Automatizovaný návrh pravidel pro integraci dat a sémantický web
|
|
- Rudolf Rohla
- před 9 lety
- Počet zobrazení:
Transkript
1 Automatizovaný návrh pravidel pro integraci dat a sémantický web Automatizovaný návrh pravidel pro integraci dat a sémantický web Zdeňka Linková, Martin Řimnáč {linkova,rimnacm}@cs.cas.cz Zdeňka Ústav Linková, informatiky Martin AV Řimnáč ČR Pod Vodárenskou věží 2, Praha 8 Ústav informatiky AV ČR, Pod Vodárenskou věží 2, Praha 8 {linkova,rimnacm}@cs.cas.cz Abstrakt Článek se zabývá přístupem, jak se pokusit zautomatizovat mnohdy netriviální úlohu nalezení pravidel pro integraci dat. Předkládaný přístup automaticky generuje kandidáty pravidel včetně jejich ohodnocení pomocí nepřímé míry definující jejich prioritu. Priorita může následně být použita buďto návrhářem (člověkem) jako pomocný prvek pro přípravu návrhu, nebo při automatickém návrhu integračního procesu zahrnující pravidla s maximální prioritou. Studie v příspěvku se detailně věnuje dvěma základním typům pravidel, ekvivalenci a hierarchii, přičemž ohodnocení kandidátů je založeno na (strukturální) analýze aktivních domén atributů. V neposlední řadě příspěvek ukazuje možnost decentralizovaného přístupu k integraci dat, jenž je inspirován webovými technologiemi. Motivace Způsoby zpracování dat za sebou mají více než čtyřicetiletý vývoj a adekvátní výzkum. S jejich rostoucím množstvím se objevují stále nové problémy, které je potřeba efektivně řešit. Jedním z nich je i vyhledávání relevantních dat, které se dnes neomezuje jen na jeden konkrétní zdroj, ale bere v potaz hned několik různých datových zdrojů. V mnoha případech je vhodné, či dokonce nutné, tyto různé zdroje integrovat, tedy na jejich data vytvořit jeden souvislý pohled. Mezi klasické přístupy řešení integrace dat patří používání (virtuálních nebo materializovaných) pohledů. Při nematerializovaném přístupu je klíčové stanovení integračních pravidel, tzv. mapování, které vyjadřuje vztahy mezi daty fyzicky uloženými v původních zdrojích a mezi poskytovaným integrovaným pohledem []. Nalézt takové mapování je však mnohdy netriviální úloha, která bývá ve většině přístupů řešena manuálně [2]. Takové řešení dnes nelze označit za efektivní. Práce byla podpořena projektem ET programu Informační společnost (Tématického programu II Národního programu výzkumu v ČR: Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu), projektem M0554 Ministersva školství, mládeže a tělovýchovy ČR Pokročilé sanační technologie a procesy a záměrem AV0Z Computer Science for the Information Society: Models, Algorithms, Applications. c Václav Snášel (Ed.): Znalosti 2008, pp , ISBN FIIT STU Bratislava, Ústav informatiky a softvérového inžinierstva, 2008.
2 Automatizovaný návrh pravidel pro integraci dat Z tohoto důvodu jsou hledány přístupy [3, 4], jak úlohu hledání mapování co nejvíce zautomatizovat. Výsledkem těchto přístupů je návrh kandidátů mapovacích pravidel; tedy zautomatizování hledání mapování není úplné, o konečném výběru opět rozhoduje návrhář (člověk). Přístup k hledání kandidátů prezentovaný v tomto příspěvku využívá nepřímých fuzzy měr pro ohodnocení kvality navrhovaných kandidátů mapování. Tato ohodnocení mohou být využita k setřídění kandidátů tak, aby návrhář mohl pouze (postupně) označit pravidla odpovídající jeho interpretaci schémat integrovaných zdrojů. Pakliže nebudeme uvažovat možnost takového finálního zásahu, může být toto ohodnocení chápáno jako odhad důvěry (podpora) pro použití daného automaticky navrženého pravidla pro integraci a tento odhad následně použít pro vyjádření relevance příslušné části výsledku. Při integraci dat však může docházet k dalším komplikacím. Ačkoli jsou původní zdroje (lokálně) konzistentní, může výsledek integrace nějakou nekonzistenci obsahovat. Jelikož nelze předpokládat možnost ovlivnění obsahu zdroje, se kterým integrační systém pracuje, je nutné tuto situaci řešit jiným způsobem v rámci integrace. I v tomto případě lze využít nepřímých měr, například ve smyslu penalizace zdroje nebo k oslabení integračního pravidla, které má nekonzistenci za následek. Konkrétní řešení pak závisí na vyhodnocení dané situace, neboť příčin nekonzistence může být obecně více. Článek nejprve v sekci 2 definuje formalismus pro ukládání dat, jenž je inspirován myšlenkami sémantického webu, a uvádí příklad dotazování. Sekce 3 uvádí různé přístupy k integaci dat prostřednictvím zavedeného formalismu a navrhuje vedle klasického (databázového) centralizovaného řešení variatu dencetralizovanou, lépe odpovídající webovému prostředí. Dále jsou v sekci 4 obecně jmenovány přístupy používané pro automatický návrh integračních pravidel a detailně, včetně příkladu popisujícího konkrétní aplikaci - zjišťování ekvivalence a hierarchie mezi atributy na základě analýzy jejich aktivních domén. 2 Model úložiště dat Data jsou poskytována zdroji z Z. Předpokládejme, že známe schéma (nebo jiný ekvivalentní popis) každého zdroje S z = (A z, F z ) pokrývající alespoň seznam atributů A a funkčních závislostí F z A z A z mezi (jednoduchými) atributy. Předpokládejme, že data jsou obecně [5, 6] reprezentována pomocí elementů e E - přípustných dvojic atribut - hodnota E z A z D z, kde obor hodnot zdroje D z představuje všechny hodnoty atributů pokryté zdrojem, t.j. D z = A A z Dα(A). z Symbol Dα(A) z D(A) představuje aktivní doménu atributu A, jenž zahrnuje pouze ty hodnoty z domény atributu D(A) dané schématem S z, které jsou pokryty zdrojem z. Za těchto předpokladů je možné reprezentovat data zdroje jako instance funkčních závislostí f F z pomocí implikací e i e j mezi elementy. Pokud existuje index elementů I E : E N, můžeme tyto implikace pro každý zdroj
3 26 Zdeňka Linková, Martin Řimnáč z l Z vyjádřit pomocí čtvercové binární matice úložiště Φ l definované jako { Φ l = [φ l ij]; φ l pokud zdroj zl pokrývá implikaci e ij = i e j () Analogicky lze vyjádřit matici aktivních domén atributů l zdroje z l jako { l = [δij]; l δij l pokud v : ei = (A = j, v) E l (2) Poznamenejme, že každý nenulový prvek matice úložiště φ l ij > 0 je instancí nějaké funkční závislosti f = (A i A j ) F l. Díky tomuto faktu je možné definovat matici funkčních závislostí Ω l jako Ω l = [ω l ij] = ( l Φ l T l ) 0 (3) Požadujme, aby matice úložiště Φ l byla konzistentní, tj. pokrývala pouze instance funkčních závislostí, tedy 2 ωij l = Φ l = Φ l ( T l Ω l l ) (4) Vztahy (3) a (4) představují axiomy pro konzistetní úložiště dat relační povahy. 2. Způsoby dotazování Na data uložená pomocí binární matice Φ l se lze dotazovat dvěma způsoby [5]: Generalizace - odpovídá na dotaz, které elementy jsou implikovány z elementů aktivovaným vektorem dotazu x k : x G k+ = Φ l x k (5) Specializace - odpovídá restrikčnímu dotazu - vrací elementy, ze kterých je možné elementy aktivované vektorem x k odvodit. x S k+ = Φ T l x k (6) V dalším textu předpokládejme, že matice úložiště Φ l je konzistentní, představuje monotónní odvozovací proces (tj. na diagonále) a její prvky splňují podmínku transitivity. Za těchto podmínek je výsledek dosažitelný v nejvýše n = A l krocích. Z tohoto důvodu je nutné aplikovat generalizační, resp. specializační operátor tolikrát, dokud dochází ve vektoru x k k aktivaci nových elementů (tj. do okamžiku, kdy x k+ = x k.) Maticový zápis s binární maticí úložiště [5] je možné přepsat do obecnější formy umožňující vážit implikace mezi elementy [7]. Tento přístup umožňuje použití hodnot z celého intervalu φ ij < 0, >. Odvozovací mechanismus, se stejným chováním v krajních mezích, pak bude definován jako zobecnění: x k+ (i) = j φ ij x k (j) x k+ (i) = max j {φ ijx k (j)} (7) Operátor je představuje porovnání každého prvku matice se skalárem. 2 Operátor je představuje násobení matic prvek po prvku.
4 Automatizovaný návrh pravidel pro integraci dat Příklad dotazování Mějme zdroj z, jehož struktura i data jsou popsána následně: město, Praha město, Brno město, Vídeň Φ = země, ČR země, Rakousko měna, CZK měna, EUR město = Ω = 0 země měna Uvažujme, že matice úložiště je navržena jako binární. Budeme-li se dotazovat na všechny dostupné informace ohledně města Praha, bude vektor aktivovaných entit obsahovat na první pozici odpovídající [z : město = Praha ], ostatní pozice budou nulové. Vynásobení maticí úložiště aktivuje navíc pozice odpovídající entitám [z : země = ČR ] a v dalším kroku pak [z : měna = CZK ]. x 0 = [ ] Φ x 0 = x = [ ] Φ Φ x 0 = x 2 = [ ] Φ Φ Φ x 0 = x 3 = [ ] (8) Neboť nedochází k žádným dalším aktivacím, t.j. x 2 = x 3, výsledek je finální. Poznamenejme, že výhodou navrženého formalismu je jeho přímočaré propojení na formáty dokumentů sémantického webu přes trojice (X definuje zdrojovou matici ve smyslu typ vztahu): (i, X, j) B x ij = Fragment RDF dokumentu (o elementu [z : město = Praha ]) může být zapsán <element rdf:about="element-město-praha"> <of-attribute rdf:resource="#attribute-město"/> <of-term rdf:resource="#term-praha"/> <implies-element rdf:resource="#element-země-čr"/> </element> <attribute rdf:about="attribute-město"> <rdfs:label xml:lang="cs">město</rdfs:label> <implies-attribute rdf:resource="#attribute-země"/> </attribute> <term rdf:about="term-praha"> <rdfs:label xml:lang="cs">praha</rdfs:label> <rdfs:label xml:lang="en">prague</rdfs:label> </term>
5 28 Zdeňka Linková, Martin Řimnáč 3 Integrace dat Datová integrace patří mezi dlouhodobě řešené problémy. Různé přístupy [8 0] se zabývají integrací dat na různých úrovních abstrakce. Liší se i ve formě, v jaké poskytují ucelený pohled na data uložená ve více zdrojích. S ohledem na množství dat (například webové zdroje) a jejich častou aktualizaci, je k integraci stále častěji využíván nematerializovaný přístup []. Ten spočívá v definici globálního virtuálního pohledu nad integrovanými zdroji. Protože data fyzicky zůstávají uložena ve zdrojích původních, je nutné zajistit vazbu mezi nimi a globálním pohledem. K tomu slouží mapování - integrační pravidla, která zachycují vazby mezi lokálními schématy zdrojů a globálním integrovaným schématem a která jsou pak při zpracování dat (například při dotazování) využita. Klasické přístupy při nematerializované integraci se obecně rozdělují na GAV a LAV [2 4]: GAV (Global As View) přístup je založen na definici globálního virtuálního pohledu pomocí pohledů nad lokálními zdroji. Každý prvek globálního schématu je tedy charakterizován jako pohled nad lokálními schématy. Naopak LAV (Local As View) spočívá v definici lokálních schémat jako pohledů definovaných nad globálním schématem. V tomto přístupu je globální schéma voleno (relativně) nezávisle na schématech zdroje. Každý zdroj je potom charakterizován v termínech globálního schématu. 3. Základní integrační pravidla K popisu mapování, ať už získaného přístupem GAV nebo LAV, je možné využít různých struktur. Může se jednat o mapovací pravidla, která vyjadřují vztah mezi dvojicí prvků mapovaných schémat, či o složitější struktury, vyjadřující komplexnější vztahy či zahrnující více prvků schémat. Pro potřeby příspěvku se omezme pouze na mapovací pravidla. Ta mohou být použita k vyjádření hierarchického vztahu A i A j mezi atributy schémat A i a A j ekvivalence A i A j A i A j A j A i Integrační pravidla uvedená výše mohou být pro zdroje z k a z l popsána pomocí matice Π kl definované jako { Π kl = [πij kl ] : πij kl pokud Ai A = j, A i A l, A j A k (9) Tato pravidla se projeví na úrovni elementů, obecně { Ψ kl = [ψij kl ] : ψij kl pokud ei e = j, e i E l, e j E k (0)
6 Automatizovaný návrh pravidel pro integraci dat Virtuální globální úložiště Pomocí integračních pravidel můžeme celou množinu zdrojů Z složit v jeden virtuální zdroj. Prvním řešením je použití centralizovaného přístupu, který je znám z klasické integrace relačních dat. Toto řešení spočívá v zavedení mapování mezi elementy každého lokálního zdroje a elementy definovaném na globální úrovni (v globálním schématu). Takové mapování může být realizováno pomocí matice Γ l definované jako: { Γ l = [γij] l : γij l pokud ei e = j, e i E l, e j E Z () Virtuální úložiště pak bude reprezentováno pomocí součtu transformovaných matic úložiště lokálních zdrojů. Φ Z = z l Z Γ l Φ l Γ T l (2) Obrázek. Centralizované řešení Obrázek 2. Decentralizované řešení Alternativně v souladu s webovým prostředím, mapování může být zavedeno přímo mezi dvěma zdroji. Pak Ψ kl = Γ T l Γ k (3) a virtuální úložiště lze složit blokově pomocí Φ Ψ(Π 2 ) Ψ Z Ψ 2 Φ 2 Ψ 2 Z ) Φ =.... Ψ Z Φ Z (4) Výhodou tohoto přístupu je možnost zvolit zdroj, jehož se primárně budeme dotazovat a tak určit preference výsledků.
7 30 Zdeňka Linková, Martin Řimnáč 4 Metody hledání kandidátů integračních pravidel Při hledání korespondencí mezi schématy je možné využít různé úrovně informací, které jsou k dispozici. Porovnávání jednotlivých prvků může být založeno na jejich názvech (přičemž může být využito lexikálních technik, dalších informací o vztazích mezi pojmy, například synonyma apod.), na jejich datových typech, aktivních doménách, či jejich struktuře. Využitím těchto informací je možné určit, které elementy schémat spolu pravděpodobně souvisí, případně i druh vztahu. V mnohých řešených projektech je pak po této fázi nutná interakce s lidským uživatelem, který rozhodne, zda se nalezená korespondence mezi elementy skutečně vyskytuje. Předpokládejme, že při integraci dvou či více zdrojů jsou k dispozici OWL ontologie popisující strukturu zdroje (pomocí ontologických tříd a jejich vlastností) a data (jako instance definovaných tříd). Při hledání korespondence mezi jednotlivými třídami lze využít [3]: lexikální analýzu. Porovnávány mohou být všechny pojmy použité k popisu tříd, především pak její název, ale například i názvy jejích vlastností apod. Tyto pojmy mohou být zkoumány jak ze syntaktického hlediska (např. úplná shoda dvou znakových řetězců, jedno slovo je prefixem/sufixem druhého, slova mají stejný kořen apod.), tak z hlediska sémantického (např. slova jsou synonyma, nebo hyponymum a hypernymum). porovnávání na úrovni instancí. Při určování, zda spolu dané třídy souvisí, je možné také porovnávat jejich extenze, tedy instance (individua, členy dané třídy). A to především ve smyslu, zda je instance jedné třídy zároveň instancí druhé třídy. Je možné uvažovat situace jako například, zda je jedna množina instancí podmnožinou jiné, či zkoumat průnik obou množin. strukturální analýzu. Třídy mohou být porovnávány z hlediska jejich struktury - kolik vlastností a jaké mají porovnávané třídy definovány, jakého typu jednotlivé vlastnosti jsou, zda mají třídy společného předka v hierarchii tříd a podobně. Po nalezení možných korespondencí a určení jejich ohodnocení je pak možné dále usuzovat o tom, které korespondence skutečně jako integrační pravidla definovat. V obvyklém případě, kdy z kandidátů vybírá sám uživatel, je možné mu tuto úlohu díky stanovenému ohodnocení usnadnit. Kandidáty lze setřídit od těch nejvíce pravděpodobných, takže se uživatel nejprve zabývá těmi nejrelevantnějšími a může kdykoliv v průběhu úlohu ukončit s úmyslem, že ostatní kandidáti nebudou vybrány, aniž by se jimi musel zabývat. Ohodnocení také může uživateli sloužit k podání informace o tom, jak moc vysoce relevantní jsou zkoumané prvky schémat viděny. Není-li z jakéhokoliv důvodu možné, aby lidský uživatel z kandidátů sám zvolil, je nutné celý proces dokončit automaticky. Z navržených korespondencí jsou pak vybrány takové, jejichž míra ohodnocení je maximální, jednoznačně odpovídá kandidátovi a zároveň překročila zadanou prahovou hodnotu. Takové jsou pak považovány za odvozená integrační pravidla; možné korespondence s ohodnocením nižším nejsou dále uvažovány, neboť jsou nahlíženy jako neplatné.
8 Automatizovaný návrh pravidel pro integraci dat Automatický návrh decentralizovaných pravidel Pro potřeby tohoto článku se omezme na triviální lexikální analýzu. Ta může být založena na faktu, že elementy shodných hodnot v označíme za ekvivalentní. Tedy Ψ kl = [ψ kl ij ] : ψ kl ij = { pokud ei = (A i, v) E l e j = (A j, v) E k (5) Použití takového mapování není v praxi vhodné, avšak lze z něj vyjádřit překryv domén atributů různých zdrojů pomocí: Π kl = [θ kl ij ] = T l Ψ kl T k (6) 4.2 Integrační pravidlo ekvivalence atributů a jeho ohodnocení Jako důsledek strukturálních vazeb je možné usuzovat, že ekvivalentní atributy budou mít podobné (aktivní) domény. Za tohoto předpokladu definujeme míru µ kl ij ekvivalence atributů A i A k, A j A l pomocí ˆΠ kl = [µ kl ij ]; µ kl ij = µ lk ji = D α(a k i ) Dα(A l j ) Dα(A k i ) Dα(A l j ) = θij kl Dα(A k i ) Dα(A l j ) Tato míra µ kl ij představuje preferenci kandidáta integračního pravidla, na základě které lze kandidáty uspořádat a návrhář pak může postupně procházet kandidáty (od maximálního do minimálního překryvu domén) a následně rozhodnout. Pakliže zásah návrháře není (principiálně) možný, vybere se pravidlo s jednoznačně nejvyšší preferencí, tj. { µ Π kl = [πij kl ]; πij kl kl ij pokud j = arg max = j µ kl ij (8) Následně jsou ponechány pouze ekvivalence elementů odpovídající zvoleným Π kl ekvivalencím mezi atributy: (7) Ψ kl = Ψ kl T l Π kl k (9) 4.3 Příklad automatického návrhu pravidel ekvivalence Mějme zdroj z z předchozího příkladu a přidejme zdroj z 2 popsaný pomocí: 0 0 z 2 :stát = ČSFR Φ 2 = 0 0 z 2 :stát = Rakousko 0 0 (20) z 2 :hlavní město = Praha 0 0 z 2 :hlavní město = Vídeň Na základě strukturální analýzy normované podle (7) získáme ˆΠ 2 = ˆΠ 2 T = (2)
9 32 Zdeňka Linková, Martin Řimnáč Budeme-li se nyní zdroje z dotazovat na všechny dostupné informace ohledně [z : město = Praha ], postupně získáme Tento výsledek lze interpretovat jako x 0 = [ ] Φx 0 = x = [ ] ΦΦx 0 = x 2 = [ ] ΦΦΦx 0 = x 2 = [ ] (22) z :město, z 2 :hlavní město 2 3 Praha =.66 z :stát, z 2 :země 3 ČR 3 ČSFR 2 3 z :měna CZK (23) Je patrné, že zdroje se neshodnou na hodnotě atributu z : stát z : země. Tato nekonzistence je ve výsledku zobrazena včetně preferencí hodnot a ohodnocení jistoty pravidla a finální interpretace je ponechána na koncovém uživateli. Poznamenejme, že nekonzistence lze rovněž vážit; platí, že nekonzistence u integračního pravidla s dobrou podporou a malý rozdílem aktivací nekonzistentních elementů je pro výslednou interpretaci výsledku více nebezpečná. Na příkladu je dobře patrná výhoda možnosti zvolit zdroj a fakt, že váhy integračních pravidel oslabují aktivaci elementů z jiných zdrojů. 4.4 Integrační pravidlo hierarchie atributů a jeho ohodnocení Nepřímou míru pro hierarchii atributů A i ze zdroje z k a A j ze zdroje z l můžeme získat analogicky, avšak je potřeba rozhodnout o tom, která z následujících možností nastala:. ekvivalence A i A j = A i A j A j A i 2. nadřazenost A i A j 3. nadřazenost A j A i 4. žádný vztah Jako v případě ekvivalence vyjedeme z předpokladu, že atributy jsou si tak nadřazené, jak νij kl = D α(a k i ) Dα(A l j ) θij kl Dα(A k = i ) Dα(A k (24) i ) Aby ohodnocení přiřazení vztahu do kategorie bylo porovnatelné, zavedeme σ ij = ν kl ij ν lk ji (25) σ ij = νkl ij ( ν lk ji ) (26) Výběr pravidel podle ohodnocení provedeme analogicky podle (8), avšak díky faktu, že hierarchie je (na rozdíl od ekvivalence) nesymetrická, je nutné zajistit maximum jak v řádku, tak ve sloupci. Navíc je nutné zajistit, aby nedošlo
10 Automatizovaný návrh pravidel pro integraci dat k situaci, kdy domény atributů se překrývají a navíc platí π ki π kj a zároveň π jk π ik. Jinými slovy data vedou na návrh pravidel A j A k a A k A i. V tomto případě, pakliže bychom zvolili tuto konfiguraci pravidel, je principiálně možné odvodit element (A j, v) na základě aktivace elementu (A i, v). Taková aktivace však nemusí odpovídat instanci funkční závislosti (která navíc nemusí vůbec existovat). Takováto integrační pravidla, vedoucí na instance funkčních závislostí, nemohou být použita. Poznamenejme, že situace je zapříčiněna 4.5 Příklad ohodnocení pravidel D α (A i ) D α (A j ) D α(a i ) D α (A k ) D α (A j ) D α (A k ) (27) Ukažme si nyní ohodnocení pravidel na příkladu. Použijme stejné zdroje z a z 2 jako v předchozím příkladu. Strukturální analýzou získáme 0 [ Σ2 = 2 [σ2 ij ] = Σ 0 2 = [σ2 ji ] = 2 0 ] (28) Podle přepočtu získáme ohodnocení pro ekvivalenci a hierarchii: 0 Σ2 = (29) 0 0 [ Σ2 0 = ] 3 (30) [ Σ2 0 = ] 3 2 (3) Nyní seřadíme pravidla podle relevance a (při přednosti ekvivalence) získáváme: z 2 : hlavní město z : město 2 z 2 : hlavní město z : město 2 z 2 : stát z : země z 2 : stát z : země z : země z 2 : stát z : město z 2 : hlavní město Na základě tohoto rozboru stanovíme 0 [ 2 Π 2 = 2 0 Π 2 = Budeme-li se nyní dotazovat zdroje z 2 na informace o Praze, dostaneme x 0 = [ ] Φ x 0 = x = [ ] Φ Φ x 0 = x 2 = [ ] Φ Φ Φ x 0 = x 2 = [ ] Φ Φ Φ Φ x 0 = x 2 = [ ] ] (32) (33) (34)
11 34 Zdeňka Linková, Martin Řimnáč což můžeme interpretovat jako z :město z 2 :hlavní město Praha =.66 z :stát, z 2 :země 4 ČSFR 4 ČR 0.66 z :měna CZK 0.66 (35) Povšimněte si, že kdybychom se dotazovali na data zdroje z, díky orientaci hierarchického pravidla z : město z 2 : hlavní město by nedošlo k aktivaci obou elementů odpovídající Praze; jinými slovy by výsledek pokrýval pouze data ze zdroje z. V případě, že by zdroj z 2 pokrýval element [stát : ČR] namísto [stát : ČSFR], došlo by k aplikaci odpovídajícího pravidla ekvivalence a díky funkční závislosti i k aktivaci elementu [z 2 : hlavní město, Praha]. Jednoduše je možné ukázat, že oba atributy z : město a z 2 : hlavní město budou ve výsledku vystupovat odděleně (v interpretaci, že každému městu ve státě přísluší právě jedno město): z :město Praha z :stát, z :země ČR + = 2 z :měna CZK z 2 :hlavní město Praha (36) 5 Závěr Příspěvek je orientován na problematikou automatického návrhu integračních pravidel a ukazuje použití metod na jednoduchém příkladě. Známé metody poskytnou na základě různých mechanismů seznam možných kandidátů na integrační pravidla. Vzhledem k tomu, že integračních pravidel bývá reálně mnoho, množina všech možných kandidátů bude o to více početná. Příspěvek proto navrhuje vážit pravidla pomocí nepřímých měr vycházející ze (strukturální) analýzy dat jednotlivých lokálních zdrojů a tyto váhy následně použít pro vyjádření priority pravidel; návrhář tím získá seřazený seznam kandidátů, z nichž podle své interpretace lokálních schémat postupně vybere ty, které považuje za platné. V případě, že není možné počítat se zásahem návrháře do výběru pravidel, mohou tyto váhy sloužit jako nejlepší možný odhad podpory pro existenci takového pravidla. Na základě tohoto odhadu jsou pravidla s maximální váhou označena jako platná. Velmi dobrých výsledků, jak ukazují příklady, je dosaženo za podmínky, kdy (globální) domény atributů jsou navzájem disjunktní; v ostatních případech metoda vede na váhy ze středu intervalu a jsou možná víceznačná rozhodnutí. V neposlední řadě se příspěvek zabývá alternativou ke (klasickému) centralizovaném přístupu k integraci dat. Díky orientaci tématu na webové technologie, příspěvek zavádí možnost decentralizovaného přístupu k integraci, kdy zdroj vedle svých vlastních dat může poskytovat i odkazy na data jiných zdrojů. Váhy integračních pravidel pak mohou sloužit i jako ochrana dat zdroje před zavlečenými chybami (nekonzistencemi) způsobených zahrnutím dat ostatních zdrojů
12 Automatizovaný návrh pravidel pro integraci dat do výsledku. Tento přístup umožní na základě dotazu na jeden zdroj získat kompletní informaci pokrývající všechny, odkazy navzájem propojené, zdroje, přičemž dotazovaný zdroj garantuje správnost vráceného výsledku. Reference. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches (2005) Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic integration of knowledge sources. In: Proc. of the 2nd Int. Conf. On Information FUSION 99. (999) 3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 0(4) (200) Yi, S., Huang, B., Chan, W.T.: Xml application schema matching using similarity measure and relaxation labeling. Inf. Sci. 69(-2) (2005) Řimnáč, M.: Data structure estimation for rdf oriented repository building. In: Proceedings of the CISIS 2007, Los Alamitos, CA, USA, IEEE Computer Society (2007) Bednárek, D., Obdržálek, D., Yaghob, J., Zavoral, F.: Access rights definition and management in an information system based on a datapile structure. ITAT 2004, Workshop on Information Technologies, Application and Theory (2004) 7. Řimnáč, M., Špánek, R., Linková, Z.: Semantic web: Vision of distributed and trusted data environment? In: Proceedings of WWM 2007, st International Web X.0 and Web Mining Workshop, IEEE (2007) Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Inf. Syst. 32(6) (2007) Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic schema matching. Information Processing and Management 43 (2006) Xu, L., Embley, D.W.: A composite approach to automating direct and indirect schema mappings. Inf. Syst. 3(8) (2006) Ullman, J.D.: Information integration using logical views. Theoretical Computer Science 239(2) (2000) Lenzerini, M.: Data integration: a theoretical perspective. In: PODS 02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems, New York, NY, USA, ACM Press (2002) Calí, A., Calvanese, D., Giacomo, G.D., Lenzerini, M.: On the expressive power of data integration systems. In: ER 02: Proceedings of the 2st International Conference on Conceptual Modeling, London, UK, Springer-Verlag (2002) Linková, Z.: Mapování schémat v prostředí sémantického webu. Doktorandské dny na KM FJFI 07 (2007) 7 26 Annotation: On Semiautomatic Design of Data Integration Rules and Semantic Web Methods aimed at automatizing the task of finding rules for data integration are presented. The proposed methods generate candidates of integration rules together with a (cosine) measure expressing uncertainty of the rule. This measure can be used for sorting the candidates for a (human) designer or for considering priority of the automatic rule choice. Methods observing attribute equivalence and attribute hierarchy are discussed and their result is shown on the example.
Automatizovaný návrh pravidel pro integraci dat a sémantický web
Automatizovaný návrh pravidel pro integraci dat a sémantický web Zdeňka Linková, Martin Řimnáč Ústav informatiky AV ČR, v.v.i. Znalosti 008 Bratislava 1.-15.0. 008 1 Motivace Integrace dat pomocí pohledů
Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Deskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157
Deskripční logika Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické a acyklické TBOXy Petr Křemen
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Uživatelem řízená navigace v univerzitním informačním systému
Hana Netrefová 1 Uživatelem řízená navigace v univerzitním informačním systému Hana Netrefová Abstrakt S vývojem počítačově orientovaných informačních systémů je stále větší důraz kladen na jejich uživatelskou
Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti
Relační datový model Integritní omezení funkční závislosti multizávislosti inkluzní závislosti Normální formy Návrh IS Funkční závislosti funkční závislost elementární redundantní redukovaná částečná pokrytí
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.
Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové
Ontologie. Otakar Trunda
Ontologie Otakar Trunda Definice Mnoho různých definic: Formální specifikace sdílené konceptualizace Hierarchicky strukturovaná množina termínů popisujících určitou věcnou oblast Strukturovaná slovní zásoba
MBI - technologická realizace modelu
MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Sémantický web 10 let poté
Sémantický web 10 let poté Vilém Sklenák sklenak@vse.cz Vysoká škola ekonomická, fakulta informatiky a statistiky, katedra informačního a znalostního inženýrství Inforum2011, 26. 5. 2011 Vilém Sklenák
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Logika pro sémantický web
ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Logika pro sémantický web Martin Žáček PROČ BALÍČEK? 1. balíček Formální logické systémy
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Doktorandské dny 07. Ústav informatiky. v.v.i. vydavatelství Matematicko-fyzikální fakulty University Karlovy v Praze
Doktorandské dny 07 Ústav informatiky Akademie věd České republiky v.v.i. Malá Úpa 17. 19. září 2007 vydavatelství Matematicko-fyzikální fakulty University Karlovy v Praze Ústav Informatiky AV ČR v.v.i.,
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Informační systémy 2008/2009. Radim Farana. Obsah. Nástroje business modelování. Business modelling, základní nástroje a metody business modelování.
3 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Business modelling, základní nástroje a metody business modelování.
MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV
PŘEDNÁŠKA 6 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV Multikriteriální rozhodování Možnosti řešení podle toho, jaká je množina alternativ pokud množina alternativ X je zadaná implicitně
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
6. blok část C Množinové operátory
6. blok část C Množinové operátory Studijní cíl Tento blok je věnován problematice množinových operátorů a práce s množinovými operátory v jazyce SQL. Čtenáři se seznámí s operátory, UNION, a INTERSECT.
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází
1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,
Doktorandské dny 08. Ústav informatiky. v.v.i. vydavatelství Matematicko-fyzikální fakulty University Karlovy v Praze
Doktorandské dny 08 Ústav informatiky Akademie věd České republiky v.v.i. Malá Úpa 29. září 1. října 2008 vydavatelství Matematicko-fyzikální fakulty University Karlovy v Praze Ústav Informatiky AV ČR
Správa VF XML DTM DMVS Datový model a ontologický popis
Správa VF XML DTM DMVS Datový model a ontologický popis Verze 1.0 Standard VF XML DTM DMVS Objednatel Plzeňský kraj Institut plánování a rozvoje hlavního města Prahy Zlínský kraj Kraj Vysočina Liberecký
Kolaborativní aplikace
Kolaborativní aplikace Michal Máčel Vema, a. s. Okružní 3a, 638 00 Brno - Lesná, macel@vema.cz Tomáš Hruška Fakulta informačních technologií Vysokého učení technického v Brně, Ústav informačních systémů,
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
PRODUKTY. Tovek Tools
Analyst Pack je desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních
Modelování a odvozování v RDFS
Modelování a odvozování v RDFS Doc. Ing. Vojtěch Svátek, Dr. Zimní semestr 2012 http://nb.vse.cz/~svatek/rzzw.html Modelování v RDFS Základní konstrukce slovníku jsou Třídy Individua (jen význačná doménová
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ
ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ RELATIONAL AND OBJECT DATABASES DESIGN DIFFERENCES AND IT S IMPLICATIONS TO MODEL TRANSFORMATION Vít Holub
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Formální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?
Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
TÉMATICKÝ OKRUH Softwarové inženýrství
TÉMATICKÝ OKRUH Softwarové inženýrství Číslo otázky : 24. Otázka : Implementační fáze. Postupy při specifikaci organizace softwarových komponent pomocí UML. Mapování modelů na struktury programovacího
VÍCEKRITERIÁLNÍ ROZHODOVANÍ
VÍCEKRITERIÁLNÍ ROZHODOVANÍ 1 Obsah Typy modelů vícekriteriálního rozhodování Základní pojmy Typy informací Cíl modelů Užitek, funkce užitku Grafické zobrazení Metody vícekriteriální analýzy variant 2
Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1
Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit
Metadata. RNDr. Ondřej Zýka
Metadata RNDr. Ondřej Zýka 1 Metadata Jedna z kompetencí Data managementu Cíle kompetence: Zajistit jednotné porozumění a užití termínů Provázat informace na různých úrovních (byznys, aplikační, technické)
10. blok Logický návrh databáze
10. blok Logický návrh databáze Studijní cíl Tento blok je věnován převodu konceptuálního návrhu databáze na návrh logický. Blok se věnuje tvorbě tabulek na základě entit z konceptuálního modelu a dále
Datové struktury. Zuzana Majdišová
Datové struktury Zuzana Majdišová 19.5.2015 Datové struktury Numerické datové struktury Efektivní reprezentace velkých řídkých matic Lze využít při výpočtu na GPU Dělení prostoru a binární masky Voxelová
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Vyhledávání podle klíčových slov v relačních databázích. Dotazovací jazyky I ZS 2010/11 Karel Poledna
Vyhledávání podle klíčových slov v relačních databázích Dotazovací jazyky I ZS 2010/11 Karel Poledna Vyhledávání podle klíčových slov Uživatel zadá jedno nebo více slov a jsou mu zobrazeny výsledky. Uživatel
Petr Křemen. Katedra kybernetiky, FEL ČVUT. Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112
Sémantické sítě a rámce Petr Křemen Katedra kybernetiky, FEL ČVUT Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112 Co nás čeká 1 Úvod do reprezentace znalostí 2 Sémantické sítě
DATABÁZOVÉ SYSTÉMY. Metodický list č. 1
Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Predikátová logika. Teoretická informatika Tomáš Foltýnek
Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
Primární klíč (Primary Key - PK) Je právě jedna množina atributů patřící jednomu z kandidátů primárního klíče.
Primární a cizí klíč Kandidát primárního klíče (KPK) Je taková množina atributů, která splňuje podmínky: Unikátnosti Minimálnosti (neredukovatelnosti) Primární klíč (Primary Key - PK) Je právě jedna množina
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Dolování v objektových datech. Ivana Rudolfová
Dolování v objektových datech Ivana Rudolfová Relační databáze - nevýhody První normální forma neumožňuje vyjádřit vztahy A je podtypem B nebo vytvořit struktury typu pole nebo množiny SQL omezení omezený
POKROČILÉ POUŽITÍ DATABÁZÍ
POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a
InternetovéTechnologie
7 InternetovéTechnologie vyhledávání na internetu Ing. Michal Radecký, Ph.D. www.cs.vsb.cz/radecky Vyhledávání a vyhledávače - Jediný možný způsob, jak získat obecný přístup k informacím na Internetu -
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
PRODUKTY. Tovek Tools
jsou desktopovou aplikací určenou k vyhledávání informací, tvorbě různých typů analýz a vytváření přehledů a rešerší. Jsou vhodné pro práci i s velkým objemem textových dat z různorodých informačních zdrojů.
Znalostní systém nad ontologií ve formátu Topic Maps
Znalostní systém nad ontologií ve formátu Topic Maps Ladislav Buřita, Petr Do ladislav.burita@unob.cz; petr.do@unob.cz Univerzita obrany, Fakulta vojenských technologií Kounicova 65, 662 10 Brno Abstrakt:
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz
Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem
UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0
UŽIVATELSKÁ PŘÍRUČKA K INTERNETOVÉ VERZI REGISTRU SČÍTACÍCH OBVODŮ A BUDOV (irso 4.x) VERZE 1.0 OBSAH 1 ÚVOD... 3 1.1 HOME STRÁNKA... 3 1.2 INFORMACE O GENEROVANÉ STRÁNCE... 4 2 VYHLEDÁVÁNÍ V ÚZEMÍ...
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Lineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
xrays optimalizační nástroj
xrays optimalizační nástroj Optimalizační nástroj xoptimizer je součástí webového spedičního systému a využívá mnoho z jeho stavebních bloků. xoptimizer lze nicméně provozovat i samostatně. Cílem tohoto
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
2. Konceptuální model dat, E-R konceptuální model
2. Konceptuální model dat, E-R konceptuální model Úvod Databázový model souhrn prostředků, pojmů a metod, jak na logické úrovni popsat data a jejich strukturu výsledkem je databázové schéma. Databázové
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Soustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů
- 1.1 - Kapitola 1: Úvod Účel databázových systémů Pohled na data Modely dat Jazyk pro definici dat (Data Definition Language; DDL) Jazyk pro manipulaci s daty (Data Manipulation Language; DML) Správa
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
Analýza a modelování dat. Helena Palovská
Analýza a modelování dat Helena Palovská Analýza a modelování pro SW projekt Strukturovaný přístup Dynamická část (procesy, aktivity, funkce) Statická část (data) Objektově orientovaný přístup use case
Software602 Form Designer
Software602 Form Designer Javascriptový vyhodnocovací mechanismus výrazů Aktualizováno: 17. 3. 2017 Software602 a.s. Hornokrčská 15 140 00 Praha 4 tel: 222 011 602 web: www.602.cz e-mail: info@602.cz ID
Úvod do mobilní robotiky AIL028
SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru
1 Portál pre odborné publikovanie ISSN 1338-0087 Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru Barot Tomáš Elektrotechnika
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Výměnný formát XML DTM DMVS PK
Výměnný formát XML DTM DMVS PK Představení partnerským krajům Praha 8. 2. 2016 Krajský úřad Plzeňského kraje Odbor informatiky Koncept etapizace tvorby výměnného formátu XML aktualizačních zakázek Digitální
Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy
- 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce
Úvod do teorie her
Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu
InternetovéTechnologie
7 InternetovéTechnologie vyhledávání na internetu Ing. Michal Radecký, Ph.D. www.cs.vsb.cz/radecky Vyhledávání a vyhledávače - Jediný možný způsob, jak získat obecný přístup k informacím na Internetu -
XML Š ABLONY A JEJICH INTEGRACE V LCMS XML TEMPLATES AND THEIN INTEGRATION IN LCMS
XML Š ABLONY A JEJICH INTEGRACE V LCMS XML TEMPLATES AND THEIN INTEGRATION IN LCMS Roman MALO - Arnošt MOTYČKA This paper is oriented to discussion about using markup language XML and its features in LCMS
Databázové systémy. Ing. Radek Holý
Databázové systémy Ing. Radek Holý holy@cvut.cz Literatura: Skripta: Jeřábek, Kaliková, Krčál, Krčálová, Kalika: Databázové systémy pro dopravní aplikace Vydavatelství ČVUT, 09/2010 Co je relační databáze?
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost