II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
|
|
- Vojtěch Konečný
- před 8 lety
- Počet zobrazení:
Transkript
1 Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal!
2 Testování statistických hypotéz
3 kvalitativní odezva kvantitativní chí-kvadrát test homogenity, kontingenční tabulka ano ano normální ne spojitá ne GLIM, K-W regrese, t-test, ANOVA regrese, Wilcoxon Kruskal-Wallis Friedman
4 Vícefaktoriální návrhy experimentů Kontingenční tabulka odezva má kvalitativní charakter: může nabývat r hodnot jeden kvalitativní faktor: může nabývat s hodnot, u nichž nemá smysl uspořádání provádíme N > r.s pozorování a sledujeme četnosti nij výsledky zapisujeme do tabulky o s řádcích a r sloupcích Testování v kontingenční tabulce: test hypotézy o nezávislosti znaků (test homogenity) test symetrie Test nezávislosti: testová statistika = Σ(pozorované - očekávané) očekávané označme: nij absolutní četnost v řádku i a sloupci j napozorovaná v experimentu mij očekávaná četnost v řádku i a sloupci j za platnosti hypotézy m ij = R is j N, kde Ri = součet četností v řádku i Sj = součet četností ve sloupci j Omezení: očekávané četnosti musejí být větší než 5! = rx sx (n ij m ij ) i=1 j=1 m ij testová statistika má chí-kvadrát rozdělení o (r-1)x(s-1) stupňů volnosti
5 Vícefaktoriální návrhy experimentů Kontingenční tabulka odezva má kvalitativní charakter: může nabývat r hodnot jeden kvalitativní faktor: může nabývat s hodnot, u nichž nemá smysl uspořádání provádíme N > r.s pozorování a sledujeme četnosti nij výsledky zapisujeme do tabulky o s řádcích a r sloupcích Příklad: Ovlivňuje barva očí Rh faktor? Provedeme 400 pozorování, jejichž výsledky jsou v tabulce napravo: Za předpokladu nezávislosti by (podle marginálních součtů) mělo platit: Chceme testovat hypotézu o tom, že barva očí neovlivňuje Rh faktor: => Na hladině významnosti 5% nebyla prokázána závislost mezi barvou očí a Rh faktorem.
6 Vícefaktoriální návrhy experimentů Kontingenční tabulka Příklad : Ovlivňuje složení krmiva schopnost otelení krav? odezva má kvalitativní charakter: dojde k otelení (ano) nebo nedojde (ne) dva kvantitativní faktory, každý na dvou úrovních: krmení s vysokým nebo nízkým obsahem energie nebo proteinů. To vytvoří celkem 4 kombinace = 4 řádky tabulky. Celkem bylo sledováno n = 100 zvířat. kombinace ano ne vysoká energie a vysoký protein vysoká energie a nízký protein 88 1 nízká energie a vysoký protein 75 5 nízká energie a nízký protein Pro celou tabulku: testová statistika má df = 3.1=3 (stupně volnosti) = 58, 549, 0,01(3) = 11, 3 Sloučíme-li řádky 1 + (vysoká energie) a (nízká energie), dostaneme tabulku x s df = 1 a testovou statistiku (efekt energie) en = 3, 080, 0,01(1) = 6, 63 Sloučíme-li řádky (vysoký protein) a + 4 (nízký protein), dostaneme tabulku x s df = 1 a testovou statistiku (efekt proteinu) prot =7, 709, 0,01(1) = 6, 63 Odečteme-li hodnoty chí-kvadrát energie a proteinu od celkového chí-kvadrátu, dostaneme efekt interakce en.prot = 18, 760.
7 Vícefaktoriální návrhy experimentů Kontingenční tabulka Test symetrie: hypotéza: n ij N = n ji N testová statistika = rx i=1 ix j=1 (n ij n ji ) n ij + n ji má chí-kvadrát rozdělení o r(r-1) stupňů volnosti Příklad: Dědí syn barvu očí otce? Bylo provedeno 1000 pozorování, jejichž výsledky jsou v tabulce napravo. Barva očí je zakódována: 1=sv.modrá, =modrozelená 3=tm.šedá nebo sv.hnědá, 4=tm.hnědá Dosazením do testové statistiky dostaneme hodnotu Kritická hodnota pro 6 stupňů volnosti a pro α=5% je barva očí otce = 19, 56 6(0, 05) = 1, 59 barva očí syna => Na hladině významnosti 5% nebyla prokázána shoda barvy očí otce a syna.
8 Vícefaktoriální návrhy experimentů Regresní model experimentu odezva má kvantitativní charakter: může nabývat hodnot z podintervalu reálné přímky lineární model regresní závislosti: Y = b0 + b1 X1 + b X + + bk Xk + ε Máme n pozorování: Y = (Y1, Y,, Yn) vektor pozorování odezvy X = (Xij), i =1,..,n, j =0,1,..,k matice (nx(k+1)) pozorování k faktorů β = (β0, β1,,βk) vektor (k+1) neznámých parametrů ε = (ε1,, εn) vektor náhodných odchylek (náhodná složka) obecný lineární model: Y = Xβ + ε Předpoklady lineárního modelu: 1) E(ε) = 0 => střední hodnota E(εi)=0 pro všechna i = 1,, n => E(Y) = Xβ ) rozptyl Var(εi)=σ je konstantní (nezávisí na i ) = homoskedaticita 3) Cov(εiεj)=0 pro všechna i j = 1,,, n => D(ε) = σ I = D(Y) 4) Matice X je nenáhodná 5) Hodnost matice X je k+1 6) náhodné veličiny εi mají normální rozdělení Pokud je některý z těchto předpokladů porušen, jedná se o zobecněný lineární model (GLM)
9 Vícefaktoriální návrhy experimentů Regresní model experimentu odhad parametrů metodou nejmenších čtverců: (X X)b = X Y => b = (X X) -1 X Y Platí: E(b) = β, D(b) = σ (X X) -1 lineární model pro jeden faktor: Y = X 0 X = Y 1 1 X A X A = Y n 1 X n P P n P xi xi x i X 0 Y = a b P P Yi xi Y i = Y = a + bx + ε 0 1 A n Ȳ = 1 n X Yi, x = 1 n X xi b 1 = P xi Y i n xȳ P x i n x, b 0 = Ȳ b 1 x s = P P P Y i b 0 Yi b 1 xi Y i n T 1 = b q 1 X Pro test hypotézy H0: x β1 = 0 použijeme testovou statistiku i n x s, která má t-rozdělení o (n-) stupních volnosti. s 1 (x x) Pro dané x je interval spolehlivosti predikce Y: b 0 + b 1 x ± t n ( )s + P n x i n x
10 Vícefaktoriální návrhy experimentů Regresní model experimentu odhad parametrů metodou nejmenších čtverců: (X X)b = X Y => b = (X X) -1 X Y Platí: E(b) = β, D(b) = σ (X X) -1 lineární model pro jeden faktor: Y = a + bx + ε
11 Vícefaktoriální návrhy experimentů Regresní model experimentu lineární model pro dva faktory: Y 1 1 X 1 Z 1 X 1 Z 1 Y X A Y n 1 X n Z n X n Z n 0 P P P 1 P n P xi P zi P xi z i X 0 X = B xi x i xi z i x P P P P i z zi xi z i z P P P i xi zi xi z i x i z i xi zi P x i zi Y = a + bx + cz + dxz + ε 0 1 a 0 A = Bb ca d C A X0 Y = 1... n 1 A 0 P P Yi B P xi Y P zi Y i xi z i Y i 1 C A
12 Srovnání dvou souborů dat Dvě nezávislá měření X : X 1,X,...,X n Y : Y 1,Y,...,Y m X s N(µ X, X) Y s N(µ Y, oba parametry v obou případech známe# známe střední hodnoty a neznáme rozptyly# známe rozptyly a neznáme střední hodnoty# žádný z parametrů neznáme Odhady středních hodnot: X = 1 n Odhady rozptylů: s X = 1 n 1 nx i=1 X i X (X X), s Y = 1 n 1 Y ) Ȳ = 1 m nx i=1 Y i X (Y Ȳ )
13 Srovnání dvou souborů dat Dvě nezávislá měření X : X 1,X,...,X n Y : Y 1,Y,...,Y m X s N(µ X, X) Y s N(µ Y, Y ) test shody rozptylů# test shody středních hodnot při stejných rozptylech# test shody středních hodnot při nestejných rozptylech Dvě závislá měření X : X 1,X,...,X n Y : Y 1,Y,..., Y n párová pozorování párový test shody středních hodnot
14 Srovnání rozptylů dvou nezávislých měření Liší se statisticky významně dvě nezávislá měření z hlediska velikosti rozptylu? Lze považovat rozptyl dvou nezávislých měření za shodný při dané hladině významnosti? nulová hypotéza :# alternativní hypotéza:# H 0 : H A : X = X 6= Y Y F-test testová statistika :# hladina významnosti: F = s X s Y Fisherovo-Snedecorovo rozdělení F(n-1, m-1) H0 nezamítneme, když pro dané bude# # F / (n 1,m 1) <F <F / (n 1,m 1)
15 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test Liší se statisticky významně dvě nezávislá měření z hlediska jejich střední hodnoty? Lze považovat střední hodnoty dvou nezávislých měření za shodné při dané hladině významnosti? Lze od sebe statisticky významně odlišit dvě nezávislá měření podle jejich jejich střední hodnoty? nulová hypotéza :# H 0 : µ X = µ Y alternativní hypotéza: testová statistika :# hladina významnosti: H A : µ X 6= µ Y T = X Ȳ s X Ȳ (oboustranná)#
16 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test nulová hypotéza :# alternativní hypotéza: testová statistika :# hladina významnosti: H 0 : µ X = µ Y H A : µ X 6= µ Y T = X Ȳ s X Ȳ (oboustranná)# pokud X = Y pokud X 6= Y dvouvýběrový t-test# se stejnými rozptyly dvouvýběrový t-test # s nestejnými rozptyly
17 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test pokud X = Y = ) s X Ȳ = s X + s Ȳ = s X n + s Y m = s 1 n + 1 m = s m + n n.m dále odhadneme s ze všech naměřených hodnot: s 1 X n mx = (X i X) + (Y i Ȳ ) = n + m i=1 i=1 1 (n 1)s X +(m 1)s Y tedy: n + m s X Ȳ = n + m nm(n + m ) (n 1)s X +(m 1)s Y
18 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test pokud X = Y = Testová statistika bude mít tvar: T = X p Ȳ (n 1)s X +(m 1)s Y r nm(n + m ) n + m ta má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n+m-) stupních volnosti. H0 nezamítneme, když pro dané bude# T t (n + m ) kde t (n + m ) je (oboustranná) -kritická hodnota t-rozdělení o (n+m-) stupních volnosti.
19 Srovnání středních hodnot dvou nezávislých souborů dat - dvouvýběrový t-test Y pokud X 6= : Testová statistika bude mít tvar: X T = q Ȳ 1 n s X + 1 m s Y a má rozdělení, které je směsí t-rozdělení o (n-1) a (m-1) stupních volnosti. H0 nezamítneme, když pro dané bude splněna nerovnost T At (n 1) + Bt (m 1), kde A a B jsou váhy, A+B=1. A = 1 n s X 1 n s X + 1 m s Y, B = 1 m s Y 1 n s X + 1 m s Y
20 Srovnání párových souborů dat - párový t-test pozorování stejné veličiny před a po nějakém zásahu# měření stejných obektů za různých podmínek# měření stejné veličiny ve dvou různých časech#... X : X 1,X,...,X n X s N(µ X, Y : Y 1,Y,..., Y n Y s N(µ Y, X) Y ) ) Z 1 = X 1 Y 1, Z = X Y,..., Z n = X n Y n, Z s N(µ X µ Y, Z) H 0 : µ X = µ Y H A : µ X 6= µ Y H 0 : µ Z =0 H A : µ Z 6=0
21 Srovnání párových souborů dat - párový t-test H 0 : µ Z = a H A : µ Z 6= a T = Z s Z ap n T má t-rozdělení (Studentovo rozdělení) pravděpodobnosti o (n-1) stupních volnosti. H0 nezamítneme, když pro dané bude# T t (n 1) kde t (n 1) je (oboustranná) -kritická hodnota t-rozdělení o (n-1) stupních volnosti.
22 Jednostranné testy dolní nebo horní jednostranná alternativa : H 0 : µ X = µ Y H A : µ X <µ Y H 0 : µ X = µ Y H A : µ X >µ Y H0 nezamítneme, když pro dané bude buď# T< t (n 1) nebo# T>t (n 1) kde t (n 1) je (jednostranná) -kritická hodnota t-rozdělení o (n-1) stupních volnosti. oboustranná -kritická hodnota je (1 /)-kvantil# t 1 / (n 1) jednostranná -kritická hodnota je (1 ) -kvantil t 1 (n 1)
23 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. Dodavatel X: > x [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
24 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. Dodavatel Y: > y [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97]
25 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. 1) Vizualizace dat: Box&Whiskers diagram
26 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. ) Srovnání rozptylů: F-test > var.test(x,y) # F test to compare two variances # data: x and y F = 0.871, num df = 119, denom df = 99, p- value = alternative hypothesis: true ratio of variances is not equal to 1 95 percent confidence interval: sample estimates: ratio of variances => nulovou hypotézu nezamítáme, rozptyly se statisticky významně neliší
27 Příklady: Lze považovat délky tyčí od dvou různých dodavatelů za shodné na hladině významnosti 5%? Byly měřeny odchylky délky ocelových tyčí od požadované hodnoty 4m od dvou dodavatelů. Odchylky jsou uvedeny v cm. 3) Srovnání středních hodnot: dvouvýběrový t-test se shodnými rozptyly > t.test(x,y, var.equal=t) # Two Sample t- test # data: x and y t = , df = 18, p- value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y => nulovou hypotézu nezamítáme, střední hodnoty se statisticky významně neliší
28 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > pred_cvicenim [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
29 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 1) Data: > po_cviceni [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
30 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? ) Grafické zobrazení
31 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 3) Rozdíly: > rozdil = pred_cvicenim - po_cviceni > rozdil [1] [7] [13] [19] [5] [31] [37] [43] [49] [55] [61] [67] [73] [79] [85] [91] [97] [103] [109] [115]
32 Příklady: Byla měřena rychlost reakce operátorů před a po speciálním cvičení v sekundách. Mělo cvičení statisticky významný vliv na rychlost? 4) Párový t-test: > t.test(rozdil, mu=0) # One Sample t- test # data: rozdil t = , df = 119, p- value = 9.54e- 05 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: sample estimates: mean of x => nulovou hypotézu zamítáme, cvičení mělo vliv a rychlost reakce se statisticky # významně zvýšila
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Design Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: T 9:00 10:30 or by appointment
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme
motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Matematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.
Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Základy navrhování průmyslových experimentů DOE
Základy navrhování průmyslových experimentů DOE cílová hodnota V. Vícefaktoriální experimenty Gejza Dohnal střední hodnota cílová hodnota Vícefaktoriální návrhy experimentů počet faktorů: počet úrovní:
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Plánovací diář a Google Calendar
České vysoké učení technické v Praze FAKULTA ELEKTROTECHNICKÁ Kvantitativní test uživatelského rozhraní Plánovací diář a Google Calendar Semestrální práce do předmětu Testování uživatelského rozhraní LS
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
Fisherův exaktní test
Katedra pravděpodobnosti a matematické statistiky Karel Kozmík Fisherův exaktní test 4. prosince 2017 Motivace Máme kontingenční tabulku 2x2 a předpokládáme, že četnosti vznikly z pozorování s multinomickým
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Opakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
LINEÁRNÍ MODELY. Zdeňka Veselá
LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Základy navrhování průmyslových experimentů# (Design Of Experiments)
Základy navrhování průmyslových experimentů# (Design Of Experiments) cílová hodnota Prof. RNDr. Gejza Dohnal, CSc. střední hodnota cílová hodnota Přednáška - 13+1 lekcí, písemná zkouška 1. Úvod do plánování
Vzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Přednáška IX. Analýza rozptylu (ANOVA)
Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární
Základy navrhování průmyslových experimentů DOE
Základy navrhování průmyslových experimentů DOE cílová hodnota Gejza Dohnal střední hodnota cílová hodnota 1. Kolik je základních kroků při plánování experimentů? 2. Jaké jsou základní kroky při plánování
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Statistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup
Statistika Testování hypotéz - statistická indukce Parametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 1. února 01 Statistika by Birom
Intervaly spolehlivosti
Intervaly spolehlivosti = intervalové odhady neznámého parametru (odhad pro π, µ, σ 2, ), odvozují se z příslušné CLV spolehlivost = 1 α = pravděpodobnost, že neznámá hodnota parametru je intervalem pokryta;
Testy nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
6. T e s t o v á n í h y p o t é z
6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách
13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Testování uživatelského rozhraní
České vysoké učení technické v Praze, fakulta elektrotechnická 2012/2013 Semestrální práce na předmět Testování uživatelského rozhraní Kvantitativní test Jiří Blažek blazej18@fel.cvut.cz Obsah Obsah...1
Technická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného