Stacionární magnetické pole

Rozměr: px
Začít zobrazení ze stránky:

Download "Stacionární magnetické pole"

Transkript

1 Stacionání magnetické poe Vzájemné siové působení vodičů s poudem a pemanentních magnetů Magnetické jevy - známy od středověku, přesnější poznatky 19. stoetí. Stacionání magnetické poe: zdojem je nepohybující se pem.magnet nebo nepohybující se vodič s konst. poudem. Siové působení: a) tyčový magnet přibížíme k magnetce působí na ni mgn. poe nenuový moment si stočení magnetky do poohy s nuovým momentem mgn. si siové působení magnetky a magnetu je vzájemné (3. ewt. zákon) Pozn.: k sevenímu póu () se přitáhne jižní (S) a naopak. b) přímý vodič s konst. poudem a magnetka nad vodičem přetočení magnetky do nové ovnovážné poohy v okoí vodičů s poudem je mgn. poe (mgn. poe budí i pohybující se náboj). Pozn.: ení kvaitativní ozdí mezi mgn. poem magnetu a vodiče s poudem. c) k voně zavěšenému vodiči s poudem přibížíme magnet vodič se vychýí, změníme-i póy magnetu výchyka opačná Siové působení mezi pem. magnety a mezi pem. magnety a vodiči s poudem je vždy vzájemné. Magnetické síy působí postřednictvím mgn. poe. Říkáme, že mgn. poe působí mgn. siami na pemanentní magnety a vodiče s poudem. Magnetické indukční čáy Jsou myšené postoově oientované křivky, jejichž tečny v daném bodě mají smě osy vemi maé magnetky umístěné v tomto bodě. Smě od póu k S póu magnetky učuje oientaci indukční čáy. Mgn. indukční čáy jsou vždy uzavřené a nikde se nepotínají. Magnet: vně magnetu ind. čáy směřují od k S uvnitř od S k Po vodič s poudem: Ampéovo pavido pavé uky (APPR): aznačíme uchopení vodiče do pavé uky tak, aby paec ukazova smě poudu. Zahnuté psty pak ukazují smě (oientaci) magnetických indukčních ča (viz obázek). [1]

2 Ob. K Ampéovu pavidu pavé uky Homogenní mgn. poe: indukční čáy jsou ovnoběžky např. ve střední části vácové cívky Magnetická indukce Fyzikání veičina po kvantitativní popis mgn. poe v každém jeho bodě. I α homog. mgn. poe aktivní déka vodiče S na vodič působí sía = I sin α sin α půmět vodiče do vodoovné oviny (aktivní déka) α úhe mezi vodičem a indukčními čaami α ; π ) α = sinα = = π α = sinα = 1 F = I maximum 2 magnetická indukce (vektoová fyzikání veičina) = I sinα = [ ] T tesa běžné hodnoty,1 T,5T (v bízkosti pem. magnetů) vemi siné mgn. poe 1 T Smě smě souhasně oient. tečny k indukční čáře v daném bodě Po homogenní mgn. poe je konstantní směem i veikostí. je komá na i na vodič. [2]

3 I 1 I 2 Stacionání magnetické poe Fyzika 3. očník Smě Fm působící na přímý vodič s konstantním I v homogenním mgn. poi: Femingovo pavido evé uky (FPLR): Poožíme-i otevřenou evou uku k přímému vodiči tak, aby psty ukazovay smě poudu a indukční čáy vstupovay do daně, ukazuje odtažený paec smě síy, kteou působí mgn. poe na vodič s poudem. Vzájemné siové působení dvou přímých ovnoběžných vodičů s poudem Přibížíme-i k sobě dva vodiče s poudem, siově na sebe navzájem působí. Dva svisé pohybivé vodiče: souhasné poudy vodiče se přitahují indukční čáa koem 1. vodiče pode APPR siové účinky na 2. vodič od 1. vodiče pode FPLR (obdobně po indukční čáy 2.vodiče a si. účinky na 1. vodič) 1 2 nesouhasné poudy vodiče se odpuzují I 1 I 2 Pozn.: Obdobné jevy po dvě vácové souosé cívky s poudem 1 2 [3]

4 Veikost síy dvou vemi douhých ovnoběžných vodičů s I: I I = d 1 2 F k déka vodičů d vzdáenost vodičů d musí být << µ k = µ pemeabiita postředí 2π pemeabiita vakua µ = 4π 1 7 A 2 µ eativní pemeabiita µ =. vakuum, vzduch µ = 1 µ µ I1I2 µ µ I1I2 F = = (*) 2π d 2π d Užitím vztahu = a vztahu (*) dostaneme vztah po veikost vektou mgn. indukce I sin α µ I ve vzdáenosti d od douhého přímého vodiče s poudem I: = 2π d Pozn.: sin α = 1; vodič komý na a zákadě vzájemného siového působení dvou vodičů s poudem vznika definice ampéu. Definice ampéu: Ampé je stáý poud, kteý při půchodu dvěma přímými ovnoběžnými nekonečně douhými vodiči zanedbateného půřezu umístěnými ve vakuu ve vzdáenosti 1 m od sebe vyvoá mezi vodiči síu o veikosti na 1 m déky každého vodiče. Magnetické poe cívky Veikost vektou magn. indukce nekonečně douhé hustě navinuté vácové cívky ve vakuu: = µ I µ pemeabiita vakua déka části cívky počet závitů části cívky o déce hustota závitů cívky [4]

5 I pocházející poud cívkou Oientaci mgn.ind. ča cívky učíme Ampéovým pavidem pavé uky po cívku: Pavou uku poožíme na cívku tak, aby zahnuté psty ukazovay smě poudu v závitech cívky, paec ukazuje smě (oientaci) indukčních ča v dutině cívky. Upostřed douhé vácové cívky je téměř homogenní mgn. poe. Hemhotzovy cívky (dvě stejné úzké kuhové cívky se spoečnou osou, jejichž vzájemná vzdáenost je ovna jejich pooměu, oběma pochází poud souhasným směem): zdoj téměř homogenního. sabého poe Tooidní cívka (tooid): pstencová cívka (pstenec má kuh. půřez) Částice s nábojem v mgn. poi Sía půs. na vodič s I: = I sin α Jde vastně o výsednici si působících na jednotivé částice s nábojem. eektonů cekový Q = e eektony mají ychost (stáou) v za čas t uazí dáhu = t v poud, kteý pojde vodičem za dobu t I = Q Fm = t v sinα = Q v sinα t sía půs. na voný eekton: F = e v sinα m α úhe mezi směem pohybu náboje a indukčními čaami je komá na v a na. Smě půs. síy učíme pomocí FPLR, místo i dáme v - je-i Q > sía má stejný smě jako pode FPLR Q t [5]

6 - je-i Q < Fm opačný smě než pode FPLR Je-i částice s nábojem záoveň v e. a mgn. poi, působí na ní Fm i Fe F = F + F tzv. Loentzova sía L m e Vetí-i částice s nábojem do hom. mgn. poe komo na pohybuje se po kužnici v ovině komé na 2 v Q v sinα = m α = 9 sin α = 1 = mv Q poomě dáhy částice paktická apikace siového působení mgn. poe na částice s nábojem např.teevizní obazovka Haův jev: kovovou nebo poovodičovou destičku, kteou pochází e. poud vožíme do mgn. poe, aby vekto mgn. indukce by na destičku komý mezi bočními hanami destičky se vytvoří tzv. Haovo napětí U h. I ee v e E U h Mgn. sía Fm působí na voné částice s nábojem v destičce a ty se přemisťují k jedné boční stěně destičky, zde vzniká nadbytek nositeů náboje, u duhé boční stěny je jich nedostatek vznikne příčné e. poe o intenzitě E. F = F = ee. Tomu odpovídá Haovo napětí, je přímo v ovnovážném stavu patí m e ( ) úměné veikosti vektou mgn. indukce ( U = k ) Závit s poudem v mgn. poi H Tak jako magnetka se stočí v magnet. poi i ovinný závit a to tak, že nomáa pochy má smě mgn. indukce. [6]

7 F 2 n a 4 α b I F 1 U vodičů 23 a 41 na obázku je smě síy dán pode FPLR, na vodiče 34 a 12 sía nepůsobí, neboť jejich komý půmět do oviny komé na vekto mgn. indukce je nuový. F 1 = F 2 = I a (pozn.: sinα = a) α úhe mezi n a F 1, F 2 - Jedná se o dvojici si (viz 1. očník), její moment je definován M = F d d vzdáenost působiště si M = I a b = I S v tomto případě je Obecně: M = I S sinα (viz obázek ) π α = M maximání 2 F 2 n a α b F 4 I F 3 F 1 Při obecné pooze závitu se síy F3 a F4 vyuší nemají otáčivý účinek. Ampéův magnetický moment součin I S = m [m] = A m 2 Je komý na ovinu závitu, jeho smě je shodný se směem vektou mgn. indukce [7]

8 vastního mgn. poe závitu. m důežitá veičina po všechny fyz. objekty, kt. vytváří mgn. poe, ty se vždy snaží zaujmout takovou poohu, kdy m má stejný smě jako vnějšího poe. Příkad 1: Douhá vácová cívka, kteou pochází poud 1 A, má 4 závitů a déku 4 cm. Upostřed její dutiny je kuhový závit o pooměu 2 cm, kteým pochází poud,1 A. a) Jaký maximání moment síy může působit na závit? b) Jakou výsednou poohu vzhedem k cívce zaujme závit, může-i se voně otáčet? I 1 = 1 A, = 4, =,4 m, I 2 =,1 A, =,2 m M =?, α =? a) I M = I2 S = µ 2 I1 I2 π µ M = 6 1 M = 1,58 1 m 1 b) Výsedná pooha závitu: m (α = ) 6-1 Maximání moment síy působící na závit je 1,58 1 m a závit zaujme vzhedem k cívce poohu takovou, že jeho nomáa je ovnoběžná s vektoem magnetické indukce poe cívky, tj. ovina závitu je komá k ose cívky. Látky v magnetickém poi - předměty z ůzných átek se chovají v magnetickém poi ůzně Feomagnetické átky: eagují výazně na mgn. poe efeomagnetické átky: ostatní Eektony mají dva ůzné mgn. momenty: obitání mgn. moment - v důsedku pohybu e. koem jáda spinový mgn. moment - vastní mgn. moment eektonu vektoový součet těchto momentů dá magnetický moment atomu m a Atomy se děí na: diamagnetické m a = paamagnetické m a Diamagnetické átky: z diamgn. atomů, nepatně zesabují vnější magnetické poe, µ < 1, [8]

9 inetní pyny, zato, měď Paamagnetické átky: z paamgn. atomů, nepatně zesiují mgn. poe, µ > 1, patina, hiník, mangan Feomagnetické átky: z paamgn. atomů, mezi atomy působí tzv. výměnné síy (jejich původ vysvětuje kvantová mechanika), způsobují paaení uspořádání mgn. momentů atomů v ceém vzoku není uspořádání stejné - vznikají mgn. domény (magneticky nasycené obasti feomagnetické átky) a při větším mgn. poi nastává magnetování átky domény zvětšují svůj objem a jejich mgn. momenty se stáčejí do směu vektou Zváštní postavení mají feity: sožitější než feomagnetické átky, mají veký e. odpo (jáda cívek, pemanentní magnety) Magnetická hysteeze veikost vektou mgn. indukce douhé cívky ve vakuu: = µ I veikost mgn. indukce mgn. poe v jádře cívky o eativní pemeabiitě µ : = µ Zavedeme novou veičinu: intenzita mgn. poe H : 1 H = I [ H ] = A m po jádo patí: = µ µ H = µ H µ u feomagnetických átek není konst., závisí na H (závisost na H ) = µ µ H není ineání, je popsána hysteezní smyčkou [9]

10 Hysteezí smyčka (hysteeze = nevatnost): K M Q H H H k P hyst. smyčka - chaakteistika feomgn. átek: šioká-mgn. tvdé úzká-mgn. měkké Křivka - K křivka pvotní magnetizace bod K nasycení átky (paaení usp. domén) Zmenšování intenzity mgn. poe křivka K Při dosažení nuové hodnoty intenzity mgn. poe nekesne hodnota na nuu, ae na hodnotu emanentní mgn. indukce - átka je zmagnetovaná Při změně směu H na opačný H k - koecitivní hodnota intenzity mgn. poe při ní kesne veikost mgn. indukce v átce na nuu átka se odmagnetuje od nasycení átky Při daším zmenšování H a násedné změně směu H na opačný - křivka K Magnetické mateiáy v technické paxi mgn. tvdé átky výoba pemanentních magnetů mgn. měkké átky jáda po zesíení mgn. poe cívky [1]

11 užití mgn. mateiáů: eektomagnet. eé, měřící přístoje s otočnou cívkou (magnetoeektické, depézské), eektomagnety aj [11]

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Magnetické pole najdeme kolem permanentního magnetu (i kolem Země) a zároveň kolem každého vodiče, kterým prochází elektrický proud.

Magnetické pole najdeme kolem permanentního magnetu (i kolem Země) a zároveň kolem každého vodiče, kterým prochází elektrický proud. MAGNETCKÉ POLE 1. Základní chaakteistiky Magnetické pole se tvoří kolem každé částice s nábojem Q, kteá je v pohybu. Tzn., že magnetismus látek je dán stuktuou atomů (elektony jsou v atomu v pohybu). Magnetické

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum

IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum IV. Magnetické pole ve vakuu a v magnetiku Osnova: 1. Magnetické pole el. poudu 2. Vlastnosti mg. pole 3. Magnetikum 1. Magnetické pole el. poudu histoický úvod podivné expeimenty ukazující neznámé silové

Více

3.7. Magnetické pole elektrického proudu

3.7. Magnetické pole elektrického proudu 3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Vzájemné silové působení

Vzájemné silové působení magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,

Více

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

STACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník STACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Magnetické pole Vytváří se okolo trvalého magnetu. Magnetické pole vodiče Na základě experimentů bylo

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky ZÁKLADY FYZIKY II Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr Jan Z a j í c, CSc, 005 4 MAGNETICKÉ JEVY 4 NESTACIONÁRNÍ ELEKTROMAGNETICKÉ

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)

Více

Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v

Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v Páce vykonaná v eektickém poi, napětí, potenciá Vzájemná souvisost mezi intenzitou eektického poe, napětím a potenciáem Páce vykonaná v eektostatickém poi po uzavřené dáze Gadient skaání funkce Skaání

Více

Jev elektromagnetické indukce

Jev elektromagnetické indukce Jev eektromagnetické indukce V minuých kapitoách jsme si jistě uvědomii, že pojmy kid a pohyb, které byy vemi významné u mechanických dějů, při zkoumání eektrických a magnetických jevů nabyy přímo zásadní

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

18. Stacionární magnetické pole

18. Stacionární magnetické pole 18. Stacionární magnetické pole 1. "Zdroje" magnetického pole a jeho popis a) magnetické pole tyčového permanentního magnetu b) přímého vodiče s proudem c) cívky s proudem d) magnetická indukce e) magnetická

Více

Proudění plynu vakuovým potrubím

Proudění plynu vakuovým potrubím Poudění pynu vakuovým potubím - ozdí taků - poud pynu - vodivost, (odpo) potubí Jaká je anaogie s eektickými veičinami? Vacuum Technoogy J.Šandea, FEE, TU Bno Poudění pynu vakuovým potubím Je třeba znát

Více

Stacionární magnetické pole Nestacionární magnetické pole

Stacionární magnetické pole Nestacionární magnetické pole Magnetické pole Stacionární magnetické pole Nestacionární magnetické pole Stacionární magnetické pole Magnetické pole tyčového magnetu: magnetka severní pól (N) tmavě zbarven - ukazuje k jižnímu pólu magnetu

Více

Magnetické pole - stacionární

Magnetické pole - stacionární Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,

Více

Digitální učební materiál

Digitální učební materiál Číso pojeku Název pojeku Číso a název šabony kíčové akvy Dgání učební maeá CZ..7/.5./34.8 Zkvanění výuky posředncvím ICT III/ Inovace a zkvanění výuky posředncvím ICT Příjemce podpoy Gymnázum, Jevíčko,

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu

Více

Elektřina a magnetizmus magnetické pole

Elektřina a magnetizmus magnetické pole DUM Základy přírodních věd DUM III/2-T3-13 Téma: magnetické pole Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus magnetické pole

Více

, F je síla působící mezi náboji, Q je velikost nábojů, r je jejich r vzdálenost, k je konstanta

, F je síla působící mezi náboji, Q je velikost nábojů, r je jejich r vzdálenost, k je konstanta Elektřina a magnetismus elektický náboj el. síla el. pole el. poud ohmův z. mag. pole mag. pole el. poudu elmag. indukce vznik střídavého poudu přenos střídavého poudu Elektřina světem hýbe Elektický náboj

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektické a magnetické pole zdoje polí Co je podstatou elektomagnetických jevů Co jsou elektické náboje a jaké mají vlastnosti Co je elementání náboj a bodový elektický náboj Jak veliká je elektická síla

Více

FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektotechniky 8. přednáška Elektoagnetisus Elektoagnetisus Elektoagnetisus - agnetické účinky el. poudu Biot - Savatův zákon (zákon celkového poudu) Magnetická indukce Magnetický tok Apéův zákon

Více

1.7 Magnetické pole stacionárního proudu

1.7 Magnetické pole stacionárního proudu 1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

4.5.7 Magnetické vlastnosti látek

4.5.7 Magnetické vlastnosti látek 4.5.7 Magnetické vlastnosti látek Předpoklady: 4501 Předminulá hodina magnetická indukce závisí i na prostředí, ve kterém ji měříme permeabilita prostředí = 0 r, r - relativní permeabilita prostředí (zda

Více

Magnetické pole se projevuje silovými účinky - magnety přitahují železné kovy.

Magnetické pole se projevuje silovými účinky - magnety přitahují železné kovy. Magnetické pole Vznik a zobrazení magnetického pole Magnetické pole vzniká kolem pohybujících se elektrických nábojů. V případě elektromagnetů jde o pohyb volných elektronů (nosičů elektrického náboje)

Více

Posuvný a rotační pohyb tělesa.

Posuvný a rotační pohyb tělesa. Posuvný a otační pohyb těesa. Zákady echaniky, 4. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot Doba studia : asi,5 hodiny Cí přednášky : seznáit studenty se zákadníi

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

seznámit studenty se základními typy pohybu tělesa, s kinematikou a dynamikou posuvného a rotačního pohybu

seznámit studenty se základními typy pohybu tělesa, s kinematikou a dynamikou posuvného a rotačního pohybu Dynaika, 5. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot Doba studia : asi,5 hodiny Cí přednášky : seznáit studenty se zákadníi typy pohybu těesa, s kineatikou a

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL Předmět: Ročník: Vytvoři: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 9. ČERVNA 2013 Název zpracovaného ceku: NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL ÚLOHA 1

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

3.1 Magnetické pole ve vakuu a v látkovén prostředí

3.1 Magnetické pole ve vakuu a v látkovén prostředí 3. MAGNETSMUS 3.1 Magnetické pole ve vakuu a v látkovén prostředí 3.1.1 Určete magnetickou indukci a intenzitu magnetického pole ve vzdálenosti a = 5 cm od velmi dlouhého přímého vodiče, jestliže jím protéká

Více

Elektromagnetismus 163

Elektromagnetismus 163 Elektromagnetismus 163 I I H= 2πr Magnetické pole v blízkosti vodi e s proudem x r H Relativní permeabilita Materiály paramagnetické feromagnetické (nap. elezo, nikl, kobalt) diamagnetické Ve vzduchu je

Více

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz

Více

Magnetické pole. Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů.

Magnetické pole. Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů. Magnetické pole Magnetické pole je silové pole, které vzniká následkem pohybu elektrických nábojů. Magnetické pole vytváří buď pemanentní magnet nebo elektromagnet. Magnet buzený elektrickým proudem, elektromagnet

Více

Elektřina a magnetismus Elektrostatické pole

Elektřina a magnetismus Elektrostatické pole Elektostatické pole Elektostatické pole je posto (v okolí elekticky nabitých částic/těles), ve kteém na sebe náboje působí elektickými silami. Zdojem elektostatického pole jsou elektické náboje (vázané

Více

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující

Více

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.

Více

v 1 = at 1, (1) t 1 = v 1

v 1 = at 1, (1) t 1 = v 1 Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

MAGNETICKÉ POLE Vlastnosti magnetů TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

MAGNETICKÉ POLE Vlastnosti magnetů TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. MAGNETICKÉ POLE Vlastnosti magnetů TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vlastnosti magnetického pole Některé železné rudy, zvláště magnetovec

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

Elektřina a magnetismus úlohy na porozumění

Elektřina a magnetismus úlohy na porozumění Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li

Více

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1. Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,

Více

Kmitavý pohyb trochu jinak

Kmitavý pohyb trochu jinak Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety Magnetické pole Ve starověké Malé Asii si Řekové všimli, že kámen magnetovec přitahuje podobné kameny nebo železné předměty. Číňané kolem 3. století n.l. objevili kompas. Tyčový magnet (z magnetovce nebo

Více

Magnetická indukce příklady k procvičení

Magnetická indukce příklady k procvičení Magnetická indukce příklady k procvičení Příklad 1 Rozhodněte pomocí (Flemingova) pravidla levé ruky, jakým směrem bude působit síla na vodič, jímž protéká proud, v následujících situacích: a) Severní

Více

Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů

Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)

Více

Pohyb tělesa. rovinný pohyb : Všechny body tělesa se pohybují v navzájem rovnoběžných rovinách. prostorový pohyb. posuvný pohyb. rotační.

Pohyb tělesa. rovinný pohyb : Všechny body tělesa se pohybují v navzájem rovnoběžných rovinách. prostorový pohyb. posuvný pohyb. rotační. Pohyb těesa posuvný pohyb otační pohyb obecný ovinný pohyb posuvný pohyb ovinný pohyb : Všechny body těesa se pohybují v navzáje ovnoběžných ovinách. postoový pohyb sféický pohyb šoubový pohyb obecný postoový

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet

Více

1. ELEKTROMAGNETICKÉ JEVY 1.1. MAGNETICKÉ POLE

1. ELEKTROMAGNETICKÉ JEVY 1.1. MAGNETICKÉ POLE 1. ELEKTROMAGNETICKÉ JEVY 1.1. MAGNETICKÉ POLE Víme, že kolem každého magnetu a kolem zmagnetizovaných předmětů je magnetické pole. To se projevuje přitažlivou silou na tělesa z feromagnetických látek.

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

Název: Měření magnetického pole solenoidu

Název: Měření magnetického pole solenoidu Název: Měření magnetického pole solenoidu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Elektřina

Více

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ V celé této kapitole budeme předpokládat, že se pohybujeme v neomezeném lineáním homogenním izotopním postředí s pemitivitou = 0, pemeabilitou = 0 a měnou vodivostí.

Více

Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole

Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole Elektomagnetické jevy, elektické jevy 4. Elektický náboj, elektické pole 4. Základní poznatky (duhy el. náboje, vodiče, izolanty) Někteé látky se třením dostávají do zvláštního stavu přitahují lehká tělíska.

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA)

MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA) MAGNETICKÉ POLE V REÁLNÉM PROSTŘEDÍ ( MAGNETIKA) Aplikace : Magnetický HD Snímání binárního signálu u HD HD vývoj hustota záznamu PC hard disk drive capacity (in GB). The vertical axis is logarithmic,

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 5 Magnetické pole Pro potřeby

Více

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu? . LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,

Více

6. Rozptyl Leoš Dvořák, MFF UK Praha, Rozptyl

6. Rozptyl Leoš Dvořák, MFF UK Praha, Rozptyl K přednášce NUFY8 Teoretická mechanika 6. Rozpty Leoš Dvořák, MFF UK Praha, 14 Rozpty Z předchozí kapitoy umíme spočítat pohyb částice v poi centrání síy. Nyní toho využijeme pro případ ehké částice (napříkad

Více

5 Stacionární magnetické pole HRW 28, 29(29, 30)

5 Stacionární magnetické pole HRW 28, 29(29, 30) 5 STACIONÁRNÍ MAGNETICKÉ POLE HRW 28, 29(29, 30) 31 5 Stacionární magnetické pole HRW 28, 29(29, 30) 5.1 Magneticképole,jehozdrojeaúčinkyHRW28(29) 5.1.1 Permanentní magnet Vedle výhradně přitažlivé interakce

Více

(2. Elektromagnetické jevy)

(2. Elektromagnetické jevy) (2. Elektromagnetické jevy) - zápis výkladu z 9. a 13. hodiny- B) Magnetické pole vodiče s proudem prochází-li vodičem elektrický proud vzniká kolem něj díky pohybujícímu se náboji (toku elektronů) magnetické

Více

Příklady: 31. Elektromagnetická indukce

Příklady: 31. Elektromagnetická indukce 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Bc. Karel Hrnčiřík

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Bc. Karel Hrnčiřík Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Bc. Karel Hrnčiřík Magnetické pole je kolem vodiče s proudem. Magnetka se natáčí ve směru tečny ke kruhové

Více

Obvody s rozprostřenými parametry

Obvody s rozprostřenými parametry Obvody s rozprostřenými parametry EO2 Přednáška 12 Pave Máša - Vedení s rozprostřenými parametry ÚVODEM Každá kroucená dvojinka UTP patch kabeu je samostaným vedením s rozprostřenými parametry Impedance

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_5_Stacionární magnetické pole Ing. Jakub Ulmann 5 Stacionární magnetické pole 5.1 Magnetické pole kolem

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

4.5.1 Magnety, magnetické pole

4.5.1 Magnety, magnetické pole 4.5.1 Magnety, magnetické pole Předpoklady: 4101 Celá hodina je pouze opakování ze základky. Existuje speciální druh látek, které jsou schopny působit jedna na druhou nebo přitahovat železné předměty.

Více

3.1.7 Kyvadlo. Předpoklady: 3106

3.1.7 Kyvadlo. Předpoklady: 3106 37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E.

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. MAGNETICKÉ POLE V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. Podobně i magnety vytvářejí pole v každém bodě prostoru.

Více

Moment síly, spojité zatížení

Moment síly, spojité zatížení oment síly, spojité zatížení Pet Šidlof TECHNICKÁ UNIVERZITA V LIBERCI akulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ES CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

Ročník VI. Fyzika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Fyzika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Látka a těleso IX X.. Seznámení s tím, co nás obklopuje, z čeho se tělesa skládají. Zavedení skupenství látek, vlastnosti atomů a molekul. Metoda monologická,dialogická, práce s knihou, s tabulkami,výukový

Více

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus

Kapitola 3. Magnetické vlastnosti látky. 3.1 Diamagnetismus Kapitola 3 Magnetické vlastnosti látky Velká část magnetických projevů je zejména u paramagnetických a feromagnetických látek způsobena především spinovým magnetickým momentem. Pokud se po sečtení všech

Více

Mezní napětí v soudržnosti

Mezní napětí v soudržnosti Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže

Více

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701 I Stabi Lepený kombinovaný nosník se stojnou z desky z orientovaných pochých třísek - OSB Navrhování nosníků na účinky zatížení pode ČSN 73 1701 Část A Část B Část C Část D Výchozí předpokady, statické

Více

Práce v elektrickém poli Elektrický potenciál a napětí

Práce v elektrickém poli Elektrický potenciál a napětí Práce v elektrickém poli Elektrický potenciál a napětí Elektrický potenciál Pohybuje-li se elektrický náboj v elektrickém poli, konají práci síly elektrické anebo vnější. Tohoto poznatku pak použijeme

Více

Linearní teplotní gradient

Linearní teplotní gradient Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz

Více

VY_52_INOVACE_2NOV71. Autor: Mgr. Jakub Novák. Datum: 19. 3. 2013 Ročník: 6. a 9.

VY_52_INOVACE_2NOV71. Autor: Mgr. Jakub Novák. Datum: 19. 3. 2013 Ročník: 6. a 9. VY_52_INOVACE_2NOV71 Autor: Mgr. Jakub Novák Datum: 19. 3. 2013 Ročník: 6. a 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Magnetické

Více

19. Elektromagnetická indukce

19. Elektromagnetická indukce 19. Elektromagnetická indukce Nestacionární magnetické pole časově proměnné. Existuje kolem nehybných vodičů s proměnným proudem, kolem pohybujících se vodičů s konstantním nebo proměnným proudem nebo

Více

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa

Více