POČÍTAČOVĚ INTENZIVNÍ METODY VE ZPRACOVÁNÍ VÝSLEDKŮ ANALYTICKÝCH MĚŘENÍ
|
|
- Břetislav Vopička
- před 8 lety
- Počet zobrazení:
Transkript
1 POČÍTAČOVĚ INTENZIVNÍ METODY VE ZPRACOVÁNÍ VÝSLEDKŮ ANALYTICKÝCH MĚŘENÍ JIŘÍ MILITKÝ, Katedra textilních materiálů, Technická universita v Liberci, 46 7 Liberec MILAN MELOUN, Katedra analytické chemie, Universita Pardubice, Pardubice Souhrn Příspěvek je zaměřen na problematiku zpracování výsledků měření z oblasti životního prostředí. Jsou popsány základní postupy počítačové intenzívní analýzy jednorozměrných výběrů vycházející z principu generace simulovaných výběrů (ootstrap). Je ukázáno použití této techniky pro konstrukci intervalu spolehlivosti střední hodnoty pro případ asymetrických rozdělení, resp. rozdělení výrazně odlišných od normálního.. ÚVOD Zpracování dat v analytické praxi využívá kombinace poznatků klasické analytické chemie, matematické statistiky a informatiky na jedné straně a speciálních postupů. chemometrie na straně druhé. Důležitou součástí analýzy dat jsou metody k získávání relevantních informací z experimentů a pozorování. Stále větší počet výkonných osobních počítačů třídy PC podporuje na pracovištích trend decentralizace a interaktivnosti při zpracování experimentálních dat a interpretaci výsledků. To klade větší nároky na pracovníky, kteří již těžko obhájí jednoduché postupy vyhodnocování dat, založené mnohdy na zjednodušených nebo i nesprávných předpokladech. Nabídka a možnosti počítačově orientovaného statistického zpracování dat nutí experimentátora k hlubší analýze, což vede většinou i k radikální změně pohledu na rutinně prováděnou výzkumnou práci. Existuje celé spektrum méně či více dokonalých a komplexních programů a programových systémů pro statistické vyhodnocování dat. Jiné jsou budovány jako univerzálně použitelné, i když zaměřené na specifické oblasti (chemometrie, biometrie, ekonometrie, medicínská statistika, obchodní statistika, statistika pro sociology, psychology, atd.). Přes současnou dostupnost personálních počítačů prakticky ve všech laboratořích (i domácnostech) se jejich využití omezuje na metody, které byly běžně používány v předpočítačové éře. To vede k omezení chyb lidského subjektu, nahrazení rutinních výpočtů strojem a zejména urychlení analýzy dat. Na druhé straně však počítač nepřináší nové informace a v konečném důsledku se stává práce etapa vyhodnocení experimentů nejslabším článkem metrologického řetězce. Klasickým případem, kdy je počítač nenahraditelný v metrologickém řetězci jsou počítačové intenzívní metody. Tyto metody jsou výhodné pro zpracování dat, kde je á priori možno předpokládat, že nebudou splněny podmínky pro klasickou statistickou analýzu. To jsou např. data v oblasti monitorování životního prostředí, kde: (a) rozsahy zpracovávaných dat nejsou obyčejně velké, (b) v datech se vyskytují výrazné nelinearity, neaditivity a vzájemné vazby, které je třeba identifikovat a popsat,
2 (c) rozdělení dat jen zřídka odpovídá normálnímu běžně předpokládanému ve standardní statistické analýze, (d) v datech se vyskytují podezřelá měření a různé heterogenity, (e) statistické modely se často tvoří na základě předběžných informací z dat (datově orientované přístupy), (f) parametry statistických modelů mají mnohdy definovaný fyzikální význam, a musí proto vyhovovat velikostí, znaménkem nebo vzájemným poměrem, (g) existuje jistá neurčitost při výběru modelu, popisujícího chování dat. Z hlediska použití statistických metod je proto žádoucí mít možnost zkoumat statistické zvláštnosti dat (průzkumová analýza), ověřovat základní předpoklady o datech a hodnotit kvalitu výsledků s ohledem na základní schéma "data - model - statistická metoda" S výhodou je možné využívat i alternativních postupů statistické analýzy včetně robustních, počítačově intenzivních a adaptivních metod. V tomto sdělení jsou na příkladu intervalu spolehlivosti střední hodnoty ukázány základní principy metody ootstrap využívající simulovaných výběrů. Vychází se z N-tice výsledků experimentů, t.j.dat {x i } i =,...N. Je ukázáno jak efektivně realizovat ootstrap výběry v jazyce MATLA. Celý postup je demonstrován na jednoduchém příkladu. S ohledem na rozsah příspěvku jsou vynechány detaily a odvození. Jejich přehled je uveden v knize [3] 2. Metoda OOTSTRAP Výše uvedené zvláštnosti dat z oblasti monitorování životního prostředí se projevují na asymetrii výběrového rozdělení. Ta pak omezuje použití různých technik založených na průzkumové analýze a identifikaci vybočujících měření. Také robustní techniky obyčejně selhávají, protože eliminují extrémy, které zde nejsou chybami ale důsledkem zešikmení rozdělení dat. Je známo, že pro konstrukci intervalu spolehlivosti populačního parametru p s je třeba znát rozdělení g(p) jeho odhadu p. Pro některá rozdělení (např. normální) a parametry (střední hodnota, rozptyl) jsou rozdělení odhadů nebo jejich funkcí známy a intervaly spolehlivosti je možné konstruovat relativně snadno. Pro odhad intervalu střední hodnoty z aritmetického průměru x A a výběrového rozptylu s 2 není normalita tak striktní požadavek.. Je známo, že pokud zpracovávaný výběr velikosti N prochází z ne - normálního rozdělení se střední hodnotou µ a rozptylem σ 2 má tzv. Studentova náhodná veličina t = N * ( x A µ ) / s () Studentovo rozdělení s (N - ) stupni volnosti. Asymptotické Studentovo rozdělení veličiny t umožňuje konstrukci intervalu spolehlivosti střední hodnoty µ. Při tzv. frekventistickém přístupu je ( - α) % na interval spolehlivosti CI definován vztahem P ( LC µ UC ) = α (2) Symbol P (.) označuje pravděpodobnost a α je tzv. hladina významnosti. Obyčejně se volí α =.5 nebo α =. s tím, že čím je α menší, tím je interval (LC, UC) širší.. Pokud není σ 2 známo lze použít vztah
3 s s x A t α / 2( N )* µ x A t α / 2( N )* (3) N N kde t N ) = t ( N ) jsou kvantily Studentova rozdělení s N- stupni volnosti. α / 2( α / 2 Pro případ normálního rozdělení má interval (3) přesně (-α) % ní pokrytí střední hodnoty.to znamená, že jen v α/2 % případů je střední hodnota menší než CI (nejistota NP zprava) a v α/2 % případů je větší než CI (nejistota NL zleva).pro případ nenormálního rozdělení platí tyto intervaly pouze asymptoticky tedy pro dostatečně vysoká N. Dostatečná velikost N závisí silně na šikmosti g(x) rozdělení z kterého data Pro neznámé rozdělení výběru x = (x..x N ) a libovolný parametr ps lze s výhodou použít techniku ootstrap, která umožňuje jak nalezení rozdělení výběrové statistiky p, tak i konstrukci intervalu spolehlivosti. Základní myšlenka metody ootstrap je jednoduchá[8,9]. Spočívá v generaci M-tice simulovaných výběrů v..v M označovaných jako ootstrap výběry. Jejich rozdělení odpovídá rozdělení původního výběru x, charakterizovaného hustotou pravděpodobnosti g(x). Z těchto výběrů se určí M-tice odhadů p i = p(x) hledaného parametru ps. Z této M-tice hodnot lze počítat intervaly spolehlivosti pomocí celé řady metod. 2. Odhad z asymptotické normality Jde o nejjednodušší postup založený na představě, že M je dostatečně veliké a p i i =..N lze zpracovat jako výběr z normálního rozdělení. Pro tzv. ootstrap odhad střední hodnoty parametru ps platí M p = (4) p i M i= a odpovídající rozptyl má tvar s M 2 2 = ( pi p ) M i= (5) Pro (-a) %ní interval spolehlivosti parametru ps se pak použije známý vztah p u u * s (6) α / 2 * s ps p + α / 2 kde u je kvantil normovaného normálního rozdělení. α / Percentilový odhad Tento postup je založen na neparametrickém odhadu mezí intervalu spolehlivosti vycházejícím z pořádkových statistik p (i),kde p (i) <= p (i+) jsou pořádkové statistiky, pro které platí, že jsou d %ním kvantilem rozdělení odhadu p pro d = i M + Dolní mez (-a) %ní intervalu spolehlivosti je pak LC = kde k = int[ α * ( M + ) / 2] (7) p ( k )
4 a pro horní mez platí UC = kde k 2 = int[( α / 2 )* ( M + )] (8) p ( k 2 ) Zde int (x) je celá část čísla x. 2.3 Studentizovaný odhad Tento odhad vychází z jednoduché transformace vedoucí na Studentizovanou náhodnou veličinu t i t i = p p i s i kde si je výběrová směrodatná odchylka počítaná pro i - tý ootstrap výběr vi. Pro (-a) %ní interval spolehlivosti pak platí p t * s ps p + t D D * s (9) kde pořádková statistika a pořádková statistika t D = t (int[ α *( M + ) / 2 ]) t H = t (int[( α / 2 )*( M + )]) 2.4 Vyhlazený odhad Obecně lze na základě hodnot p i sestavit odhad hustoty pravděpodobnosti jejich rozdělení fe(p) např. s využitím histogramu nebo jádrového odhadu. Při znalosti funkce fe(p) se snadno konstruuje interval spolehlivosti přímo z definice (2). Pro meze tohoto intervalu pak platí, že a α / 2 = α / LC 2 = fe( p )dp UC fe( p )dp Podle typu odhadu fe může jít o úlohu numerické nebo analytické integrace. 2.5 Generace ootstrap výběrů Základním předpokladem úspěšnosti celého postupu je generace ootstrap výběrů,. Pro tento účel je třeba buď znát nebo volit rozdělení g(x). Standardní technika neparametrického ootstrap vychází z neparametrického odhadu g(x) ve tvaru g( x ) = δ ( x xi ) () N kde Diracova funkce δ ( x xi ) = pro ( x = xi ) a všude jinde je. δ ( x xi ) =. Toto rozdělení pokládá pravděpodobnost /N v každém bodě. Simulované výběry se pak realizují jako náhodné výběry složené z prvků původního výběru x s vracením (tj. jeden prvek původního výběru se může v simulovaném výběru vyskytovat i opakovaně).
5 Další možností je konstruovat vhodný parametrický model g(x), odhadnout jeho parametry a generovat simulované výběry standardními postupy. Tento přístup naráží na celou řadu problémů souvisejících s možnou nehomogenitou, vybočujícími body, heteroskedasticitou a autokorelací. ootstrap metody obecně poskytují informace jak o bodových odhadech, tak i intervalech spolehlivosti. Uvažujme standardní neparametrický ootstrap (v i jsou výběry s vracením ) pro ps = m, tj. jde o střední hodnotu a její interval spolehlivosti střední hodnoty. Lze snadno určit, že v tomto případě je ootstrap průměr totožný s aritmetickým průměrem původních dat a ootstrap rozptyl je M-krát menší než rozptyl původních dat. Liší se však intervaly spolehlivosti zejména tam, kde se rozdělení dat výrazně odchyluje od normálního rozdělení. Kromě standardního ootstrap lze použít také dvojitý ootstrap (ootstrap aplikovaný na výběry v i ), blokový ootstrap (realizace výběru s vracením na bloky homogenních dat a sestavení celkového ootstrap výběru spojením výsledků). [9] 3. Realizace postupu ootstrap Z hlediska realizace metod ootstrap na počítači je základem generace simulovaných výběrů. Velmi jednoduše se dá tato operace provést v jazyku MATLA s využitím vektorového triku. Úsek programu má tvar ar=load('conc.txt');[c s]=size(ar); b=8; if c == ar=ar';c=s; end =ar(ceil(c*rand(c,b))); Předpokládá se, že data jsou v souboru conc.txt a b tice ootstrap výběrů je v poli. Pro výpočet odhadu p i se používá standardních postupů. Výpočet intervalů spolehlivosti je pak závislý na volbě přístupu (viz ). Program OOTM v jazyce MATLA počítá interval spolehlivosti střední hodnoty z předpokladu normality (2.), Studentizace (2.3) a percentilové metody (2.2). 4. Příklad. Určení koncentrace ethyl parathionu v ovzduší V rámci monitorování toxických látek byl monitorován toxický ethyl parathionu v ovzduší u Herber Station v Californii (data byla publikována v [8]). Získané koncentrace v mg/m 3 jsou Limita detekce přístroje je limd =. a hodnoty.9 jsou tedy pouze dosazeny Místo nich mohou být nuly, či jiná čísla od do..účelem je stanovit 95 procentní interval spolehlivosti střední hodnoty. A. ootstrap analýza pro původní dat S využití programu OOTM bylo určeno: Průměr =.245 a výběrový rozptyl =.79 Klasická normalita 95 % ní interval spolehlivosti UC =.384 LC =.6.ootstrap normalita 95 % ní interval spolehlivosti UC =.36 LC =.69
6 ootstrap pivot 95 % ní interval spolehlivosti UC =.396 LC =.26 ootstrap Student 95 % ní interval spolehlivosti UC =.278 LC =.72 Na obr. je uvedeno rozdělení veličin p i a t i Jsou patrné odchylky od normálního rozdělení Je patrné, že Studentizovaný ootsrap poskytuje výrazně nižší horní mez UC. 2 oot pivot 5 oot Student Obr, Rozdělení veličin p i a t i (původní data). ootstrap analýza pří nahrazení hodnot po limitou detekce nulou S využití programu OOTM bylo určeno: Průměr =.223 a výběrový rozptyl =.837 Klasická normalita 95 % ní interval spolehlivosti UC =.364 LC =.64.ootstrap normalita 95 % ní interval spolehlivosti UC =.36 LC =.69 ootstrap pivot 95 % ní interval spolehlivosti UC =.369 LC =.82 ootstrap Student 95 % ní interval spolehlivosti UC =.246 LC =.3 Na obr. 2 je uvedeno rozdělení veličin p i a t i Jsou opět vidět odchylky od normálního rozdělení Je patrné, že Studentizovaný ootsrap poskytuje výrazně nižší horní mez UC než ostatní metody a nahrazení podlimitních hodnot nulou má za důsledek snížení všech horních mezí. Právě Studentizovaný ootstrap je často považován za výhodný a doporučován pro komplexnější rozdělení dat.[9]. Je pochopitelně výhodnější zpracovávat tato data modelem, který uvažuje limitu detekce a tento příklad pouze demonstruje rozdíly mezi jednotlivými možnostmi.
7 2 oot pivot 3 oot Student Obr, 2 Rozdělení veličin p i a t i (nahrazení podlimitních hodnot nulou) 5. Závěr Je patrné, že pro statistické zpracování dat v analytické chemii a speciálně ve stopové analýze může být využito počítačově intenzivních metod bez větších problémů. Ve shodě s koncepcí satistical methods mining je často nezbytné kombinovat různé přístupy. Poděkování: Tato práce vznikla s podporou grantu MŠMT č. VS 9784, grantu GAČR. 6/99/84 a výzkumného záměru MŠMT č.j/98: Literatura [] Meloun M., Militký J.: Zpracování experimentálních dat, East Publishing Praha 998 [2] Shuway, R.M., Atazi, A.S., Johnson, P.: Technometrics 3, 347 (989) [3] oos D.D., Hughes-Oliver J. M.: Amer. Statist. 54, 2 (2) [4] Hall, P.: J.R. Stat. Sor. 54, 22 (992) [5] Chen L. : Environmetrica 6, 8 (995) [6] Chen L.: J. Appl. Statist. 25, 739 (998) [7] Shumway R. H. a kol.: Technometrics, 3, (989) [8] Wekrens, R. a kol.: Chem.Int. Lab. Systems 54, (2) [9] Davidson, A., Hinkley, D.V.,: ootstrap Methods and Their Applications, Cambridge Univ. Press, Cambridge, 997
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat )
Úloha E301 Čistota vody v řece testem BSK 5 ( Statistická analýza jednorozměrných dat ) Zadání : Čistota vody v řece byla denně sledována v průběhu 10 dní dle biologické spotřeby kyslíku BSK 5. Jsou v
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA)
PRŮZKUMOVÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Exploratory Data Analysis (EDA) Reprezentativní náhodný výběr: 1. Prvky výběru x i jsou vzájemně nezávislé. 2. Výběr je homogenní, tj. všechna x i jsou ze stejného
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE
UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT V OSTRAVĚ 20.3.2006 MAREK MOČKOŘ PŘÍKLAD Č.1 : ANALÝZA VELKÝCH VÝBĚRŮ Zadání: Pro kontrolu
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Statistická analýza jednorozměrných dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Statistická analýza jednorozměrných
Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2
Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Statistická analýza. jednorozměrných dat
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie icenční studium chemometrie Statistické zpracování dat Statistická analýza jednorozměrných dat Zdravotní ústav se sídlem v
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Statistická analýza
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Porovnání dvou reaktorů
Porovnání dvou reaktorů Zadání: Chemické reakce při kontinuální výrobě probíhají ve dvou identických reaktorech. Konstanty potřebné pro regulaci průběhu reakce jsou nastaveny pro každý reaktor samostatně.
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Kvantily a písmenové hodnoty E E E E-02
Na úloze ukážeme postup průzkumové analýzy dat. Při výrobě calciferolu se provádí kontrola meziproduktu 3,5 DNB esteru calciferolu metodou HPLC. Sleduje se také obsah přítomného ergosterinu jako nečistoty,
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
Nejlepší odhady polohy a rozptýlení chemických dat
Nejlepší odhady polohy a rozptýlení chemických dat Prof. RNDr. Milan Meloun, DrSc., Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice email: milan.meloun@upce.cz, http://meloun.upce.cz
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Uni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
VALIDACE GEOCHEMICKÝCH MODELŮ POROVNÁNÍM VÝSLEDKŮ TEORETICKÝCH VÝPOČTŮ S VÝSLEDKY MINERALOGICKÝCH A CHEMICKÝCH ZKOUŠEK.
VALIDACE GEOCHEMICKÝCH MODELŮ POROVNÁNÍM VÝSLEDKŮ TEORETICKÝCH VÝPOČTŮ S VÝSLEDKY MINERALOGICKÝCH A CHEMICKÝCH ZKOUŠEK. František Eichler 1), Jan Holeček 2) 1) Jáchymovská 282/4, 460 10,Liberec 10 Františkov,
STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Manuál pro zaokrouhlování
Manuál pro zaokrouhlování k předmětu Pravděpodobnost a Statistika (PS) Michal Béreš, Martina Litschmannová 19. března 2019 Obsah 1 Úvod 2 2 Obecné poznámky 2 2.1 Typy zaokrouhlování...........................................
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Stanovení nejistot při výpočtu kontaminace zasaženého území
Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních
Statistické zpracování výsledků
Statistické zpracování výsledků Výpočet se skládá ze dvou částí. Vztažná hodnota a také hodnota směrodatné odchylky jednotlivých porovnání se určuje z výsledků dodaných účastníky MPZ. V první části je
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces