12. prosince n pro n = n = 30 = S X

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "12. prosince n pro n = n = 30 = S X"

Transkript

1 11 cvičení z PSI 1 prosince test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli 30 měření stejné teploty Průměrný výsledek byl 101 Otestujte na hladině významnosti 5 % zda teplota nepřesahuje 100 Naše veličina X = naměřená teplota v jednotkách má podle předpokladu rozdělení Nµσ kde σ = 3 Podle zadání máme otestovat hypotézu o střední hodnotě H 0 : µ µ 0 = 101 proti alternativní hypotéze: H 1 : µ > µ 0 = 101 Realizaci testovací statistiky T = X µ 0 σ t = x µ 0 σ n pro n = n = 30 = porovnáme s kvantilem Φ 1 1 α = Φ = 164 pro α = 005 je splněno zamítací kritérium tak nulovou hypotézu H 0 zamítáme Φ 1 1 α < t 11 test střední hodnoty normálního rozdělení při neznámém rozptylu Výrobce tvrdí že spotřeba automobilu je µ 0 = 8 litrů na 100 km Průměrná spotřeba n = 49 uživatelů však byla x = 84 litru na 100 km s výběrovým rozptylem s x = 56 Testujte na hladině významnosti α = 5% zda má výrobce pravdu a uved te použité předpoklady K provedení testu střední hodnoty s neznámým rozptylem potřebujeme předpokládat že testovaná veličina spotřeby X má normální rozdělení Nµσ a že měření odpovídají náhodnému výběru tj jsou nezávislá předpokládáme přesné normální rozdělení nemusíme jako u CLV mít zase tak velký rozsah souboru Podle zadání máme otestovat hypotézu o střední hodnotě H 0 : µ = µ 0 = 8 proti alternativní hypotéze: H 1 : µ µ 0 = 8 Hodnotu rozptylu neznáme takže je nutné použít testovací statistiku která obsahuje odhad směrodatné odchylky σ pomocí S X : T = X µ 0 S X n Kritérium pro ZAMÍTNUTÍ je tvaru t > q tn 1 1 α zamítáme H 0 na dané hladině α Zdůvodnění tvaru zamítacího kritéria: Za předpokladu platnosti nulové hypotézy tj pokud EX = µ 0 bude mít statistika T tzv Studentovo t-rozdělení s n 1 stupni volnosti speciálně tedy bude platit ET = 0 a očekávané hodnoty takovéto statistiky by se měly pohybovat blízko nuly Pokud se příliš odchýlí více než bude dovolovat hladina α omezující chybu 1 druhu bude to důvod k zamítnutí nulové hypotézy

2 Odchýlení opět znamená že realizované hodnoty t statistiky T spadnou do kritického oboru W pro statistiku T který je symetrický vzhledem k 0 z hlediska pravděpodobnosti Bude tedy tvaru W : u 0 u 1 kde PT < u 0 = α = Pu 1 < T což je omezení chyby 1 druhu tj že bychom se spletli a zamítli něco co platí = qtn 1 1 α Dostáváme tak u 0 = q tn 1 α W : q tn 1 1 α = u1 tudíž q tn 1 1 α a kritérium pro ZAMÍTNUTÍ je tak skutečně tvaru t > q tn 1 1 α zamítáme H 0 na dané hladině α Ted už tedy dosadíme konkrétní hodnoty Realizace testovací statistiky je t = x µ n = 49 = 7 = 175 s x t = = q t = q tn 1 1 α nulovou hypotézu NEZAMÍTÁME Naše měření tak nejsou dostačující na to abychom mohli zamítnout tvrzení výrobce na hladině významnosti 5% Je dobré si ještě zjistit jak moc bychom si museli dovolit být nejistí abychom už tvrzení výrobce zamítli Tato hladina α 0 je určena jako q tn 1 1 α 0 = t tedy α 0 = F tn 1 t = F tn = = Pokud tedy budeme posuzovat hypotézu na hladině významnosti VYŠŠÍ než 8 66% dojdeme k jejímu zamítnutí A naopak čím více si chceme být jistí že jsme se nespletli tj zmenšujeme hodnoty α tím víc prohřešků od výrobce budeme muset tolerovat Poznámka: Podle zadání jsme uvažovali případ kde se ptáme na rovnost tj µ = µ 0 V této situaci máme jedinou možnost jak zvolit nulovou hypotézu - a sice výše uvedeným způsobem Jako nulovou hypotézu není možné zvolit případ µ µ 0 protože množina {µ R µ µ 0 } není uzavřená V úvahu vzhledem k zadání by ale mohl ještě přicházet jednostranný test protože výrobce určitě raději tvrdí že µ µ 0 V tomto případě pak bud můžeme testovat H 0 : µ µ 0 ale mohli bychom také testovat H 0 : µ µ 0 V případě testu hypotézy H 0 : µ µ 0 se snažíme vyhnout tomu že bychom omylem poškodili výrobce a výsledek testu bude t = 175 > 1677 = q t = q tn 1 1 α takže hypotézu výrobce ZAMÍTNEME Pozor jde o jednostranný test takže kvantil je jiný! Veškerou chybu jsme spotřebovali jen na ty vysoké hodnoty A toto malé zvětšení oproti oboustrannému testu už stačilo na zamítnutí A v případě testu hypotézy H 0 : µ µ 0 se snažíme vyhnout tomu že bychom omylem poškodili uživatele a výsledek testu bude takže hypotézu uživatelů NEZAMÍTNEME t = = q t = q tn 1 α 113 test rozptylu normálního rozdělení Generátor náhodných čísel s normovaným normálním rozdělením dal následující výsledky: Posud te na hladině významnosti 5 % zda data odpovídají předpokládanému rozptylu Výběrový průměr je součet kvadrátů Předpokládaný rozptyl je 1 výběrový rozptyl je 0908 pro oboustranný odhad použijeme testovací statistiku n 1S X DX = = 8174 Page

3 která má rozdělení χ s 9 stupni volnosti porovnáme s kvantily q χ = 7 q χ = 190 a nulovou hypotézu nezamítáme 114 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace x = Posud te na hladině významnosti α = 005 zda směrodatná odchylka měření je nejvýše σ 0 = 01 promile alkoholu Předpokládejte že obsah alkoholu X má normální rozdělení a jednotlivá měření jsou nezávislá Naše veličinaxudávajícíobsah alkoholuvkrvivpromilíchmánormálnírozdělenínµσ Místotestu směrodatné odchylky σ budeme ekvivalentně testovat rozptyl σ a sice nulovou hypotézu tvaru H 0 : σ 01 = σ 0 proti alternativní hypotéze: H 1 : σ > 01 na hladině významnosti α = 005 Tentokrát budeme používat statistiku T = n 1S X σ 0 která má pro případ σ = σ 0 tzv χ -rozdělení s n 1 stupni volnosti Obecněji teprve veličina σ 0 σ T bude mít χ -rozdělení Za předpokladu nulové hypotézy tj pro 0 σ σ 0 budou očekávané hodnoty statistiky T především v intervalu 1 ve skutečnosti to bude jen interval 0 1 protože T je nezáporná veličina Kritický obor tak bude W : q χ n 1 1 α a kritérium pro ZAMÍTNUTÍ proto bude tvaru Dosadíme opět konkrétní hodnoty: t > q χ n 1 1 α zamítáme H 0 na dané hladině α x = = 47 5 = 094 s x = 1 n x i x = n 1 4 Realizace testovací statistiky je = = 0088 a hodnota kvantilu je nulovou hypotézu ZAMÍTÁME t = n 1s x σ 0 = = 35 q χ n 1 1 α = q χ = 949 t = = q χ Zdůvodnění tvaru kritického oboru: Opět si vyznačme závislost X a T na parametru σ jako Kritický obor má být tvaru T σ = n 1S X σ σ 0 W : u 1 Page 3

4 kde požadujeme aby u 1 R bylo nejmenší takové aby chyba 1 druhu byla nejvýše α tj 0 σ σ 0 PT σ W = Pu 1 < T σ α Opět případ σ = σ 0 je za předpokladu H 0 ten nejhorší možný jak je vidět z následujícího: σ σ 0 T σ = σ σ 0 }{{} 1 P u 1 < T σ P u 1 < n 1S X σ σ n 1S X σ σ n 1S X σ σ }{{} χ rozdělení = 1 F χ n 1 u 1 = P u 1 < T σ0 Vidíme tedy že P u 1 < T σ P u 1 < T σ0 a hledané u 1 tak musí splňovat P u 1 < T σ0 = α tedy a kritický obor je tak skutečně tvaru u 1 = q χ n 1 1 α W : q χ n 1 1 α 115 test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem Z realizací náhodných veličin X a Y s normálním rozdělením jsme z výběrů daného rozsahu obdrželi tyto realizace odhadů: Na hladině významnosti α = 005 X Y m = 11 n = 1 x = 10 y = 1 s x = s y = 3 a posud te hypotézu že rozptyly náhodných veličin X a Y jsou stejné b za předpokladu platnosti podmínky dle a posud te hypotézu že střední hodnoty náhodných veličin X a Y jsou stejné a Test stejného rozptylu: Předpokládáme že veličiny X a Y jsou nezávislé s normálními rozděleními po řadě Nµ 1 σ1 s Nµ σ Jednotlivá měření pro X a Y považujeme všechna navzájem za nezávislá Budeme testovat nulovou hypotézu o rovnosti rozptylů H 0 : σ 1 = σ proti alternativní hypotéze H 1 : σ 1 σ Testovací statistika je T = S X SY a má za předpokladu σ1 = σ tzv Fisherovo-Snedecorovo Fm 1n 1 - rozdělení s m 1 a n 1 stupni volnosti v tomto pořadí! Za předpokladu nulové hypotézy H 0 je očekávaná hodnota statistiky T rovna 1 a kritický obor tak podobně jako v některých předchozích příkladech bude W : α q Fm 1n 1 q Fm 1n 1 1 α Page 4

5 Kritérium pro ZAMÍTNUTÍ je proto tvaru [ α t < q Fm 1n 1 nebo q Fm 1n 1 1 α ] < t zamítáme H 0 na dané hladině α Realizace testovací statistiky je a hodnoty kvantilů jsou a q Fm 1n 1 α t = s x s = 4 = 0444 y 9 = q F = 1 q F = 1 34 q Fm 1n 1 1 α = q F = 77 t = hypotézu H 0 že X a Y mají stejný rozptyl NEZAMÍTÁME = 094 b Test rovnosti středních hodnot se stejným neznámým rozptylem: Předpokládáme že veličiny X a Y jsou nezávislé s normálními rozděleními po řadě Nµ 1 σ s Nµ σ Tento předpoklad je podložen předchozím testem rovnosti rozptylů který jsme nezamítli Jednotlivá měření pro X a Y považujeme opět všechna navzájem za nezávislá Budeme testovat nulovou hypotézu o rovnosti středních hodnot H 0 : µ 1 = µ proti alternativní hypotéze H 1 : µ 1 µ Testovací statistika je T = X Y S 1/m +1/n kde S = m 1 m+n S X + n 1 m+n S Y je vážený odhad rozptylu Za předpokladu nulové hypotézy H 0 tj µ 1 = µ má statistika T Studentovo tm + n -rozděleni s m+n stupni volnosti Kritérium pro ZAMÍTNUTÍ bude proto očekávatelně tvaru t > q tm+n 1 α zamítáme H 0 na dané hladině α a Po dosazení máme t = s = m 1s x +n 1s y m +n x y s 1/m+1/n = = = 3 = = 1984 Hodnota kvantilu je q tm+n 1 α = q t = 04 t = = q tm+n 1 α hypotézu H 0 ze X a Y mají stejnou střední hodnotu také NEZAMÍTÁME 116 párový pokus U n = 8 praváků jsme změřili délku prostředníčku na pravé a levé ruce hodnoty v milimetrech uvádí tabulka Levá Pravá Page 5

6 Na hladině významnosti α = 5% posud te hypotézu že praváci mají delší prostředníček na levé ruce a uved te předpoklady Označme si jako veličinu X délku prostředníčku na levé ruce a jako veličinu Y délku prostředníčku na pravé ruce u téhož člověka zde navíc praváka Pokud na jednom subjektu provádíme měření více veličin zde X a Y pak už jejich vzájemné hodnoty nemůžeme považovat za nezávislé Za nezávislá ovšem samozřejmě považujeme měření dvojice veličin X Y tj náhodného vektoru u různých lidí U veličiny := X Y která představuje rozdíly mezi veličinami můžeme přirozeně předpokládat normální rozdělení Nµσ nebot jde o odchylky které obvykle tuto vlastnost mají Máme tedy nezávislá měření s hodnotami δ = x 1 y 1 x n y n a naše původní hypotéza EX EY lze ekvivalentně vyjádřit pomocí 0 EX EY = E = µ jako nulová hypotéza H 0 : µ 0 kterou otestujeme proti alternativní hypotéze H 1 : µ < 0 na hladině významnosti α = 5% Půjde tedy o obvyklý test střední hodnoty veličiny s normálním rozdělením při neznámém rozptylu Použijeme tudíž statistiku a kritérium pro ZAMÍTNUTÍ bude tvaru Určíme si hodnoty realizace δ veličiny = X Y T = S n t < q tn 1 α zamítáme H 0 na dané hladině α x y δ = x y Spočteme její výběrový průměr a rozptyl pro n = 8: určíme realizaci statistiky a příslušný kvantil δ = 7 8 = 0875 s δ = 1 n 1 n t = δ s δ n = = δ i δ = = q tn 1 α = q tn 1 1 α = q t7 095 = 1895 t = = q t7 005 nulovou hypotézu že praváci mají delší levý prostředníček než pravý NEZAMÍTÁME 117 test nekorelovanosti dvou výběrů z normálních rozdělení Pro realizace X Y náhodných výběrů z veličin X Y testujte na hladině významnosti α = 5% jejich korelovanost Pro test korelovanosti je potřeba předpoklad že náhodný vektor X Y ma dvourozměrné normální rozdělení Poznámka: Každé takové rozdělení je tvaru X α β X µ1 = Y γ δ Y + µ }{{} A Page 6

7 kde matice A je regulární µ 1 µ R a veličiny X Y jsou nezávislé s normovaným normálním rozdělením N01 Označme si ještě u = αβ R a v = γδ R Snadno je pak vidět že a pro korelaci máme což je právě kosinus úhlu mezi vektory u a v EX = µ 1 EY = µ DX = u DY = v XY = u v u v My budeme testovat hypotézu o koeficientu korelace XY mezi náhodnými veličinami X a Y H 0 : XY = 0 tj náhodné veličiny X a Y jsou nekorelované proti alternativní hypotéze H 1 : XY 0 tj náhodné veličiny X a Y jsou korelované K testování použijeme výběrový koeficient korelace RX Y a testovou statistiku T = RXY n 1 R XY která má Studentovo rozdělení tn kde n je rozsah výběrů Realizaci rx y výběrového koeficientu korelace RXY vypočteme ze vzorce n n n n 1 n x i y i x i y i x n j y j xy rxy = n n n x i x i n n n = n j=1 n 1 s xs y yi y i Za předpokladu nulové hypotézy H 0 tj XY = 0 je očekávaná hodnota statistiky T rovna 0 Kritérium pro ZAMÍTNUTÍ proto podobně jako pro některé předchozí testy bude tvaru t > q tn 1 α zamítáme H 0 na dané hladině α Je n = 5 n x i = 13 Po dosazení hodnot dostaneme Z tabulek nalezneme kvantil hypotézu H 0 NEZAMÍTÁME n y i = 36 rxy = n n x i = 3179 n yi = 80 x i y i = = = t = rxy n r xy = = q tn 1 α = q t = 318 t = = q t test střední hodnoty při známém rozptylu Posud te na hladině významnosti α = 001 hypotézu že mince je symetrická jestliže a při n = 00 hodech padl líc 80 b při n = 100 hodech padl líc 40 tj v obou případech to bylo 40% výsledků Návod: Použijte vhodnou statistiku s přibližně normálním rozdělením odvozenou na základě centrální limitní věty pro náhodnou veličinu Xlíc = 1 Xrub = 0 Page 7

8 Situace kdy přesně známe rozptyl daného normálního rozdělení není příliš obvyklá Většinou jej máme jen odhadnutý a pak musíme používat Studentovo rozdělení namísto normálního Výjimkou jsou ale případy kdy rozptyl nějakého rozdělení alternativního exponenciálního Poissonova atd je svázaný se střední hodnotou tohoto rozdělení prostřednictvím nějakého parametru Může se zdát že pak se ale nedá použít obvyklý postup pro test střední hodnoty se známým rozptylem protože nemáme normální rozdělení To si ale můžeme vyrobit přibližně pomocí CLV Výsledky hodu mincí představují náhodnou veličinu Xlíc = 1 Xrub = 0 s alternativním rozdělením s parametrem p tj PX = 1 = p Naše nulová hypotéza tedy bude H 0 : p = p 0 proti alternativní hypotéze: H 1 : p p 0 kde p 0 = 1 Vezmeme si nezávislé náhodné veličiny kopie veličiny X { 1 při i-tém pokusu padl líc X i = 0 při i-tém pokusu padl rub Za předpokladu nulové hypotézy budeme pro veličinu X = 1 n X i n mít EX = 1 a DX = 1 takže podle CLV má normovaná statistika 4n T = X 1 1 4n přibližně normované normální rozdělení N0 1 = X 05 n 05 Poznámka: Tato statistika je analogií statistiky T = X µ 0 n σ pro případ veličiny X s normálním rozdělením Nµσ a pro nulovou hypotézu H 0 : µ = µ 0 Pozor! Nenaznačujeme tím že by naše původní veličina X s alternativním rozdělením snad měla vlastnosti nějaké jiné veličiny X s normálním rozdělením! Jde tu o to ze při hledání kritického oboru pro X při dané hladině významnosti α je postup principiálně stejný jako pro případ kdy X má normální rozdělení - viz dále Kritérium pro ZAMÍTNUTÍ je tvaru t > Φ 1 1 α zamítáme H 0 na dané hladině α Zdůvodnění tvaru zamítacího kritéria: Nulová hypotéza je tvaru H 0 : p = p 0 a hodnotu p aproximujeme pomocí xchceme siproto zvolittakovou dolníhraniciu 1 Ratakovou horníhraniciu Raby pravděpodobnost že je hodnota veličiny X překročí byla nejvýše rovna hodnotě α = 1% zvolená hladina významnosti a navíc tak že překročení směrem výše bude stejně pravděpodobně jako směrem níže neboli na každou stranu α/ Jinými slovy má platit že PX < u 1 = α = Pu < X neboli u 1 = q X α a u = q X 1 α u veličiny X předpokládáme normální rozdělení Pokud nastane jedno z překročení tj pro realizaci x máme x R\ u 1 u budeme to považovat za přílišné porušení nulové hypotézy pro danou toleranci chyby a zamítneme ji Místo veličiny X a jejích kvantilů si ale Page 8

9 raději vezmeme už zmíněnou statistiku T = X n která je jen transformací veličiny X a problém pomocí ní ekvivalentně přeformulujeme Veličina T má přibližně rozdělení N0 1 takže meze pro T snadno najdeme: P T < Φ 1 α = α = P Φ 1 1 α < T Tedy kritériem pro ZAMÍTNUTÍ nulové hypotézy je případ kdy pro realizaci t statistiky T nastane t < Φ 1 α nebo Φ 1 1 α < t neboli protože máme rovnost Φ 1 α = Φ 1 1 α t > Φ 1 1 α Nyní stačí už jen dosadit: a Zde máme n = 00 x = = 04 a 1 α t = x n = = 0995 takže = 88 > 576 = Φ Hypotézu H 0 : p = 1 tedy ZAMÍTÁME na dané hladině α = 1% b Zde máme n = 100 a opět x = = 04 a 1 α = 0995 takže t = x 05 n = = 576 = Φ Hypotézu H 0 : p = 1 tedy NEZAMÍTÁME na dané hladině α = 1% Jak je vidět za předpokladu že mince je symetrická se jen 40% úspěšných pokusů dá ještě tolerovat při n = 100 hodech ale už ne při n = 00 hodech Page 9

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma

Více

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost (8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo

Více

Testy. Pavel Provinský. 19. listopadu 2013

Testy. Pavel Provinský. 19. listopadu 2013 Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test

Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Testování statistických hypotéz. Obecný postup

Testování statistických hypotéz. Obecný postup poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

5 Parametrické testy hypotéz

5 Parametrické testy hypotéz 5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Náhodné veličiny, náhodné chyby

Náhodné veličiny, náhodné chyby Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Testování hypotéz. December 10, 2008

Testování hypotéz. December 10, 2008 Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

STATISTICKÉ HYPOTÉZY

STATISTICKÉ HYPOTÉZY STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

ÚVOD DO TEORIE ODHADU. Martina Litschmannová

ÚVOD DO TEORIE ODHADU. Martina Litschmannová ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Intervalové Odhady Parametrů

Intervalové Odhady Parametrů Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Příklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu

Příklad datového souboru. Pravděpodobnost vs. statistika. Formální definice. Teorie odhadu Pravděpodobnost vs. statistika Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými veličinami, jejichž rozdělení je známo Statistika odvozovali jsme charakteristiky těchto rozdělení

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,

Více

Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat

Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin

Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství

Více

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin

Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek 10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1 PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

ADDS cviceni. Pavlina Kuranova

ADDS cviceni. Pavlina Kuranova ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)

Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests) Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich

Více