M - Algebraické výrazy

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Algebraické výrazy"

Transkript

1 M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Algebraické výrazy Algebraické výrazy Mezi zápisy s číselnými proměnnými patří: výrazy výrokové formy výroky s kvantifikátory Po dosazení přípustných proměnných hodnot do: výrazu... dostaneme číslo výrokové formy... dostaneme výrok do výroků s kvantifikátory... nemá smysl dosazovat číselné hodnoty Rovnost a úpravy výrazů Výrazem budeme rozumět každý zápis, který je správně formulován podle úmluv o zápise čísel, proměnných, výsledků operací. Ke každému výrazu obsahujícím proměnné přísluší zápis, jaký je obor jednotlivých proměnných - tzv. definiční obor výrazů. O dvou výrazech s týmiž proměnnými říkáme, že jsou si rovny v dané množině, platí-li: a) do obou výrazů lze na místo proměnných dosadit symboly všech prvků množiny M b) oba výrazy dávají pro stejné hodnoty proměnných stejné výsledky Přehled důležitých vzorců: (A + B) = A + AB + B (A - B) = A - AB + B (A - B).(A + B) = A - B (A + B) 3 = A 3 + 3A B + 3AB + B 3 (A - B) 3 = A 3-3A B + 3AB - B 3 A 3 - B 3 = (A - B).(A + AB + B ) A 3 + B 3 = (A + B).(A - AB + B ) ± Algebraické výrazy - procvičovací příklady 1. Rozložte na součin: a + ab + b c (a + b + c). (a + b - c) 409. Výraz (3k - ) - 4k(k - 1) + 8k - 6 zjednodušte a správnost výpočtu ověřte dosazením k = 3 k - 3. Zjednodušte výraz: (h - 5s)(h + 5s) - (h + 5s) -10s.(5s + h) :58:50 Vytištěno v programu dosystem - EduBase ( 1 z 10

3 4. Zjednodušte a ověřte dosazením za x = - 8x - [x 6.(x - 1) + ] - (3x - 5x). 4.(x + 1) 5. Vypočtěte: (4a b + 5a 3 b ) = 16a 4 b + 40a 5 b 3 + 5a 6 b Rozložte na součin výraz: 18xy - 1x y 3xy.(6y - 7x) 7. Umocněte: (10 - a) a + 4a Výraz - (-x + 1) se po úpravě rovná čemu? -4x + 4x Upravte: (x - 5) - (x - 3).(5x + ) -6x - 9x Rozložte na součin výrazy: a) x - 4xy + y b) 5t - tm - 10m + 5 a). (x - y) b) (t + 5). (5 - m) Výraz K = 16a a 4 x rozložte na součin aspoň tří činitelů K = a.(4 - ax).(4+ax) Vypočtěte rozdíl výrazů x + a x Rozložte na součin: x - xy + y - x + y (x - y). (x - y - 1) Rozložte na součin: (m - 1).5x 8.(m - 1) (m - 1). (5x - 8) Zjednodušte výraz x - [5x - (x - 4) + 1] - 3(x + 1) a správnost výpočtu ověřte dosazením za x = -3-4(x + 3) 16. Vypočítejte: (3 - x) - 3(x - 3) + (-x).(x - 3x + 9) Doplňte: (? - 3) = 16x -? +? První? = 4x; druhý? = 4x; třetí? = :58:50 Vytištěno v programu dosystem - EduBase ( z 10

4 18. Rozložte na součin: 4x (y z ) + 5v (z y ) (y - z). (y + z). (x - 5v). (x + 5v) Upravte daný výraz 3x y - {xyz - (yz - x z) - 4x z + [3x y - (4xyz - 5x z)]}. Výsledek ověřte dosazením pro x = 1, y = -1, z = 0 3xyz - x z + yz 0. Upravte: (x - 0,y). (x + 0,y) 4x - 0,04 y 1. Upravte: [(a b 3 ) 3 ] a 1 b Výraz 4k - (k + 1) - 4k + 8 zjednodušte a správnost výpočtu ověřte dosazením za k = 3-8k Doplňte chybějící údaje tak, aby platila rovnost ( y) = 4x xy Vypočtěte a) rozdíl b) součin výrazů x+ a x-1 Rozdíl 3, součin x + x - 5. Upravte: a. 3b ȧb.b a 3. 4b 4 4a 6 b 9 6. Upravte: (1,x - 0,3y) 1,44x 4-0,7x y + 0,09y Rozložte v součin výraz: 9s v - 4r v - 9u s + 4u r. Správnost ověřte dosazením u=-1, v=, s=1, r=0 (v - u). (v + u). (3s - r). (3s + r) 8. Rozložte na součin: 4 x ( - x). ( + x) Vypočtěte součin výrazů x + a x - 1 x + x - 39 ± Lomené výrazy Lomený algebraický výraz je takový výraz, který má ve jmenovateli proměnnou. U každého lomeného výrazu musíme stanovit jeho definiční obor, neboli určit tzv. podmínku řešitelnosti (tj. podmínku, při jejímž splnění má výraz smysl) :58:50 Vytištěno v programu dosystem - EduBase ( 3 z 10

5 Př.: ax+ b cx+ d Jedná se o lomený výraz, který je definován pro všechna reálná čísla, s výjimkou x = -d/c (v tom případě by totiž byl jmenovatel roven nule a nulou nemůžeme dělit). Zapisujeme tedy: x ¹ -d/c Lomené výrazy můžeme rozšiřovat nebo krátit. Rozšířit lomený výraz znamená vynásobit jeho čitatele i jmenovatele stejným výrazem různým od nuly. Krátit lomený výraz znamená dělit jeho čitatele i jmenovatele stejným výrazem různým od nuly. Lomené výrazy též můžeme pomocí rozšíření nebo krácení upravit tak, aby měly zadaného jmenovatele, příp. výjimečně používáme i takovou úpravu, aby měly zadaného čitatele. Lomený výraz je v základním tvaru, jestliže už ho dále nelze krátit. Lomený výraz je roven nule, jestliže je roven nule jeho čitatel. Lomené výrazy sčítáme tak, že je převedeme na společného jmenovatele a součet čitatelů takto vzniklých lomených výrazů lomíme společným jmenovatelem. Pozn.: Analogické je odčítání lomených výrazů Lomené výrazy násobíme tak, že součin čitatelů lomíme součinem jmenovatelů. Výsledek uvedeme do základního tvaru. Pozn.: Krátit můžeme i před vynásobením zadaných výrazů, a to tak, že krátíme kteréhokoliv čitatele proti kterémukoliv jmenovateli. Lomený výraz násobíme celistvým výrazem tak, že násobíme tímto celistvým výrazem čitatele výrazu lomeného. Lomený výraz dělíme lomeným výrazem tak, že první lomený výraz násobíme převrácenou hodnotou lomeného výrazu druhého. Pozn.: Převrácenou hodnotu lomeného výrazu vytvoříme tak, že zaměníme jeho čitatele se jmenovatelem. Pozn.: Opačný výraz k lomenému výrazu vytvoříme tak, že před zlomkem změníme znaménko. Složený lomený výraz je takový výraz, kde základní lomený výraz má v čitateli nebo ve jmenovateli nebo i v čitateli i ve jmenovateli další lomený výraz. Složený lomený výraz řešíme tak, že součin vnějších členů lomíme součinem členů vnitřních. Pozn.: Vnitřní členy jsou ty, které jsou blíže k hlavní zlomkové čáře; vnější členy jsou od ní naopak dále. Pozn.: Složený lomený výraz můžeme řešit i tak, že hlavní zlomkovou čáru nahradíme dělením a celý příklad poté řešíme jako podíl dvou lomených výrazů. ± Lomené algebraické výrazy - procvičovací příklady :58:50 Vytištěno v programu dosystem - EduBase ( 4 z 10

6 1. Zjednodušte a uveďte, kdy má daný výraz smysl: æ 1 1 ö ç1+ +. x è x x ø x + x + 1; x ¹ 0. Zjednodušte a uveďte, kdy má daný výraz smysl: æ x + 3y ö ç -. - è 3y - x x - 9y ø -3; x ¹ ± 3y ( x 3y) 3. Zjednodušte a uveďte, kdy má daný výraz smysl: p - q.( 4 p - 4 pq) 4 p -8 pq + 4q p; p ¹ q 4. Zjednodušte a uveďte, kdy má daný výraz smysl: m - 5n.( n - 3m) 3m - n 5n - m; n ¹ (3/)m 5. Zjednodušte a uveďte, kdy má daný výraz smysl: x x - + y y (-1). y - x; x ¹ -y 6. Zjednodušte a uveďte, kdy má daný výraz smysl: æ x x - y ç + è x + y x - 4y ö. ø x + 1; x ¹ ± y ( y + x) 7. Zjednodušte a uveďte, kdy má daný výraz smysl: 1- x.( - 6x ) 3x 4x - x; x ¹ :58:50 Vytištěno v programu dosystem - EduBase ( 5 z 10

7 9. Zjednodušte a uveďte, kdy má daný výraz smysl: 3a + - b.( + b - 3a) 4-3a - b ( ) 1; b ¹ 3a - ; b ¹ 3a Zjednodušte a uveďte, kdy má daný výraz smysl:.( y - z ) y + z. (y - z); y ¹ -z 11. Zjednodušte a uveďte, kdy má daný výraz smysl: 8x x - 7 ( 14-16x) -.(8x + 7); x ¹ 7/ :58:50 Vytištěno v programu dosystem - EduBase ( 6 z 10

8 15. Zjednodušte a uveďte, kdy má daný výraz smysl: 1 3x y (- x y ). 6 -y; x ¹ 0, y ¹ Zjednodušte a uveďte, kdy má daný výraz smysl: æ 1 3s + r ç - è r - 3s 9s - r -; r ¹ ± 3s ö. ø ( 3s - r) :58:50 Vytištěno v programu dosystem - EduBase ( 7 z 10

9 Zjednodušte a uveďte, kdy má daný výraz smysl: 18v.( 5v + 7) 30v + 4 3v; v ¹ -7/ , :58:50 Vytištěno v programu dosystem - EduBase ( 8 z 10

10 5. Zjednodušte a uveďte, kdy má lomený výraz smysl: 6x -1.( 1x + ) 6x + 1.(6x - 1); x ¹ -1/6 6. Zjednodušte a uveďte, kdy má daný výraz smysl: æ xy- y ç è y x xy ö ø -. 3 (- xy ) 3 - x; x ¹ 0, y ¹ Zjednodušte a uveďte, kdy má daný výraz smysl: æ 1 1+ x ö ç -. è x x ø (- x) y; x ¹ :58:50 Vytištěno v programu dosystem - EduBase ( 9 z 10

11 31. Zjednodušte a uveďte, kdy má daný výraz smysl: 3+ 5x.1x 7x 9x + 15x ; x ¹ 0 3. Zjednodušte a uveďte, kdy má daný výraz smysl: 3 u + u. u -1 ( u -1) u ; u ¹ ± Zjednodušte a uveďte, kdy má daný výraz smysl: 314 3x; x ¹ 0, x ¹ Zjednodušte a uveďte, kdy má daný výraz smysl: 4r + 8rs + 49s.( r - 7s) r + 7s 7 4r - 49s ; r ¹ - s 36. Zjednodušte a uveďte, kdy má daný výraz smysl: a - b + 1.( a - b -1) a - b -1 ( ) 1; a ¹ b - 1, a ¹ b Zjednodušte a uveďte, kdy má daný výraz smysl: x - y.( x - y) x - 4y x - y ; x ¹ ± y x + y :58:50 Vytištěno v programu dosystem - EduBase ( 10 z 10

12 Obsah Algebraické výrazy 1 Algebraické výrazy - procvičovací příklady 1 Lomené výrazy 3 Lomené algebraické výrazy - procvičovací příklady :58:50 Vytištěno v programu dosystem - EduBase (

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

M - Příprava na 2. zápočtový test - třídy 1DP, 1DVK

M - Příprava na 2. zápočtový test - třídy 1DP, 1DVK M - Příprava na. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a další šíření výukového materiálu povoleno pouze s uvedením odkazu na http://www.jarjurek.cz VARIACE 1 Tento dokument

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Algebraické výrazy-ii

Algebraické výrazy-ii Algebraické výrazy-ii Jednou ze základních úprav mnohočlenů je jejich rozklad na součin mnohočlenů nižšího stupně. Ne všechny mnohočleny lze na součin rozložit. Pro provedení rozkladu můžeme použít: 1.

Více

M - Příprava na pololetku č. 2-1KŘA, 1KŘB

M - Příprava na pololetku č. 2-1KŘA, 1KŘB M - Příprava na pololetku č. - 1KŘA, 1KŘB Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Rozklad na součin vytýkáním

Rozklad na součin vytýkáním Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek.

Algebraické výrazy. Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. Algebraické výrazy Algebraický výraz je zápis složený z čísel, písmen (označujících proměnné), znaků matematických funkcí ( +, -,, :, 2, ) a závorek. 1. Upravte výrazy: a) 6a + 3b + 2a + c b b) 3m + s

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

M - Příprava na 1. čtvrtletku - třída 3ODK

M - Příprava na 1. čtvrtletku - třída 3ODK M - Příprava na 1. čtvrtletku - třída ODK Souhrnný studijní materiál k přípravě na čtvrtletní písemnou práci. Obsahuje učivo října až prosince 007. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2 48 Príklad 73: Rozložte na soucin: a)4x2-25 c)x4-16 - e) x' + 27 b} 25x2 + 30xy + 9y2 d) 8x3-36~y + 54xy2-27l Rešení: a) Použije vzorec a2 - b2 = (a - b). (a + b), v nemž platí a = 2x, b = 5. Dostaneme:

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

F - Sériové a paralelní zapojení spotřebičů

F - Sériové a paralelní zapojení spotřebičů F - Sériové a paralelní zapojení spotřebičů Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Dělení celku na části v poměru

Dělení celku na části v poměru Dělení celku na části v poměru Příklad : Rozděl číslo 12 v poměru 2 : 3. Řešení : Celek musíme rozdělit na 2 + 3 = 5 dílů. Jeden díl má velikost 12 : 5 = 2,4 První člen poměru představuje dva díly a proto

Více

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

M - Matematika - třída 1ODK - celý ročník

M - Matematika - třída 1ODK - celý ročník M - Matematika - třída 1ODK - celý ročník Obsahuje učivo školního roku 2005/2006 VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

čitatel jmenovatel 2 5,

čitatel jmenovatel 2 5, . ZLOMKY Zlomek má následující tvar čitatel jmenovatel Příkladem zlomku může být například zlomek, tedy dvě pětiny. Jmenovateli se říká jmenovatel proto, že pojmenovává zlomek. Pětina, třetina, šestina

Více

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2

a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů

Více

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára 9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára

Více

M - Matematika - třída 1DOP - celý ročník

M - Matematika - třída 1DOP - celý ročník M - Matematika - třída 1DOP - celý ročník Učebnice obsahující učivo celého 1. ročníku VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Typové příklady k opravné písemné práci z matematiky

Typové příklady k opravné písemné práci z matematiky Typové příklady k opravné písemné práci z matematiky Př. 1: Umocni (bez tabulek, bez kalkulačky): 2 2 4 2 9 2 10 2 100 2 1000 2 20 2 200 2 500 2 3000 2 80 2 900 2 300 2 40000 2 0,1 2 0,001 2 0,05 2 0,008

Více

Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková

Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková Algebraické výrazy Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

5 čitatel zlomková čára 13 jmenovatel

5 čitatel zlomková čára 13 jmenovatel Aritmetika sekunda 1 Zlomky Celek a jeho část Zlomek je speciální zápis čísla v podílovém tvaru. Zlomek obsahuje čitatele a jmenovatele, kteří jsou od sebe odděleni zlomkovou čarou. Zlomek pět třináctin

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

M - Příprava na 1. čtvrtletku pro třídu 1MO

M - Příprava na 1. čtvrtletku pro třídu 1MO M - Příprava na 1. čtvrtletku pro třídu 1MO Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený

Více

M - Příprava na 2. čtvrtletku pro třídu 1MO

M - Příprava na 2. čtvrtletku pro třídu 1MO M - Příprava na 2. čtvrtletku pro třídu 1MO Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV..1 Algebraické výrazy, výrazy s mocninami

Více

M - Planimetrie - řešení úloh

M - Planimetrie - řešení úloh M - Planimetrie - řešení úloh Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0

Řešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0 Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme

Více

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Operace s mnohočleny. Text a příklady.

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x. Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

M - Příprava na pololetní písemku č. 2

M - Příprava na pololetní písemku č. 2 M - Příprava na pololetní písemku č. Určeno jako studijní materiál pro třídu K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Gymnázium. Přípotoční Praha 10

Gymnázium. Přípotoční Praha 10 Gymnázium Přípotoční 1337 101 00 Praha 10 led 3 20:53 Přípravný kurz Matematika led 3 21:56 1 Datum Téma 9.1.2019 Číselné výrazy-desetinná čísla, zlomky, počítání se zlomky, zaokrouhlování, druhá mocnina

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

Početní operace se zlomky

Početní operace se zlomky Početní operace se zlomky 1. Sčítání a. zlomků - upravíme zlomky na stejného jmenovatele (rozšiřováním, v některých případech krácením) hledáme společný násobek všech jmenovatelů (nejlépe nejmenší společný

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz? Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla

Více

2. Mocniny 2.1 Mocniny a odmocniny

2. Mocniny 2.1 Mocniny a odmocniny . Mocniny. Mocniny a odmocniny 8. ročník. Mocniny a odmocniny Příklad : Vyjádřete jako mocninu : a)... b) (- ). (- ). (- ). (- ). (- ). (- ) c)...a.a.a.a.b.b.b.b d)..a.b e) a. a. a. a Příklad : Vyjádřete

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

M - Příprava na 1. čtvrtletku - třídy 1P, 1VK

M - Příprava na 1. čtvrtletku - třídy 1P, 1VK M - Příprava na 1. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 1. čtvrtletní písemnou práci. Obsahuje učivo ze záříaž listopadu. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

M - Příprava na 2. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 2. čtvrtletku pro třídy 2P a 2VK M - Příprava na. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

6. POČÍTÁNÍ SE ZLOMKY

6. POČÍTÁNÍ SE ZLOMKY . ROZŠIŘOVÁNÍ ZLOMKŮ Hodnota zlomku se nezmění, vynásobíme-li jeho čitatele i jmenovatele stejným nenulovým číslem. Této úpravě se říká rozšiřování zlomků. 0 0 0 0 0 0 0 0 0 0 00 0 KRÁCENÍ ZLOMKŮ Hodnota

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

M - Výroková logika VARIACE

M - Výroková logika VARIACE M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

II. 3. Speciální integrační metody

II. 3. Speciální integrační metody 48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou

Více

Úpravy algebraických výrazů

Úpravy algebraických výrazů Úpravy algebraických výrazů Jméno autora: RNDr. Ivana Dvořáková VY_32_INOVACE_MAT_181 Období vytvoření: listopad 2012 Ročník: 1. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět:

Více

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy... Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................

Více

MATEMATIKA. Výrazy a rovnice 1. pracovní sešit

MATEMATIKA. Výrazy a rovnice 1. pracovní sešit MATEMATIKA Výrazy a rovnice pracovní sešit Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzentky: Mgr. Barbora Stušová; doc. RNDr. Naďa Vondrová, Ph.D. OBSAH

Více

Variace. Lineární rovnice

Variace. Lineární rovnice Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

Pokyny k hodnocení MATEMATIKA

Pokyny k hodnocení MATEMATIKA ILUSTRAČNÍ TEST MAIZD4C0T0 Pokyny k hodnocení MATEMATIKA Pokyny k hodnocení úlohy Vyznačte na číselné ose obraz čísla 0,6. 0,6 3 apod. NEDOSTATEČNÉ ŘEŠENÍ Chybně vyznačený obraz, resp. není zřejmé, kde

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček

Více

M - Příprava na pololetku č. 1-1KŘA, 1KŘB, 1SB.

M - Příprava na pololetku č. 1-1KŘA, 1KŘB, 1SB. M - Příprava na pololetku č. 1-1KŘA, 1KŘB, 1SB. Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s odkazem na http://www.jarjurek.cz. VARIACE 1 Tento

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

KFC/SEM, KFC/SEMA Rovnice, nerovnice

KFC/SEM, KFC/SEMA Rovnice, nerovnice KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní

Více

Definiční obor funkce

Definiční obor funkce Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x

Nerovnice v podílovém tvaru II. Předpoklady: 2303, x. Podmínky: x x 1, 2 x 0 x 2, 1 3x .. Nerovnice v podílovém tvaru II Předpoklady: 0, 04 Př. : ( x )( x + ) ( x + )( x)( x) 0. Podmínky: x + 0 x, x 0 x, x 0 x x + je vždy kladný nebudeme se s ním dále zabývat, znaménko neovlivňuje. Člen

Více

Lomené výrazy sčítání a odčítání lomených výrazů

Lomené výrazy sčítání a odčítání lomených výrazů VY_32_INOVACE_M-Ar 8.,9.15 Lomené výrazy sčítání a odčítání lomených výrazů Anotace: Prezentace připomene sčítání a odčítání zlomků. Žák použije poznatky zopakované při počítání se zlomky u zjišťování

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

2.6.5 Další použití lineárních lomených funkcí

2.6.5 Další použití lineárních lomených funkcí .6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:

Více