letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
|
|
- Ilona Hájková
- před 7 lety
- Počet zobrazení:
Transkript
1 Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012
2 motivační příklad Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen do studie zahrnuto 100 náhodně vybraných zaměstnanců, z toho 35 žen a 65 mužů měsíční plat žen X 35 = Kč měsíční plat mužů Y 65 = Kč lze z těchto výsledků usuzovat, že muži mají (v dané firmě) obecně vyšší platy než ženy?
3 motovační příklad Párový Otázka: Mají muži vyšší příjem než ženy? přesnější formulace zajímá nás zřejmě porovnání středních hodnot platů mužů a žen, EX a EY porovnání X a Y náhodné veličiny jiný náhodný výběr by zahrnul jiných 100 zaměstnanců dostali bychom odlišné výběrové průměry X a Y Je rozdíl Y X = > 0 Kč dostatečně průkazný na to, abychom mohli tvrdit, že muži mají (v dané firmě) obecně vyšší platy než ženy? Nebo je to jen vliv náhody?
4 Párový = vyhodnocování pravdivostní hodnoty výroků na základě náhodného výběru (tj. ověřování platnosti nějakého výroku) provádíme pomocí statistických testů Hypotéza = výrok, o jehož pravdivosti chceme rozhodnout nulová a H 0 tvrzení o populaci, o jehož platnosti rozhodujeme (není rozdíl, nezávisí, neliší se,...) alternativní a H 1 : alternativa (doplňující možnost) k H 0 často tvrzení, které chceme prokázat
5 Statistický test Párový Statistický test = rozhodovací pravidlo, na jehož základě zamítáme nebo nezamítáme H 0 testová T n = T n (X 1,...,X n ) = náhodná veličina, která je funkcí pozorování X 1,...,X n kritický obor C = možné výsledky pokusu, kdy H 0 zamítáme
6 Chyba I. a II. druhu Párový rozhodujeme na základě náhodného výběru nemůžeme testovanou otázku zodpovědět s absolutní jistotou můžeme se dopustit chyby tyto chyby se budeme snažit omezit (resp. kontrolovat jejich pravděpodobnosti) H 0 platí H 0 neplatí H 0 zamítáme H 0 nezamítáme
7 Chyba I. a II. druhu Párový rozhodujeme na základě náhodného výběru nemůžeme testovanou otázku zodpovědět s absolutní jistotou můžeme se dopustit chyby tyto chyby se budeme snažit omezit (resp. kontrolovat jejich pravděpodobnosti) H 0 platí H 0 neplatí H 0 zamítáme H 0 nezamítáme OK OK
8 Chyba I. a II. druhu Párový rozhodujeme na základě náhodného výběru nemůžeme testovanou otázku zodpovědět s absolutní jistotou můžeme se dopustit chyby tyto chyby se budeme snažit omezit (resp. kontrolovat jejich pravděpodobnosti) H 0 zamítáme H 0 nezamítáme H 0 platí chyba 1. druhu OK H 0 neplatí OK
9 Chyba I. a II. druhu Párový rozhodujeme na základě náhodného výběru nemůžeme testovanou otázku zodpovědět s absolutní jistotou můžeme se dopustit chyby tyto chyby se budeme snažit omezit (resp. kontrolovat jejich pravděpodobnosti) H 0 zamítáme H 0 nezamítáme H 0 platí chyba 1. druhu OK H 0 neplatí OK chyba 2. druhu
10 Chyba I. a II. druhu Párový rozhodujeme na základě náhodného výběru nemůžeme testovanou otázku zodpovědět s absolutní jistotou můžeme se dopustit chyby tyto chyby se budeme snažit omezit (resp. kontrolovat jejich pravděpodobnosti) H 0 zamítáme H 0 nezamítáme H 0 platí chyba 1. druhu OK H 0 neplatí OK chyba 2. druhu Označíme: α = P(chyba 1. druhu) = P(zamítáme H 0 H 0 platí) β = P(chyba 2. druhu) = P(nezamítáme H 0 H 0 neplatí) Přirozený požadavek: α,β min bohužel nelze současně
11 Chyba I. a II. druhu Párový zvoĺıme hladinu testu α (zpravidla α = 0.05) maximální dovolená pst chyby 1. druhu maximální pst falešného prokázání vědecké y voĺıme před pokusem, nezávisle na jeho výsledku pro dané α chceme minimální β maximální 1 β síla testu 1 β pst zamítnutí neplatné H 0 pst, s jakou prokážeme platnou vědeckou u H 1 nemáme pod kontrolou (závisí na tom, co opravdu platí) můžeme ovlivnit volbou statistického testu, počtem pozorování,... α máme plně pod kontrolou, o β toho moc nevíme (chyba 1. druhu je závažnější)
12 Dosažená hladina testu Párový Dosažená hladina testu p-hodnota (angl. p-value) pravděpodobnost, že dostaneme výsledek, který stejně nebo ještě méně podporuje H 0, jestliže H 0 platí nejmenší hladina α, na které lze ještě H 0 zamítnout stupeň důvěry v platnost H 0 výsledek provedení statistického testu pomocí softwaru Pravidlo: je-li p α zamítáme H 0 je-li p > α nezamítáme H 0 (Zapamatovat!)
13 Nesymetrie H 0 a H 1 Párový H 0 a H 1 nejsou posuzovány symetricky: H 0 považujeme a priori za platnou a zamítáme ji jen tehdy, pokud k tomu máme dostatečně silné důvody pokud jsme zamítli H 0 můžeme tvrdit, že data svědčí o tom, že H 0 neplatí (a prokazujeme platnost H 1 ) pokud jsme H 0 nezamítli pak bud H 0 opravdu platí anebo H 0 neplatí, ale data neposkytují dostatečné důkazy k jejímu zamítnutí (malá síla testu) nutné volit opatrné formulace závěrů (u H 0 nelze na základě našich dat zamítnout apod.) Závěr Hypotézu H 0 nemůžeme prokázat, ale pouze vyvrátit
14 Párový Minule: filozofie testování testy střední hodnoty v normálním rozdělení (při známém a neznámém σ 2 ) spec. jednovýběrový Studentovo t-rozdělení intervalové odhady
15 : : Párový Situace: X 1,...,X n náhodný výběr z normálního rozdělení N(µ,σ 2 ), kde σ 2 neznáme. Chceme testovat proti Testová H 0 : µ = µ 0 H 1 : µ µ 0 T n = n X µ 0 S n má za platnosti H 0 t n 1 rozdělení. Test: je-li T n > t n 1 (1 α 2 ), pak zamítáme H 0. Jiné možné altervativy: H 1 : µ < µ 0 nebo H 1 : µ > µ 0 modifikace testu
16 Příklad Párový Příklad Provádíme průzkum, jaký skutečný objem piva točí v nejmenované hospodě. Zakoupeno bylo 10 piv a jejich objem byl (v litrech): 0.510, 0.462, 0.491, 0.466, 0.461, 0.503, 0.495, 0.488, 0.512, Z pohledu zákazníka bychom chtěli otestovat, zda hostinský netočí pod míru.
17 Příklad Párový Příklad Provádíme průzkum, jaký skutečný objem piva točí v nejmenované hospodě. Zakoupeno bylo 10 piv a jejich objem byl (v litrech): 0.510, 0.462, 0.491, 0.466, 0.461, 0.503, 0.495, 0.488, 0.512, Z pohledu zákazníka bychom chtěli otestovat, zda hostinský netočí pod míru. Model: Předpokládejme, že datům odpovídají nezávislé náhodné veličiny s normálním rozdělením N(µ,σ 2 ) Hypotézy: H 0 : µ = 0.5 proti H 1 : µ < 0.5
18 Příklad pokrač. Párový spočteme odtud T n = n X 0.5 S X = , S = = = H 0 zamítáme, pokud T n < t 9 (0.95) = nerovnost neplatí H 0 nelze na hladině významnosti 5 % zamítnout nelze prokázat, že by hostinský točil pivo pod míru (bud skutečně pod míru netočí nebo tak málo, že tuto odchylku nemůžeme na základě našich dat prokázat)
19 Příklad výpočet v programu R Párový >t.test(pivo,mu=0.5,alternative= less ) One Sample data: pivo t = , df = 9, p-value = alternative hypothesis: true mean is less than percent confidence interval: Inf sample estimates: mean of x p-hodnota > 0.05 nezamítáme H 0 na hladině 5 %
20 Problém Párový Příklad na každém subjektu měřímě dvě veličiny otázka: Mají tyto dvě veličiny stejnou střední hodnotu? Neboli, jsou co do polohy stejné? Věk rodičů: Jsou otcové starší než matky? Účinnost redukční diety: Je hmotnost po dietě nižší než před ní? Úspěšnost reklamní kampaně: Je prodejnost výrobku vyšší po kampani než před ní? Jsou dvojčata stejně inteligentní?...
21 Matematický zápis Párový párová pozorování (X 1,Y 1 ),...,(X n,y n ) nezávislé dvojice náhodných veličin náhodný výběr z dvourozměrného rozdělení X i a Y i měřeny na stejném subjektu i příklady: věk matky a věk otce, hmotnost před a po redukční dietě,... µ X = EX i, µ Y = EY i chceme otestovat u H 0 : µ X = µ Y proti H 1 : µ X µ Y. (příp. proti jednostranným H 1 )
22 Párový Párový Idea: zavedeme Z i = X i Y i rozdíly (např. rozdíl věku rodičů) předpoklad Z 1,...,Z n stejné rozdělení normální zjevně µ Z = µ X µ Y, a proto H 0 : µ X = µ Y platí platí µ Z = 0 střední hodnota X i a Y i je stejná Z i koĺısají kolem nuly úloha převedena na jednovýběrový test
23 Párový Párový definujeme Z i = X i Y i, i = 1,...,n předpokládáme, že Z 1,...,Z n náhodný výběr z N(µ Z,σ 2 ) test H 0 : µ Z = 0 proti H 1 : µ Z 0 jednovýběrový : spočteme Z odhad µ Z, S 2 odhad σ 2 testová T n = n Z S = n X Y S H 0 zamítáme ve prospěch H 1 : µ 0, pokud T n > t n 1 (1 α/2) ve prospěch H 1 : µ > 0, pokud T n > t n 1 (1 α) ve prospěch H 1 : µ < 0, pokud T n < t n 1 (1 α)
24 Párový : Poznámky Párový Obecnější y: lze testovat obecněji H 0 : µ X µ Y = δ testová : T n = n Z δ S Porušení předpokladů: test dodržuje požadovanou hladinu α, pokud Z i mají normální rozdělení, nebo počet pozorovaných dvojic n je dost velký (n > 50) jestliže normalitu nelze předpokládat je-li n dost velké lze párový je-li n malé párový test může dávat nesprávné výsledky nutné použít jiný postup (Wilcoxonův párový test)
25 Příklad věk otce vs. věk matky Párový Otázka: Jsou otcové studentů vyšší než matky studentů? n = 256 studentů z let věk otce a věk matky X - věk otce, Y - věk matky, Z = X Y rozdíl věků test H 0 : µ Z = 0 proti H 1 : µ Z > 0 na hladině α = 0.05 vypočteme X = 48.88, Y = 46.60, Z = 2.28, S = 4.12 testová T n = = 8.85 kritická hodnota t 255 (0.95) = 1.65
26 Příklad věk otce vs. věk matky Párový T n = 8,85 > t 255 (0.95) = 1.65 zamítáme u H 0 : µ Z = 0 ve prospěch H 1 : µ Z > 0 p-hodnota < Závěr: Prokázali jsme, že střední věk otců je statisticky významně vyšší než střední věk matek Ověření předpokladu normality: graficky histogram, QQ graf Shapirův-Wilkův test: p-hodnota normalitu dat nelze předpokládat; nicméně n dostatečně vysoké párový lze použít
27 Příklad Věk otce vs. věk matky Párový Otázka: Je střední hodnota věku otce přesně o dva roky vyšší než střední hodnota věku matky? nyní test H 0 : µ Z = 2 proti H 0 : µ Z 2 testová : T n = = kritická hodnota t 255 (0.975) = neplatí T n > 1.97 nelze zamítnout H 0 (p-hodnota 0.282) Závěr: Střední věk otců je bud přesně o dva roky vyšší než střední věk matek anebo je rozdíl středního věku tak bĺızko 2 rokům, že odchylku od 2 let na základě nasbíraných dat nedokážeme rozpoznat.
28 Příklad Věk otce vs. věk matky Párový 95 % intervalový odhad rozdílu věku rodičů: obecný vzorec ( Z S t n 1 (1 α/2),z + S ) t n 1 (1 α/2) n n dosadíme: (1.771, 2.784) interval, který s pravděpodobností 95 % pokryje skutečný rozdíl středních hodnot věku rodičů hodnota 2 leží v tomto intervalu
29 Párový Řešení v programu R: > t.test(vek.otce,vek.matky,mu=2,paired=t) Paired data: vek.otce and vek.matky t = , df = 255, p-value = alternative hypothesis: true difference in means is not equal to 2 95 percent confidence interval: sample estimates: mean of the differences
30 problém Párový Příklad jedna veličina měřená ve dvou nezávislých skupinách m nezávislých pozorování X i a n nezávislých pozorování Y j navzájem nezávislé zajímá nás porovnání jejich středních hodnot výška mužů a žen jsou muži vyšší než ženy? (je v jejich průměrné výšce systematický rozdíl?) plat mužů a žen je plat mužů stejný jako plat žen? (je v platech mužů a žen rozdíl, který se projevuje ve střední hodnotě?) liší se výše cholesterolu u kuřáků a nekuřáků?
31 Matematický zápis Párový Model: dva nezávislé náhodné výběry X 1,...,X m z normálního rozdělení N(µ X,σ 2 X ) Y 1,...,Y n z normálního rozdělení N(µ Y,σ 2 Y ) předpoklad: shodné rozptyly σ 2 X = σ2 Y Chceme otestovat H 0 : µ X = µ Y proti H 1 : µ X µ Y (resp. proti jednostranným alternativám) dvouvýběrový
32 : odvození Párový Idea: porovnáme průměry X a Y velký rozdíl zamítnutí y H 0 je třeba brát v úvahu také rozsahy výběrů a rozptyl Testová : T = X Y S.E.(X Y) = mn X Y, m+n S kde S 2 je společný odhad rozptylu σ 2 spočítaný z obou výběrů S 2 = 1 [ (m 1)S 2 m+n 2 X +(n 1)SY] 2
33 : odvození Párový Společný odhad rozptylu: umíme odhadnout σ 2 z každého výběru zvlášt pomocí výběrových rozptylů S 2 X = 1 m 1 S 2 Y = 1 n 1 m (X i X m ) 2 i=1 n (Y i Y n ) 2 i=1 vezmeme vážený průměr S 2 = 1 [ (m 1)S 2 m+n 2 X +(n 1)SY] 2
34 Rozdělení testové statistiky Párový Model: dva nezávislé náhodné výběry X 1,...,X m z normálního rozdělení N(µ X,σ 2 X ) Y 1,...,Y n z normálního rozdělení N(µ Y,σ 2 Y ) shodné rozptyly σ 2 X = σ2 Y Pak za H 0 : µ X = µ Y má testová T = mn m+n X m Y n, S t m+n 2 rozdělení, tj. t-rozdělení s m+n 2 stupni volnosti.
35 : Párový H 0 : µ X = µ Y zamítáme ve prospěch alternativy ( ) H 1 : µ X µ Y když T > t m+n 2 1 α ( ) 2 H 1 : µ X > µ Y když T > t m+n 2 1 α H 1 : µ X < µ Y když T < t m+n 2 ( 1 α ) zamítáme-li H 0, říkáme, že rozdíl ve výběrových průměrech je statisticky významný
36 : Párový H 0 : µ X = µ Y zamítáme ve prospěch alternativy ( ) H 1 : µ X µ Y když T > t m+n 2 1 α ( ) 2 H 1 : µ X > µ Y když T > t m+n 2 1 α H 1 : µ X < µ Y když T < t m+n 2 ( 1 α ) zamítáme-li H 0, říkáme, že rozdíl ve výběrových průměrech je statisticky významný Poznámka lze obecnější a H 0 : µ X µ Y = δ testová mn X m Y n δ T = m+n S
37 Ověření předpokladů Párový Normalita ověření normality pro každý výběr zvlášt pro velká n, m porušení normality velmi nevadí Shoda rozptylů S 2 X a S2 Y podobné F-test shody rozptylů H 0 : σ 2 X = σ2 Y proti H 1 : σ 2 X σ2 Y pochyby o shodě Welchův test (modifikace u) Welchův test: model: nezávislé výběry X 1,...,X m z normálního rozdělení N(µ X,σ 2 X ) a Y 1,...,Y n z normálního rozdělení N(µ Y,σ 2 Y ) modifikace testové statistiky již nemá rozdělení t m+n 2, numerická aproximace
38 Příklad plat Párový Problém: Je plat mužů vyšší než plat žen? 100 náhodně vybraných zaměstnanců měsíční plat v Kč 35 žen a 65 mužů X plat žen, Y plat mužů rozsah průměr směr. odchylka ženy muži
39 Příklad plat Párový Problém: Je plat mužů vyšší než plat žen? 100 náhodně vybraných zaměstnanců měsíční plat v Kč 35 žen a 65 mužů X plat žen, Y plat mužů rozsah průměr směr. odchylka ženy muži Předpoklady: normalita muži p-hodnota normalita ženy p-hodnota test shody rozptylů p-hodnota 0.218
40 Příklad grafické znázornění Párový Plat zena muz Pohlavi
41 Příklad předpoklady zena muz Párový Percent of Total Plat Q Q graf Q Q graf Sample Quantiles Sample Quantiles
42 Příklad řešení Párový H 0 : µ X = µ Y proti H 1 : µ X < µ Y společný odhad rozptylu S 2 = = testová T = = kritická hodnota t 98 (0.95) = na základě našich dat nelze zamítnout H 0, tj. nelze prokázat H 1
43 Příklad řešení Párový Řešení v programu R: > t.test(zeny,muzi,var.equal=t,alternative= less ) Two Sample data: zeny and muzi t = , df = 98, p-value = alternative hypothesis: true difference in means is less than 0 95 percent confidence interval: -Inf sample estimates: mean of x mean of y
44 Shrnutí Párový Testy o střední hodnotě 1 jeden výběr jednovýběrový normalita (není nezbytné při dostatečně velkém rozsahu výběru) 2 párová pozorování párový normalita rozdílu (není nezbytné při dostatečně velkém rozsahu výběru) 3 dva nezávislé výběry dvouvýběrový nezávislost normalita (není nezbytné při dostatečně velkém rozsahu výběru) shoda rozptylů (neplatí-li použít Welchův test)
45 Porušení normality Párový Jestliže nelze normalitu předpokládat a rozsah výběru je malý nutné použít jiné testy, které předpoklad normality nepotřebují neparametrické testy založeny na pořadí pořadové testy Uvedeme si jednovýběrový Wilcoxonův test dvouvýběrový Wilcoxonův test
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Vícediskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme
motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VícePříklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu
Pravděpodobnost vs. statistika Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými veličinami, jejichž rozdělení je známo Statistika odvozovali jsme charakteristiky těchto rozdělení
VíceOpakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
VíceMatematická statistika. Testy v. v binomickém. Test pravděpodobnosti. Test homogenity dvou. Neparametrické testy. statistika. Testy v.
Opakování Opakování: y o střední hodnotě normálního 1 jednovýběrový t-test 2 párový t-test 3 výběrový t-test Šárka Hudecová Katedra a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy
Víceletní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
VíceÚstav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceParametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
VíceRozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
VíceParametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VíceTestování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
VíceStatistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
VíceJednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
VíceTestování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
VíceTestování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VíceKatedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
VíceIng. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
VíceII. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal
Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,
VíceTesty nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
VíceDVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Více12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VíceTestování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
VíceJednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
VícePravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
VíceTestování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
VíceCvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Více12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
VíceTestování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceSTATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
VíceVymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
VíceAproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Více4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
VíceNáhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
VícePSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceTestování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VíceKORELACE. Komentované řešení pomocí programu Statistica
KORELACE Komentované řešení pomocí programu Statistica Vstupní data I Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná
VíceTestování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
VíceJednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
VíceSeminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
VíceADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Vícet-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
Více5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceÚvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
VíceTestování uživatelského rozhraní
České vysoké učení technické v Praze, fakulta elektrotechnická 2012/2013 Semestrální práce na předmět Testování uživatelského rozhraní Kvantitativní test Jiří Blažek blazej18@fel.cvut.cz Obsah Obsah...1
VíceVYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VíceStatistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
VíceVzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
VíceTESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
VícePříklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
VíceDesign Experimentu a Statistika - AGA46E
Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: T 9:00 10:30 or by appointment
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
VíceTestování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Více2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
VíceTestování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceTesty. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
VíceVybrané partie z biostatistiky
1 Úvod Vybrané partie z biostatistiky 10.7.2017, Běstvina Marie Turčičová (turcic@karlin.mff.cuni.cz), MFF UK Pracovat budeme v programu R a jeho nástavbě RStudio, které si můžete bezplatně stáhnout zde:
Více1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
VíceRNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
VíceÚVOD DO TESTOVÁNÍ HYPOTÉZ. Martina Litschmannová
ÚVOD DO TESTOVÁNÍ HYPOTÉZ Martina Litschmannová Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu v odhadu parametru náhodné veličiny Testování
VíceTechnická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
VíceSeminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
VíceMann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
VíceIntervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
VíceKorelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
VíceCharakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Více7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
VíceStatistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
VíceStatistika pro každého. Párový test Test shody dvou rozptylů Dvouvýběrový t-test Porovnání středních hodnot při nestejných rozptylech
Statistika pro každého Párový test Test shody dvou rozptylů Dvouvýběrový t-test Porovnání středních hodnot při stejných rozptylech Testovací kuchařka 1 2 Párový t-test 1 2 Párový t-test -test užijeme v
VíceStatistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
VícePlánovací diář a Google Calendar
České vysoké učení technické v Praze FAKULTA ELEKTROTECHNICKÁ Kvantitativní test uživatelského rozhraní Plánovací diář a Google Calendar Semestrální práce do předmětu Testování uživatelského rozhraní LS
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VícePříklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
VíceTesty statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VíceSTATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Víceprosince oboustranný symetrický 95% interval spolehlivosti pro střední hodnotu životnosti τ. X i. X = 1 n.. Podle CLV má veličina
10 cvičení z PSI 5-9 prosince 016 101 intervalový odhad Veličina X, představující životnost žárovky, má exponenciální rozdělení s parametrem τ Průměrná životnost n = 64 náhodně vybraných žárovek je x =
VíceJarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
VíceSTATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
VíceNEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)
Více