 ; 2 4 ; 3 6 ; 4 8 ; 5. představují stejné číslo.

{ 4} 2.2.7 Krácení a rozšiřování zlomků. Předpoklady: 010217. Zlomky 1 2 ; 2 4 ; 3 6 ; 4 8 ; 5. představují stejné číslo. ..7 Krácení a rozšiřování zlomků Předpoklady: 007 Zlomky ; ; ; 8 ; 0 ; 7 ; zlomky ; ; ; 8 ; zlomky ; ; ; 8 ; 0 ; představují stejné číslo. Říkáme: 0 ; 7 ; mají stejnou hodnotu, 7 ; se rovnají. Proč je

Více

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku. 5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých

Více

6. POČÍTÁNÍ SE ZLOMKY

6. POČÍTÁNÍ SE ZLOMKY . ROZŠIŘOVÁNÍ ZLOMKŮ Hodnota zlomku se nezmění, vynásobíme-li jeho čitatele i jmenovatele stejným nenulovým číslem. Této úpravě se říká rozšiřování zlomků. 0 0 0 0 0 0 0 0 0 0 00 0 KRÁCENÍ ZLOMKŮ Hodnota

Více

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!! . Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

Rozklad na součin vytýkáním

Rozklad na součin vytýkáním Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Sada pracovních listů matematika 7 2 CZ.1.07/1.1.16/ Matematika pro 7. ročník. Mgr. Věra Zouharová

Sada pracovních listů matematika 7 2 CZ.1.07/1.1.16/ Matematika pro 7. ročník. Mgr. Věra Zouharová Sada pracovních listů matematika 7 2 CZ.1.07/1.1.16/02.0079 Matematika pro 7. ročník Sada pracovních listů je zaměřena na opakování, upevnění a procvičování učiva 7. ročníku. Využíváno k samostatné a skupinové

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení

Více

Gymnázium. Přípotoční Praha 10

Gymnázium. Přípotoční Praha 10 Gymnázium Přípotoční 1337 101 00 Praha 10 led 3 20:53 Přípravný kurz Matematika led 3 21:56 1 Datum Téma 9.1.2019 Číselné výrazy-desetinná čísla, zlomky, počítání se zlomky, zaokrouhlování, druhá mocnina

Více

Milí rodiče a prarodiče,

Milí rodiče a prarodiče, Milí rodiče a prarodiče, chcete pomoci svým dětem, aby se jim dobře počítalo se zlomky? Procvičujte s nimi. Tento text je pokračováním publikace Mami, tati, já těm zlomkům nerozumím. stupeň ZŠ, ve které

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Pedagogická poznámka: Hodina je trochu netypická, na jejím začátku provedu výklad (spíše opakování), který nechám na tabuli a potom až do konce řeší žáci zbytek

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?

Více

2.5.1 Opakování - úměrnosti se zlomky

2.5.1 Opakování - úměrnosti se zlomky .. Opakování - úměrnosti se zlomky Př. : Spočti: a) b) c) 6 0 0 : 7 9 a) 0 6 = = = 7 7 b) 9 = = 6 0 c) 0 0 0 9 0 9 : = = = 7 9 7 0 9 0 6 Př. : Přímá úměrnost má předpis y = x. Doplň tabulku této přímé

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

1. ČÍSELNÉ OBORY

1. ČÍSELNÉ OBORY ČÍSELNÉ OBORY 1. ČÍSELNÉ OBORY Číselným oborem rozumíme číselnou množinu, na které jsou definovány bez omezení početní operace sčítání a násobení, tj. číselný obor je vzhledem k těmto operacím uzavřený.

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: Vzdělávací oblast: Vzdělávací obor: Tématický okruh: Téma: Ročník: Očekávaný

Více

Příprava na závěrečnou písemnou práci

Příprava na závěrečnou písemnou práci Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721

Více

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Září Obor přirozených čísel Počítá předměty v daném souboru do 5 Vytváří soubory s daným počtem

Více

2. Mocniny 2.1 Mocniny a odmocniny

2. Mocniny 2.1 Mocniny a odmocniny . Mocniny. Mocniny a odmocniny 8. ročník. Mocniny a odmocniny Příklad : Vyjádřete jako mocninu : a)... b) (- ). (- ). (- ). (- ). (- ). (- ) c)...a.a.a.a.b.b.b.b d)..a.b e) a. a. a. a Příklad : Vyjádřete

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Seznam šablon - Matematika

Seznam šablon - Matematika Seznam šablon - Matematika Autor: Mgr. Vlastimila Bártová Vzdělávací oblast: Matematika Tematický celek: Desetinná čísla Ročník: 6 Číslo Označení Název Materiál Využití Očekávané výstupy Klíčové kompetence

Více

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi: Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Sada pracovních listů matematika 6-2 CZ.1.07/1.1.16/ Matematika 6. ročník. Mgr. Věra Zouharová

Sada pracovních listů matematika 6-2 CZ.1.07/1.1.16/ Matematika 6. ročník. Mgr. Věra Zouharová Sada pracovních listů matematika 6-2 CZ.1.07/1.1.16/02.0079 Matematika 6. ročník Sada pracovních listů je zaměřena na opakování, upevnění a procvičování učiva 6. ročníku. Využíváno k samostatné a skupinové

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

ARITMETICKÉ OPERACE V BINÁRNÍ SOUSTAVĚ

ARITMETICKÉ OPERACE V BINÁRNÍ SOUSTAVĚ Sčítání binárních čísel Binární čísla je možné sčítat stejným způsobem, jakým sčítáme čísla desítková. Příklad je uveden v tabulce níže. K přenosu jedničky do vyššího řádu dojde tehdy, jeli výsledkem součtu

Více

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)

Téma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:

Více

Matematika. Vlastnosti početních operací s přirozenými čísly. Sčítání a odčítání dvojciferných čísel do 1 000, zpaměti i písemně.

Matematika. Vlastnosti početních operací s přirozenými čísly. Sčítání a odčítání dvojciferných čísel do 1 000, zpaměti i písemně. 1 Matematika Matematika Učivo Vlastnosti početních operací s přirozenými čísly Sčítání a odčítání dvojciferných čísel do 1 000, 1 000 000 zpaměti i písemně Násobení dvojciferných čísel jednociferným činitelem

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

M - Algebraické výrazy

M - Algebraické výrazy M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1

2. Přečtěte zapsaná desetinná čísla 0,27; 1,4; 1,57; 0,729; 2,4; 128,456; 0,005; 0,7; 12,54; 0,034; 100,001; 0,1 2a) Desetinná čísla celá část desetinná část příklady k procvičení 1. Zapište číslo a) 5 celých 4 desetin, 8 setin b) 8 set 4 desítky 7 jednotek 1 desetina 8 tisícin c) 2 miliony 8 tisíc 9 tisícin. 2.

Více

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo

Více

1.8.5 Dělení mnohočlenů

1.8.5 Dělení mnohočlenů 185 Dělení mnohočlenů Předpoklady: 18 Mohou nastat dvě možnosti 1 Dělení mnohočlenů jednočlenem Jednoduché dělíme každý člen zvlášť Př 1: Vyděl mnohočleny ( 9x y 6x y + 1xy x : x Dělit znamená dát mnohočleny

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Oblast:

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Oblast: Vzdělávací oblast: a její aplikace Vyučovací předmět MATEMATIKA 1. OBDOBÍ Období: 1. Číslo a početní operace Používá přirozená čísla k modelování reálných situací Počítá předměty v daném souboru Vytváří

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

PRACOVNÍ LIST ŘÍMSKÉ ČÍSLICE

PRACOVNÍ LIST ŘÍMSKÉ ČÍSLICE PRACOVNÍ LIST ŘÍMSKÉ ČÍSLICE JMÉNO: Dnes se římské číslice nepoužívají pro výpočty, ale můžeme je najít například na ciferníku hodin, jako označení kapitol v knihách, letopočtů výstavby nebo rekonstrukce

Více

Projekt Vzdělávání pedagogů k realizaci kurikulární reformy (CZ.1.07/1.3.05/11.0026) Manuál č. 15

Projekt Vzdělávání pedagogů k realizaci kurikulární reformy (CZ.1.07/1.3.05/11.0026) Manuál č. 15 Manuál č. 15 NÁZEV HODINY/TÉMA: OPERACE S REÁLNÝMI ČÍSLY Časová jednotka (vyuč.hod.): 1h (45min.) Vyučovací předmět: Matematika Ročník: první Obor vzdělání: 3letý Použité metody: Hra s čísly, Práce s textem,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

Vyučovací předmět: Matematika Ročník: 6.

Vyučovací předmět: Matematika Ročník: 6. Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

Matematika. 18. října Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Matematika. 18. října Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 8. října 206 Ondřej Pártl (FJFI ČVUT) Matematika 8. října 206 / 72 Obsah Čísla 0 20, desítky, sčítání,

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

Číselné soustavy. Jedná se o způsob reprezentace čísel.

Číselné soustavy. Jedná se o způsob reprezentace čísel. Číselné soustavy Číselné soustavy Jedná se o způsob reprezentace čísel. Dvě hlavní skupiny: Nepoziční (hodnota číslice není dána jejím umístěním v dané sekvenci číslic) Poziční (hodnota každé číslice dána

Více

íslo ryze periodické íslice /skupina íslic ), která se opakuje nazýváme perioda. V našem p ípad je perioda íslice 6.

íslo ryze periodické íslice /skupina íslic ), která se opakuje nazýváme perioda. V našem p ípad je perioda íslice 6. 2. Racionální ísla 7. roník -2. Racionální ísla 2.1. Vymezení pojmu Každé íslo, které lze vyjáditjako podíl dvou celýchísel, je íslo racionální. Pi podílu dvou celýchísel a a bmohou nastattyto situace

Více

Řešení druhé série (19.3.2009)

Řešení druhé série (19.3.2009) Tento seminář pro Vás připravuje vzdělávací agentura Kurzy-Fido.cz...s námi TSP zvládnete! Řešení druhé série (19.3.2009) Úlohy z varianty 16, ročník 2007 25. Hlavní myšlenka: efektivní převádění ze zlomku

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: VY_32_INOVACE_HRAVĚ14 Soutěž přirozená čísla, desetinná čísla, zlomky,

Více

Matematika pro 5. ročník

Matematika pro 5. ročník Matematika pro 5. ročník Na této stránce najdete nové učivo, se kterým jste se v průběhu minulých ročníků ještě nesetkali. Pokud si chcete zopakovat počítání se zlomky,písemné sčítání o odčítání, písemné

Více

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková

Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková. Adriana Vacíková VY_42_INOVACE_MA1_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity IV/2 Inovace a zkvalitnění

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

ŠVP Učivo. RVP ZV Očekávané výstupy. RVP ZV Kód. ŠVP Školní očekávané výstupy. Obsah RVP ZV

ŠVP Učivo. RVP ZV Očekávané výstupy. RVP ZV Kód. ŠVP Školní očekávané výstupy. Obsah RVP ZV 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 2. období 5. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A POČETNÍ OPERACE

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné

Více