5 Minimální kostry, Hladový algoritmus
|
|
- Miloslava Dvořáková
- před 3 lety
- Počet zobrazení:
Transkript
1 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů(oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho místa do druhého, ale nyní se podíváme na jiný způsob propojování všech vrcholů grafu najednou. Vezměme si třeba požadavky propojení domů elektrickým rozvodem, propojení škol internetem, atd. Zde nás ani tak nezajímají délky jednotlivých cest mezi propojenými body, ale hlavně celková délka či cena vedení/spojení, které musíme postavit. Našim cílem je tedy najít minimální souvislý podgraf daného grafu, tedy minimální způsob propojení(v daných podmínkách), ve kterém existují cesty mezi každou dvojicí vrcholů. Stručný přehled lekce Řešení problému minimální kostry v grafu hladový a Jarníkův algoritmus. Obecné pojetí hladového algoritmu. Matroidy struktury, na nichž hladový algoritmus vždy funguje. Petr Hliněný, FI MU Brno FI: MA00: Kostry, Hladový algoritmus
2 5. Hledání minimální kostry Problém 5.. Problém minimální kostry(mst) Jedán(souvislý)váženýgraf G, wsnezápornýmohodnocenímhran w.otázkouje najít kostru T v G, která má nejmenší možné celkové ohodnocení. Formálně MST = min w(e). kostra T G e E(T) Kostra daného grafu je minimální podgraf, který zachovává souvislost každé komponenty původního grafu. Proto nám vlastně ukazuje minimální propojení daných vrcholů, ve kterém ještě existují cesty mezi všemi dvojicemi, které byly propojeny i původně. Petr Hliněný, FI MU Brno 2 FI: MA00: Kostry, Hladový algoritmus
3 Praktickou formulací problému je třeba propojení domů elektrickým rozvodem, škol internetem,atd.jednásetadyozadání,vekterýchnászajímápředevšímcelkovádélkačicena propojení, které je třeba vytvořit. Příklad je uveden na následujícím obrázku i s vyznačenou minimální kostrou vpravo Algoritmus5.2. Hladový prominimálníkostru. Jedánsouvislýváženýgraf G, wsnezápornýmohodnocenímhran w. Seřadíme hrany grafu G vzestupně podle jejich ohodnocení, tj. w(e ) w(e 2 )... w(e m ). Začnemesprázdnoumnožinouhran T= prokostru. Pro i=,2,...,mvezmemehranu e i apokud T {e i }nevytváříkružnici, přidáme e i do T.Jinak e i zahodíme. Na konci množina T obsahuje hrany minimální kostry váženého grafu G, w. Petr Hliněný, FI MU Brno FI: MA00: Kostry, Hladový algoritmus
4 Pro ilustraci si ukážeme postup hladového algoritmu pro vyhledání kostry výše zakresleného grafu.hranysinejprveseřadímepodlejejichvah,,,,2,2,2,2,,,,4,4. V obrázku průběhu algoritmu používáme tlusté čáry pro vybrané hrany kostry a tečkované čáry pro zahozené hrany. Hrany teď postupně přidáváme do kostry/ zahazujeme Získámetakminimálníkostruvelikosti =2,kterájevtomtopřípadě (náhodou) cestou, na posledním obrázku vpravo. Poznamenáváme, že při jiném seřazení hran stejné váhy by kostra mohla vyjít jinak, ale vždy bude mít stejnou velikost 2. Petr Hliněný, FI MU Brno 4 FI: MA00: Kostry, Hladový algoritmus
5 Důkaz správnosti Algoritmu??: Nechť T jemnožinahranzískanávalgoritmu??anechťhranyjsoujižseřazené w(e ) w(e 2 )... w(e m ).Vezměmemnožinuhran T 0 téminimálníkostry(může jichbýtvícesestejnouhodnotou),kterásestshodujenaconejvíceprvníchhranách. Pokud T 0 = T,algoritmuspracovalsprávně. Předpokládejmetedy,že T 0 T,aukážemespor,tj.žetotonemůževeskutečnosti nastat.označme j >0takovýindex,žesemnožiny T 0 a T shodujínaprvních j hranách e,..., e j,aleneshodujísena e j.toznamená,že e j T,ale e j T 0. (Jistěnemůženastat e j T,ale e j T 0.) PodleDůsledku4.5obsahujegrafnahranách T 0 {e j }právějednukružnici C.Kružnice Cvšaknemůžebýtobsaženavnalezenékostře T,aprotoexistujehrana e k v C,která e k Tazároveň k > j.potomvšakje w(e k ) w(e j )podlenašehoseřazeníhran,a tudížkostranahranách ( T 0 \ {e k } ) {e j }(vzniklánahrazenímhrany e k hranou e j ) neníhoršínež T 0 amělijsmejivnašíúvazezvolitmísto T 0.Tojehledanýspor. Správný pohled na předchozí důkaz by měl být následovný: Předpokládali jsme, že nalezená kostra Tsesněkterouoptimálníkostroushodujeaspoňnaprvních j hranách.potéjsme ukázali,ženěkteroudalšíhranu e k v(předpokládané)optimálníkostřelzezaměnithranou e j,atudíždosáhnoutshoduaspoňnaprvních jhranách.dalšímiiteracemizáměnukážeme úplnou shodu naší nalezené kostry T s některou optimální kostrou. V našem důkaze jsme se vlastně zaměřili na fakt, že ta poslední iterace záměn nemůže selhat. Nakreslete si tento důkaz obrázkem! Petr Hliněný, FI MU Brno 5 FI: MA00: Kostry, Hladový algoritmus
6 Základní hladový algoritmus pro hledání minimální kostry grafu byl poprvé explicitně popsán Kruskalem, ale už dříve byly objeveny jeho podobné varianty, které zde jen stručně zmíníme. Algoritmus 5.. Jarníkův pro minimální kostru. Hrany na začátku neseřazujeme, ale začneme kostru vytvářet z jednoho vrcholu a v každém kroku přidáme nejmenší z hran, které vedou z již vytvořeného podstromu do zbytku grafu. Poznámka: Tento algoritmus je velmi vhodný pro praktické výpočty a je dodnes široce používaný. Málokdo ve světě však ví, že pochází od Vojtěcha Jarníka, známého českého matematika ve světové literatuře se obvykle připisuje Američanu Primovi, který jej objevil až skoro 0 let po Jarníkovi. Avšak historicky vůbec první algoritmus pro problém minimální kostry(z roku 928) byl nalezen jiným českým(brněnským) matematikem: Algoritmus 5.4. Borůvkův pro minimální kostru(náznak). Toto je poněkud složitější algoritmus, chová se jako Jarníkův algoritmus spuštěný zároveň ze všech vrcholů grafu najednou. Petr Hliněný, FI MU Brno 6 FI: MA00: Kostry, Hladový algoritmus
7 5.2 Hladový algoritmus v obecnosti Asi nejprimitivnějším možným přístupem při řešení diskrétních optimalizačních úloh je postupovatstylem beruvždytonejlepší,cosezrovnanabízí... Tento postup obecně v češtině nazýváme hladovým algoritmem, i když lepší by bylo použít správnější překlad anglického greedy, tedy nenasystný algoritmus. A ještě hezčí české spojení by bylo algoritmus hamouna. Jednoduše bychom jej nastínili takto: Postupněvkrocíchvybervždytonejlepší,cosedá(nabízí). To vyžaduje zvolit uspořádání na objektech, ze kterých vybíráme. Průběh a úspěch algoritmu silně závisí na tomto zvoleném uspořádání. Jak asi každý ví, nenasystnost či hamounství nebývá v životě tím nejlepším postupem, ale kupodivu tento princip perfektně funguje v mnoha kombinatorických úlohách! Jedním známým příkladem je výše uvedené hledání minimální kostry. Jiným příkladem je třeba jednoduchý problém přidělování(uniformních) pracovních úkolů, na němž si obecné schéma hladového algoritmu ilustrujeme. Petr Hliněný, FI MU Brno 7 FI: MA00: Kostry, Hladový algoritmus
8 Problém 5.5. Přidělení pracovních úkolů Uvažujeme zadané pracovní úkoly, které mají přesně určený čas začátku i délku trvání. (Jednotlivé úkoly jsou tedy reprezentovány uzavřenými intervaly na časové ose.) Cílem je takové přidělení úkolů pracovníkům, aby jich celkově bylo potřeba co nejméně. Všichni pracovníci jsou si navzájem rovnocenní uniformní, tj. každý zvládne všechno. Pro příklad zadání takové problému si vezměme následující intervaly úkolů: Kolik je k jejich splnění potřeba nejméně pracovníků? Asi sami snadno zjistíte, že 4 pracovníci stačí, viz zobrazené očíslování. Ale proč jich nemůže být méně? Poznámka: Uvedené zadání může být kombinatoricky popsáno také jako problém optimálního obarvení daného intervalového grafu(vrcholy jsou intervaly úkolů a hrany znázorňují překrývání intervalů). Petr Hliněný, FI MU Brno 8 FI: MA00: Kostry, Hladový algoritmus
9 Algoritmus 5.6. Hladový algoritmus rozdělení pracovních úkolů. Problém?? je vyřešen následující aplikací hladového postupu:. Úkoly nejprve seřadíme podle časů začátků. 2. Každému úkolu v pořadí přidělíme volného pracovníka s nejnižším číslem. Důkaz: Nechť náš algoritmus použije celkem k pracovníků. Dokážeme jednoduchou úvahou, že tento počet je optimální nejlepší možný. V okamžiku, kdy začal pracovat pracovníkčíslo k,všichni,2,...,k taképracovali(jinakbychomvzaliněkterého znich).vtomokamžikutedymáme kpřekrývajícíchseúkolůakaždýznichvyžaduje vlastního pracovníka. Příklad neoptimálního přidělení pracovních úkolů dostaneme například tak, že na začátku úkoly seřadíme podle jejich časové délky.(tj. čím delší úkol, tím dříve mu hladově přiřadíme pracovníka.) Jak vidíme na obrázku, nalezené řešení není optimální vyžaduje 5 místo 4 pracovníků. Je tedy velmi důležité, podle jakého prinicipu seřadíme objekty(úkoly) na vstupu. Petr Hliněný, FI MU Brno 9 FI: MA00: Kostry, Hladový algoritmus
10 5. Pojem matroidu Definice5.7. Matroid namnožině X,značený M=(X, N), je takový systém N podmnožin nosné množiny X, ve kterém platí následující:. N 2. A Na B A B N. A, B Na A < B y B \ A: A {y} N Množinám ze systému N říkáme nezávislé množiny. Těm ostatním pak říkáme závislé. Nezávislým množinám, do kterých již nelze přidat žádný prvek tak, že zůstanou nezávislé, říkáme báze matroidu. Nejdůležitější částí definice matroidu je zvýrazněný třetí bod. Přímo ukázkový příklad matroidu nám dává lineární algebra všechny lineárně nezávislé podmnožiny vektorů tvoří matroid. Odtud také pocházejí pojmy nezávislosti a báze matroidu, které přímo odpovídají příslušným pojmům vektorového prostoru. Lema 5.8. Všechny báze matroidu obsahují stejně mnoho prvků. Důkaz: Toto přímo vyplývá z třetí vlastnosti definice matroidu: Pokud nezávislá množina Amáméněprvkůnežbáze B,takdo Alzevždypřidatdalšíprvek xtak,že zůstane A {x} nezávislá. Petr Hliněný, FI MU Brno 0 FI: MA00: Kostry, Hladový algoritmus
11 Nyní uvedeme několik poznatků o stromech, které jsou relevantní pro zavedení grafových matroidů. Lema5.9.Lesna nvrcholechsckomponentamisouvislostimápřesně n chran. Důkaz: Každý vrchol lesa L náleží právě jedné komponentě souvislosti z definice. Jak známo,každýstrom,tj.komponentalesa L,máojednuhranuméněnežvrcholů.Ve sjednocení c komponent tak bude právě o c méně hran než vrcholů. Definice: Řekneme, že podmnožina hran F E(G) je acyklická, pokud podgraf s vrcholy V(G)ahranamizFnemákružnici. Lema5.0.Nechť F, F 2 jsouacyklicképodmnožinyhrangrafu Ga F < F 2.Pak existujehrana f F 2 \ F taková,že F {f}jetakéacyklickápodmnožina. Důkaz:Jelikož F < F 2 aplatílema??,mápodgraf G tvořenýhranamizf více komponentnežpodgraf G 2 tvořenýhranamizf 2.Potomvšakněkteráhrana f F 2 musíspojovatdvěrůznékomponentypodgrafu G,atudížpřidáním fdo F nevznikne kružnice. Petr Hliněný, FI MU Brno FI: MA00: Kostry, Hladový algoritmus
12 Definice: Podle Lematu?? tvoří systém všech acyklických podmnožin hran v(libovolném) grafu G matroid. Tento matroid nazýváme matroidem kružnic grafu G. V analogií s grafy používáme název kružnice pro minimální závislé množiny matroidu. Dva příklady matroidu jsou hezky ilustrovány v následujícím obrázku, který ukazuje, jak hrany grafu K 4 vlevo odpovídajívektorůmvmatroidukružnicvpravo.čáry(zvané přímky )v pravém schématu vyznačují lineární závislosti mezi vektory; tj. nezávislé jsou ty trojice bodů, které neleží na žádné společné přímce. [ f 00 ] K 4 a f d e b [ 0 [ 0 ] d ] [ 0 ] e [ ] c 0 a c [ 0 ] b 0 Petr Hliněný, FI MU Brno 2 FI: MA00: Kostry, Hladový algoritmus
13 Abstraktní hladový algoritmus V praxi se matroid obvykle nezadává výčtem všech nezávislých množin, protože těch jepřílišmnoho(až2 n pro n-prvkovoumnožinu X). Místo toho bývá dána externí funkce pro testování nezávislosti dané podmnožiny. Algoritmus 5.. Nalezení minim. báze matroidu hladový algoritmus. vstup:množina Xsváhovoufunkcí w: X R, matroid na X určený externí funkcí nezavisla(y); setříditx=(x[],x[2],...,x[n])tak, aby w[x[]]<=...<=w[x[n]]; B = ; for (i=; i<=n; i++) if (nezavisla(b {x[i]})) B = B {x[i]}; výstup: báze Bdanéhomatroidusmin.součtemohodnocenívzhledemkw. Poznámka: Pokud X v tomto algoritmu je množina hran grafu, w váhová funkce na hranách a nezávislost znamená acyklické podmnožiny hran(matroid kružnic grafu), pak Algoritmus?? je přesně instancí Algoritmu??. Petr Hliněný, FI MU Brno FI: MA00: Kostry, Hladový algoritmus
14 Věta 5.2. Algoritmus??(hladový algoritmus) pro danou nosnou množinu X s váhovoufunkcí w:x Raprodanýmatroid N na X správněnajdebázivn s nejmenším součtem vah. Důkaz:Zdefinicematroidujejasné,žekvýslednémnožině Bjižnelzepřidatdalší prvek,abyzůstalanezávislá,protoje B báze.seřaďmesiprvky X podlevahjako valgoritmu w(x[])... w(x[n]).nechťindexy i, i 2,...,i k určujívybranou k- prvkovoubázi Bvalgoritmuanechťindexy j, j 2,...,j k vyznačují(třebajinou?)bázi {x[j ],..., x[j k ]}snejmenšímmožnýmsoučtemvah. Vezměmenejmenší r takové,že w(x[i r ]) w(x[j r ]).Potomnutně w(x[i r ]) < w(x[j r ]),protoženášalgoritmusje hladový abralbymenší w(x[j r ])jiždříve.na druhoustranu,pokudbydruhábáze {x[j ],..., x[j k ]}dávalamenšísoučetvah,muselobyexistovatjiné s takové,že w(x[i s ]) > w(x[j s ]).Nynívezměmenezávislé podmnožiny A = {x[i ],..., x[i s ]}aa 2 = {x[j ],...,x[j s ]},kde A 2 máojeden prvekvícenež A avšechnyprvky A 2 majídlepředpokladumenšíváhunež w(x[i s ]). Podledefinicematroiduexistuje y A 2 \ A takové,že A {y}jenezávislá.přitom samozřejmě y=x[l]pronějaké l.aletonenímožné,protože,jakjevýšenapsáno, w(y) < w(x[i s ]),takžebynášhladovýalgoritmusmusel y= x[l], l < i s vzítdřívedo vytvářenébáze Bnežvzal x[i s ].Protojinábázesmenšímsoučtemvahnežnalezená B neexistuje. Petr Hliněný, FI MU Brno 4 FI: MA00: Kostry, Hladový algoritmus
15 5.4 Kdy hladový algoritmus(ne)pracuje správně Jak ukážeme, funkčnost hladového algoritmu je přímo svázána s matroidy. Věta 5.. Nechť X je nosná množina se systémem nezávislých podmnožin N splňujícípodmínky(,2)definice??.pokudprojakoukolivváhovoufunkci w: X R najde Algoritmus?? optimální nezávislou množinu z N, tak N splňuje také podmínku (),atudížtvořímatroidna X. Důkaz: Tvrzení dokazujeme sporem. Předpokládejme, že vlastnost() neplatí pro dvojicinezávislýchmnožin A, B,tj.že A < B,aleprožádnýprvek y B \ Anení A {y}nezávislá.nechť A =a, B =b,kde2b >2a+.Zvolímenásledující ohodnocení w(x)= 2bpro x A, w(x)= 2a pro x B \ A, w(x)=0jinak. Hladovýalgoritmuspřirozeněnajdebázi B obsahující AadisjunktnísB \ Apodle našehopředpokladu.jejíohodnoceníje w(b )= 2ab.Avšakoptimálníbázíjev tomtopřípadějiná B 2 obsahujícícelé Bamajícíohodnocenínejvýše w(b 2 ) ( 2a )b = 2ab b < w(b ).Tojevesporusdalšímpředpokladem,žeipřinámi zvoleném ohodnocení w nalezne hladový algoritmus optimální bázi. Proto je sporný nášpředpokladomnožinách A, Bapodmínka()jesplněna. Petr Hliněný, FI MU Brno 5 FI: MA00: Kostry, Hladový algoritmus
16 Příklad 5.4. Nakonec uvádíme dvě ukázky, ve kterých hladový algoritmus výrazně selže: Obarvení grafu. Problém obarvení grafu žádá přiřazení co nejméně barev vrcholům tak, aby sousední dvojice dostaly různé barvy. Obecně hladově barvíme graf tak, že ve zvoleném pořadí vrcholů každému následujícímu přidělíme první volnou barvu. 2 Třeba v nakreslené cestě délky můžeme barvit hladově v pořadí od vyznačených krajních vrcholů, a pak musíme použít barvy místo optimálních dvou. Vrcholové pokrytí. Problém vrcholového pokrytí se ptá na co nejmenší podmnožinu Cvrcholůdanéhografutakovou,žekaždáhranamáalespoňjedenkonecvC. Přirozeným hladovým postupem by bylo vybírat od vrcholů nejvyšších stupňů ty, které sousedí s doposud nepokrytými hranami. Bohužel tento postup také obecně nefunguje. Petr Hliněný, FI MU Brno 6 FI: MA00: Kostry, Hladový algoritmus
5 Minimální kostry, Hladový algoritmus
5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
Optimalizační Úlohy(FI: IA102)
Optimalizační Úlohy(FI: IA102) Doc. RNDr. Petr Hliněný, Ph.D. hlineny@fi.muni.cz 4. června 2007 Přístupný odborný úvod do prakticky motivovaných oblastí matematických optimalizačních úloh(lineární programování,
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.
4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
Matematika III 10. přednáška Stromy a kostry
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 20. 11. 2007 Obsah přednášky 1 Izomorfismy stromů 2 Kostra grafu 3 Minimální kostra Doporučené zdroje
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy
9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
Diskrétní matematika. DiM /01, zimní semestr 2015/2016
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2015/2016 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
2 Důkazové techniky, Indukce
Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou
PQ-stromy a rozpoznávání intervalových grafů v lineárním čase
-stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.
7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Matematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Vrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy
STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou
Kreslení grafů na plochy Tomáš Novotný
Kreslení grafů na plochy Tomáš Novotný Úvod Abstrakt. V první části příspěvku si vysvětlíme základní pojmy týkající se ploch. Dále si ukážeme a procvičíme možné způsoby jejich zobrazování do roviny, abychom
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
6 Simplexová metoda: Principy
6 Simplexová metoda: Principy V této přednášce si osvětlíme základy tzv. simplexové metody pro řešení úloh lineární optimalizace. Tyto základy zahrnují přípravu kanonického tvaru úlohy, definici a vysvětlení
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
10 Podgrafy, isomorfismus grafů
Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší
8 Rovinnost a kreslení grafů
8 Rovinnost a kreslení grafů V přímé návaznosti na předchozí lekci se zaměříme na druhý důležitý aspekt slavného problému čtyř barev, který byl původně formulován pro barevné rozlišení států na politické
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Úvod do teorie her
Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu
letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Definice 1 eulerovský Definice 2 poloeulerovský
Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá
Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla
Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
analytické geometrie v prostoru s počátkem 18. stol.
4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran, kde
Kapitola 5 Grafy 5.1 Definice Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran E ( V 2), kde ( ) V = {{x, y} : x, y V a x y} 2 je množina všech neuspořádaných dvojic prvků množiny
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
3.3.5 Množiny bodů dané vlastnosti II (osa úsečky)
3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) Předpoklady: 030304 Př. 1: Je dána úsečka, = 5,5cm. Narýsuj osu úsečky. Jakou vlastnost mají body ležící na této přímce? Pro všechny body na ose úsečky,
TGH09 - Barvení grafů
TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
V ypoˇ cetn ı sloˇ zitost v teorii graf u Martin Doucha
Výpočetní složitost v teorii grafů Martin Doucha Parametrizovaná složitost Nástroj, jak zkrotit výpočetní složitost NP-těžkých problémů Klasický přístup: exponenciála v n Parametrizovaná složitost Nástroj,
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Teorie grafů Jirka Fink
Teorie grafů Jirka Fink Nejprve malý množinový úvod Definice. Množinu {Y; Y X} všech podmnožin množiny X nazýváme potenční množinoumnožiny Xaznačíme2 X. Definice. Množinu {Y; Y X, Y =n}všech n-prvkovýchpodmnožinmnožiny
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
Kongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zajímavé matematické úlohy
Zajímavé matematické úlohy Pokračujeme v uveřejňování dalších nových úloh tradiční rubriky Zajímavé matematické úlohy. V tomto čísle uvádíme zadání další dvojice úloh. Jejich řešení můžete zaslat nejpozději
Rovinné grafy Kostra grafu Minimální kostra Toky v sítích Problém maximálního toku v síti. Stromy a kostry. Michal Bulant
Matematika III 10. přednáška Stromy a kostry Michal Bulant Masarykova univerzita Fakulta informatiky 1. 12. 20 Obsah přednášky 1 Rovinné grafy Platónská tělesa Barvení map 2 Kostra grafu 3 Minimální kostra
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristik často potřebujeme všetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Lineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
10. Vektorové podprostory
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura