seznámit studenty se základními typy pohybu tělesa, s kinematikou a dynamikou posuvného a rotačního pohybu
|
|
- Radovan Matoušek
- před 5 lety
- Počet zobrazení:
Transkript
1 Dynaika, 5. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot Doba studia : asi,5 hodiny Cí přednášky : seznáit studenty se zákadníi typy pohybu těesa, s kineatikou a dynaikou posuvného a otačního pohybu
2 Pohyb těesa Dynaika, 5. přednáška posuvný pohyb otační pohyb obecný ovinný pohyb posuvný pohyb ovinný pohyb : Všechny body těesa se pohybují v navzáje ovnoběžných ovinách. postoový pohyb sféický pohyb šoubový pohyb obecný postoový pohyb
3 Pohyb těesa Dynaika, 5. přednáška posuvný pohyb Žádná příka těesa neění svůj sě.
4 Pohyb těesa Dynaika, 5. přednáška Jedna příka těesa neění svou poohu. otační pohyb
5 Pohyb těesa Dynaika, 5. přednáška obecný ovinný pohyb
6 Pohyb těesa Dynaika, 5. přednáška Žádná příka těesa neění svůj sě. posuvný pohyb
7 Pohyb těesa Dynaika, 5. přednáška Jeden bod těesa neění svou poohu. sféický pohyb
8 Pohyb těesa Dynaika, 5. přednáška Jeden bod těesa neění svou poohu. sféický pohyb
9 Pohyb těesa Dynaika, 5. přednáška ěeso otuje okoo osy a současně se posouvá ve sěu této osy. otace šoubový pohyb posuv
10 Pohyb těesa Dynaika, 5. přednáška obecný postoový pohyb
11 posuvný pohyb otační pohyb obecný ovinný pohyb posuvný pohyb sféický pohyb šoubový pohyb obecný postoový pohyb Pohyb těesa ovinný pohyb postoový pohyb Dynaika, 5. přednáška Jakýkoiv pohyb těesa je jeden z těchto 6 typů pohybu.
12 Posuvný pohyb. Dynaika, 5. přednáška Žádná příka těesa neění svůj sě. y,, 3 stupně vonosti η A x,y,z - pevný (nehybný) souřadný systé; počátek P P ζ Ω ξ ξ,η,ζ - těesový souřadný systé - pevně spojený s těese; počátek Ω x ξ//x, η//y, ζ//z z A - běžný bod těesa
13 Posuvný pohyb. Dynaika, 5. přednáška Žádná příka těesa neění svůj sě. y,, 3 stupně vonosti A Ω + AΩ P A Ω ζ η Ω AΩ A ξ A - poohový vekto bodu A vůči xyz Ω - poohový vekto bodu Ω vůči xyz, pooha těesa v postou z x AΩ - poohový vekto bodu A vůči ξηζ, pooha bodu A uvnitř těesa
14 Posuvný pohyb. Dynaika, 5. přednáška Žádná příka těesa neění svůj sě. y,, 3 stupně vonosti P A Ω ζ η Ω AΩ A ξ A v A v A Ω + AΩ deivace pode času & & & 0 v Ω + A Ω A Ω & A Ω z Poohový vekto AΩ á veikost a sě. Veikost je konstantní s ohede na nedefoovatenost těesa -těeso se neůže potáhnout, patí vždy (po absoutně tuhé těeso). Sě je konstantní s ohede na definici posuvného pohybu - patí pouze po posuvný pohyb. x
15 Posuvný pohyb. Dynaika, 5. přednáška Žádná příka těesa neění svůj sě. y,, 3 stupně vonosti z P A Ω ζ η Ω AΩ A ξ x A v a A v A Ω + AΩ A a A deivace pode času & & & 0 v Ω + A Ω A Ω & A Ω Všechny body se pohybují po stejné tajektoii, stejnou ychostí, se stejný zychení. deivace pode času v& A v& Ω a Ω a Ω
16 Posuvný pohyb. Žádná příka těesa neění svůj sě. Dynaika, 5. přednáška Pohyb posuvný příočaý. Všechny body se pohybují po stejné tajektoii, stejnou ychostí, se stejný zychení.
17 Posuvný pohyb. Žádná příka těesa neění svůj sě. Dynaika, 5. přednáška Pohyb posuvný kuhový. R Všechny body se pohybují po stejné tajektoii, stejnou ychostí, se stejný zychení.
18 Posuvný pohyb. Žádná příka těesa neění svůj sě. Dynaika, 5. přednáška Pohyb posuvný cykoidní. Všechny body se pohybují po stejné tajektoii, stejnou ychostí, se stejný zychení.
19 Posuvný pohyb - dynaika. a Fi Dynaika, 5. přednáška Pohybová ovnice posuvného pohybu těesa je shodná s pohybovou ovnicí hotného bodu. Všechny body těesa ají stejné zychení.
20 Posuvný pohyb - dynaika. Poznáka k ovnicí ovnováhy : po soustavu si s ůzný působiště usí být saozřejě spněna i oentová ovnice ovnováhy. dg d d dg G d dg d dg íhová sía G je výsednicí nekonečně noha eeentáních tíhových si dg. Eeentání tíhová sía dgd g. Gavitační zychení g á ve všech bodech stejnou veikost i sě. D dd dd a d Dynaika, 5. přednáška d a dd D a + D 0 F i d Aebetův pincip á stejnou podobu jako u hotného bodu. dd d a d a Vzniká otázka kde eží působiště d Aebetovy síy. D Aebetova sía D je výsednicí nekonečně noha eeentáních d Aebetových si dd. Eeentání d Aebetova sía ddd a. Zychení a á ve všech bodech stejnou veikost i sě.
21 Posuvný pohyb - dynaika. Poznáka k ovnicí ovnováhy : po soustavu si s ůzný působiště usí být saozřejě spněna i oentová ovnice ovnováhy. dg d d dg G d dg d dg D dd Dynaika, 5. přednáška D a + D 0 F i d Aebetův pincip á stejnou podobu jako u hotného bodu. dd a d d a dd dd d a d a Vzniká otázka kde eží působiště d Aebetovy síy. Z anaogie ezi ozožení eeentáních tíhových si dg a eeentáních d Aebetových si dd vypývá : D Aebetova sía D působí v těžišti. Spávně působí ve středu hotnosti. Je-i těeso aé (ve sovnání se Zeí), je gavitační zychení g ve všech bodech těesa shodné. Střed hotnost a těžiště pak spývají v jeden bod.
22 G Posuvný pohyb - dynaika. a Fi pohybová ovnice A φ φ a t ω ω0 B D a t G A b C G cos φ ε g cos φ g ε cos φ dω g ω cos φ dφ g ωdω cos φdφ φ g ωdω cos φdφ φ0 ω g ω φ ω0 sin [ ] [ ] φ φ 0 b B Dynaika, 5. přednáška g ( ) ω0 + ( sin φ sin φ0 ) ω φ v Za účee sestavení (a násedného řešení) pohybové ovnice ze těeso nahadit hotný bode... kteýkoiv - všechny body se pohybují po stejné tajektoii stejnou ychostí a se stejný zychení. ( φ) ω( φ) ω0 + g ( sin φ sin φ0 )
23 Posuvný pohyb - dynaika. d Aebetův pincip Do těžiště zavedee d Aebetovu síu - tečnou a noáovou sožku. D t a t D g cos φ G A b C b B Dynaika, 5. přednáška D a + D 0 F i A B D n a n ω ω 0 + g ( sin φ sin φ ) 0 y D x S D D t D n G S C C Ze tří ovnic ovnováhy vyřešíe : ) pohybovou ovnici, ) eakční síy. F xi 0 F yi 0 M i 0 ε g cos φ SC K S D K
24 Posuvný pohyb - dynaika. a Fi A b B Dynaika, 5. přednáška D a + D 0 F i b D C G Po sestavení (a násedné řešení) pohybové ovnice ze hotu soustředit do jednoho bodu a řešit pohyb hotného bodu. Po řešení si (nejčastěji eakcí) je třeba počítat s ozěy těesa a uvažovat soustavu si s ůzný působiště. D Aebetovu síu pak zavádíe do těžiště.
25 Rotační pohyb. Dynaika, 5. přednáška Jedna příka těesa neění svou poohu (osa otace). o každý bod se pohybuje po kužnici o pooěu R stupeň vonosti ω, ε φ úhe natočení dφ ω, ε φ ω φ& úhová ychost dt dω d φ ε ω & & φ úhové zychení dt dt ( dω d ω ) ε ω a dφ dφ t v s φ R a n poohový vekto v ω R v ω R φ, ω, ε v obvodová ychost a S t εr a t ε a t tečné zychení a n ω R a n ω v a n noáové zychení
26 Dynaika, 5. přednáška Rotační pohyb - dynaika. V dynaice nevystačíe s pohybovou ovnicí a Fi ω, ε hotného bodu! d Aebetův pincip S a t a n d dd n dd t nahazení siové soustavy Z těesa vybeee hotový eeent d. ou přiřadíe tečné a noáové zychení a t a a n. Zavedee eeentání d Aebetovy síy dd t a dd n (tečnou a noáovou). Povedee ekvivaentní nahazení siové soustavy nekonečně noha eeentáních d Aebetových dd dd M t n D D d a d a t n t + d ε d ω ( dd dd ) n M D dd t ε d d ε d si jednou siou a oente. oent setvačnosti [kg ] S
27 Rotační pohyb - dynaika. Dynaika, 5. přednáška S D t D n a n a t M D ω, ε, S - hotnost těesa S -oent setvačnosti ke středu otace S ω - úhová ychost ε - úhové zychení a t - zychení těžiště, tečná sožka a n - zychení těžiště, noáová sožka - vzdáenost těžiště od středu otace M D D D t n S ε a a t n ε ω výsedný siový účinek (působiště ve středu otace!) výsedný oentový účinek dopňkový (d Aebetův) oent M D působí poti sěu úhového zychení ε. dopňkové (d Aebetovy) síy D t a D n působí poti sěu zychení těžiště a t a a n.
28 Rotační pohyb - dynaika. Dynaika, 5. přednáška y akční síy (zatížení) R x eakce M D D S R y D t n D n D t S ε a a ω, ε dopňkové účinky t n M D ε ω dopňková (d Aebetova) sía -tečná a noáová sožka dopňkový (d Aebetův) oent x řešení eakcí z ovnic ovnováhy F F xi yi M Si pohybová ovnice ε S M Si R R x y K K včetně dopňkových si! neobsahuje eakce ani dopňkové síy včetně dopňkového oentu neobsahuje dopňkový oent
29 Rotační pohyb - dynaika. Dynaika, 5. přednáška akční síy (zatížení) ω, ε pohybová ovnice ε S M Si S S - oent setvačnosti [kg ] ε - úhové zychení [ad/s ] ΣM Si -součet oentů vnějších si ke středu otace [N ]
30 Rotační pohyb - dynaika. v ω d S E K de K Dynaika, 5. přednáška kinetická enegie d d v E K d v ( ω) ω ( ω) d E K S ω Z těesa vybeee hotový eeent d. ou přiřadíe ychost v a kinetickou enegii de K. Kinetickou enegii těesa učíe integování přes ceé těeso. oent S setvačnosti
31 anaogie ezi posuvný a otační pohybe Dynaika, 5. přednáška posuvný pohyb otační pohyb Z poovnání kineatiky a dynaiky posuvného a otačního pohybu vypývá anaogie (podobnost) ezi oběa pohyby. ato anaogie spočívá v to, že jednotivý fyzikání veičiná, vztahující se k posuvnéu pohybu, odpovídají jiné veičiny, vztahující se k otačníu pohybu. Vztahy ezi nii pak jsou shodné. Jestiže ve vztazích, týkajících se posuvného pohybu, nahadíe jedny veičiny duhýi, dostanee anaogické vztahy, týkající se otačního pohybu.
32 anaogie ezi posuvný a otační pohybe Dynaika, 5. přednáška posuvný pohyb otační pohyb dáha s, x,... [, ] ~ úhe φ [ad, ] ychost v v s& [/s] ~ úhová ychost ω ω φ& [ad/s] zychení a [/s ] ~ úhové dv zychení a v& & s v ds ε ε [ad/s ] dω ω & && φ ω dφ v s a t + a t v 0 + příkad - ovnoěně zychený pohyb v 0 t + s 0 ~ ~ ω ε t + ω φ ε t 0 + ω 0 t + φ 0
33 anaogie ezi posuvný a otační pohybe Dynaika, 5. přednáška posuvný pohyb otační pohyb sía hotnost pohybová ovnice dopňková sía F, G,... [N] ~ oent síy M [N ] [kg] ~ oent setvačnosti a Fi ~ pohybová ovnice ε [kg ] Mi dopňkový D a ~ ε oent M D
34 anaogie ezi posuvný a otační pohybe hybnost hoty ipus síy zěna hybnosti kinetická enegie páce výkon posuvný pohyb hybnosti Dynaika, 5. přednáška otační pohyb p v ~ oent [kg /s] L ω t F dt 0 Δp p p0 E K v [N s] [J] ~ ~ ~ ipus oentu M zěna oentu hybnosti kinetická enegie t M dt 0 ΔL E K L [kg /s] [N s] L0 M ω A d s [N ] ~ páce A M dφ P F v [W] ~ výkon P M ω zěna kinetická enegie Δ E EK EK0 K A [J] [N ] [W] [J ~ N ]
35 geoetie hot Dynaika, 5. přednáška S d oent setvačnosti d tenká obuč konst d d
36 geoetie hot Dynaika, 5. přednáška S d oent setvačnosti d d x d d dx d dx x dx 0 x dx 0 x dx pizatická tyč otující okoo osy, pocházející konce tyče x
37 Dynaika, 5. přednáška d d S geoetie hot oent setvačnosti x d dx d dx d dx x dx x / / / / x / / pizatická tyč otující okoo osy, pocházející střede tyče x dx d
38 geoetie hot Dynaika, 5. přednáška oent setvačnosti d d h d ρdv ρds h ρ ( π d) h R váec otující okoo své osy π d ds
39 geoetie hot Dynaika, 5. přednáška h R d váec otující okoo své osy R R d R R 0 0 oent setvačnosti d d ρdv ρds h ρ ( π d) h ρ V Sh π R h d π d h d π R h R 3 d R 4 4 R 0 R R 4 4 R
40 geoetie hot Dynaika, 5. přednáška oent setvačnosti k posunuté ose e + e -oent setvačnosti k ose pocházející těžiště (těžištní osa), -oent setvačnosti k ovnoběžně posunuté ose. Steineova věta
41 Dynaika, 5. přednáška geoetie hot tenká kuhová deska 4 a b x b _ tenká obdéníková deska x z y ( ) z b a + _ y a _ a ( ) 3 4 a + váec 0 3 kuže jehan a b ( ) 0 b a + koue 5
42 geoetie hot fiení iteatua Dynaika, 5. přednáška
43 geoetie hot fiení iteatua Dynaika, 5. přednáška
44 geoetie hot 3D CAD odeování Dynaika, 5. přednáška PRN MASS PROPERES ASSOCAED WH HE CURRENLY SELECED VOLUMES OAL NUMBER OF VOLUMES SELECED (OU OF DEFNED) *********************************************** SUMMAON OF ALL SELECED VOLUMES OAL VOLUME 0.537E+08 OAL MASS 0.996E-0 CENER OF MASS: XC E-03 YC ZC *** MOMENS OF NERA *** ABOU ORGN ABOU CENER OF MASS PRNCPAL XX YY ZZ XY E E-03 YZ E E-04 ZX E E-04 PRNCPAL ORENAON VECORS (X,Y,Z): (HXY HYZ HZX 0.000)
45 Dynaika, 5. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot
Posuvný a rotační pohyb tělesa.
Posuvný a otační pohyb těesa. Zákady echaniky, 4. přednáška Obsah přednášky : typy pohybů těesa posuvný pohyb otační pohyb geoetie hot Doba studia : asi,5 hodiny Cí přednášky : seznáit studenty se zákadníi
VícePohyb tělesa. rovinný pohyb : Všechny body tělesa se pohybují v navzájem rovnoběžných rovinách. prostorový pohyb. posuvný pohyb. rotační.
Pohyb těesa posuvný pohyb otační pohyb obecný ovinný pohyb posuvný pohyb ovinný pohyb : Všechny body těesa se pohybují v navzáje ovnoběžných ovinách. postoový pohyb sféický pohyb šoubový pohyb obecný postoový
VícePohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
VíceDynamika soustavy hmotných bodů. Posuvný a rotační pohyb tělesa.
ynaka soustavy hotných bodů. Posuvný a otační pohyb těesa. ynaka,. přednáška ynaka soustavy hotných bodů, -střed hotnost, - zákadní věty dynaky soustavy hotných bodů. Posuvný pohyb - kneatka a dynaka.
VíceDynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
VíceDynamika tuhého tělesa
Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického
Více11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Vícea polohovými vektory r k
Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,
VíceDOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO
DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná
VíceDynamika mechanismů. dynamika mechanismů - metoda uvolňování, dynamika mechanismů - metoda redukce. asi 1,5 hodiny
Dynaika echanisů Dynaika I, 0. přednáška Obsah přednášky : dynaika echanisů - etoda uvolňování, dynaika echanisů - etoda edukce Doba studia : asi,5 hodiny Cíl přednášky : seznáit studenty se dvěa základníi
VíceGravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
VíceHlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
VíceKinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb
Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet
VíceObecný rovinný pohyb. teorie současných pohybů, Coriolisovo zrychlení dynamika obecného rovinného pohybu,
Obecný oinný pohyb ynik, 7. přednášk Obsh přednášky : teoie součsných pohybů, Coiolisoo zychlení dynik obecného oinného pohybu, ob studi : si 1,5 hodiny Cíl přednášky : seznáit studenty se zákldy teoie
VíceFYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
VícePružnost a plasticita II
Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie
VíceTransformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
VícePráce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v
Páce vykonaná v eektickém poi, napětí, potenciá Vzájemná souvisost mezi intenzitou eektického poe, napětím a potenciáem Páce vykonaná v eektostatickém poi po uzavřené dáze Gadient skaání funkce Skaání
VíceVyzařovací(směrová) charakteristika F(θ,ϕ), výkonová směrová charakteristika F 2 (θ,ϕ), hustota vyzářeného výkonu S r
Vyzařovací(sěová chaakteistika F(θ,, výkonová sěová chaakteistika F (θ,, hustota vyzářeného výkonu konst hustota vyzářeného výkonu výkon co poje jenotkou pochy v ané ístě, je to stření honota oyntingova
VíceOtáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení
Otáčení a posunutí posunutí (translace) všechny body tělesa se pohybují po rovnoběžných trajektorích otočení (rotace) všechny body tělesa se pohybují po kružncích okolo osy otáčení Analoge otáčení a posunutí
Více1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA
.5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r
VíceStacionární magnetické pole
Stacionání magnetické poe Vzájemné siové působení vodičů s poudem a pemanentních magnetů Magnetické jevy - známy od středověku, přesnější poznatky 19. stoetí. Stacionání magnetické poe: zdojem je nepohybující
VíceStatika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
VíceHlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby
Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod
VícePohyb soustavy hmotných bodů
Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější
VíceHlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření
e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji
VíceKinematika tuhého tělesa
Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků
Vícevzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m
8. Mechanika tuhého tělesa 8.. Základní poznatky Souřadnice x 0, y 0, z 0 hmotného středu tuhého tělesa x = x dm m ( m) 0, y = y dm m ( m) 0, z = z dm m ( m) 0. Poznámka těžiště tuhého tělesa má v homogenním
VíceObsah KINEMATIKA A DYNAMIKA TUHÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Úvod 3
KINEMTIK DYNMIK TUHÉH TĚLES Studjní tet po řeštee F a ostatní zájece o fzku ohu Vbía bsah Úvod 3 Kneatka tuhého těesa 4. Pooha tuhého těesa př pohbu................. 4. Tansační pohb tuhého těesa..................
VíceFYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová
VíceRovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
VíceFyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách
Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu
VíceKartézská soustava souřadnic
Katézská soustava souřadnic Pavotočivá Levotočivá jednotkové vekto ve směu souřadnicových os Katézská soustava souřadnic otonomální báze z,, z Katézská soustava souřadnic polohový (adius) vekto z,, z velikost
Více2.1 Shrnutí základních poznatků
.1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při
VíceBIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
VícePřímková a rovinná soustava sil
STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá
VíceKLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Více1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
VícePohyb v poli centrální síly
K přenášce NUFY8 Teoetická echanika pozatíní čební text, veze 5. Pohyb v poi centání síy Leoš Dvořák, MFF UK Paha, 4 Pohyb v poi centání síy Pohyb hotného bo v poi centání síy se řeší již v úvoní kz kasické
Více3.9. Energie magnetického pole
3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících
Více4.1 Shrnutí základních poznatků
4.1 Shrnutí zákadních poznatků V případech příčných deformací přímých prutů- nosníků se zabýváme deformací jejich střednice, tj. spojnice těžiště příčných průřezů. Tuto deformovanou křivku nazýváme průhybová
Vícev 1 = at 1, (1) t 1 = v 1
Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného
VíceVeronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po
VíceObsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
VíceFyzikální korespondenční seminář UK MFF 10. II. 2
10. ročník, úoha II. 2... magnetické kyvado (5 bodů; průměr?; řešio 60 studentů) V homogenním tíhovém poi (tíhové zrychení g = 9,81 m s 2 ) je na závěsu zanedbatené hmotnosti déky = 1,00 m umístěna maá
VíceUčební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho
VíceSMR 1. Pavel Padevět
SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně
VíceStavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém
Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná
VíceElastické deformace těles
Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení
VíceKinematika. Hmotný bod. Poloha bodu
Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény
VíceObsah dnešní přednášky : Obecný rovinný pohyb tělesa. Teorie současných pohybů, Coriolisovo zrychlení, dynamika obecného rovinného pohybu.
Obsh dnešní řednášky : Obecný oinný ohyb těles. eoie součsných ohybů, Coiolisoo zychlení, dynik obecného oinného ohybu. Obecný oinný ohyb zákldní ozkld. osu osu = A otce = A otce A A A A efeenční bod sueosice
VíceJEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt
SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting
VíceStatika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.
3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...
VíceŘešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)
Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu
VíceSTRUKTURA A VLASTNOSTI KAPALIN
I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)
VíceTeorie současných pohybů, Coriolisovo zrychlení, dynamika obecného rovinného pohybu.
Obsh dnešní řednášky : Alikoná echnik, 4. řednášk Obecný oinný ohyb těles. eoie součsných ohybů, Coiolisoo zychlení, dynik obecného oinného ohybu. Obecný oinný ohyb zákldní ozkld. Alikoná echnik, 4. řednášk
VíceTrivium z optiky Vlnění
Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou
VíceF5 JEDNODUCHÁ KONZERVATIVNÍ POLE
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační
VíceŘešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů
Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)
Vícedynamika hmotného bodu, pohybová rovnice, d Alembertůvprincip, dva druhy úloh v dynamice, zákony o zachování / změně
Dnaika I,. přednáška Oba přednášk : dnaika otnéo bodu, pobová ovnice, d lebetůvpincip, dva du úlo v dnaice, zákon o zacování / zěně Doba tudia : ai odina Cíl přednášk : eznáit tudent e základníi zákonitoti
VíceFYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava
Více1.7 Magnetické pole stacionárního proudu
1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru
VíceV soustavě N hmotných bodů působí síly. vnější. vnitřní jsou svázány principem akce a reakce
3.3. naka sousta hotnýh bodů (HB) Soustaa hotnýh bodů toří nejobenější těleso ehank. a odíl od tuhého tělesa se ůže taoě ěnt. V soustaě hotnýh bodů působí síl F nější (,,... ) ntřní jsou sáán pnpe ake
VícePříklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
VíceMechanismy - úvod. Aplikovaná mechanika, 8. přednáška
Mechanismy - úvod Mechanismus je soustava těles, spojených navzájem vazbami. Mechanismus slouží k přenosu sil a k transformaci pohybu. posuv rotace Mechanismy - úvod Základní pojmy. člen mechanismu rám
VíceKMITÁNÍ MECHANICKÉHO OSCILÁTORU
KMITÁNÍ MECHANICKÉHO OSCILÁTORU V echanice jse se zabývai příočarý a křivočarý pohybe, nyní rozeberee třetí zákadní typ pohybu, pohyb kitavý, tedy echanické kitání. Kitající těeso (osciátor) se pohybuje
VíceStav napjatosti materiálu.
tav napjatosti materiáu. Zákad mechanik, 9. přednáška Obsah přednášk : jednoosý a dvojosý stav napjatosti, stav napjatosti ohýbaného nosníku, deformace ohýbaného nosníku, řešení statick neurčitých úoh
VíceModelování kmitavých soustav s jedním stupněm volnosti
Modeování kmitavých soustav s jedním stupněm vonosti Zpracova Doc. RNDr. Zdeněk Haváč, CSc 1. Zákadní mode Zákadním modeem kmitavé soustavy s jedním stupněm vonosti je tzv. diskrétní podéně kmitající mode,
VíceInovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání
Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:
Vícee²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016
e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu
VíceNewtonův gravitační zákon
Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační
Více4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
VíceL2 Dynamika atmosféry I. Oddělení numerické předpovědi počasí ČHMÚ 2007
L2 Dynamika atmosféy I Oddělení nmeické předpovědi počasí ČHMÚ 2007 Plán přednášky Dynamika atmosféy Sostava ovnic Zákony zachování Vlny v atmosféře, příklady oscilací Příklady instabilit Rotjící sořadný
VíceMAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
Více6. Rozptyl Leoš Dvořák, MFF UK Praha, Rozptyl
K přednášce NUFY8 Teoretická mechanika 6. Rozpty Leoš Dvořák, MFF UK Praha, 14 Rozpty Z předchozí kapitoy umíme spočítat pohyb částice v poi centrání síy. Nyní toho využijeme pro případ ehké částice (napříkad
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P01 KINEMATIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH
VíceDiferenciální operátory vektorové analýzy verze 1.1
Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě
VíceR t = b + b l ŘÍDÍCÍ ÚSTROJÍ. Ackermanova podmínka
ŘÍDÍCÍ ÚSTROJÍ Souží k udržování nebo ke změně směru jízdy automobiu v závisosti na přání řidiče. Řízení u automobiů je reaizováno natáčením předních ko koem rejdových čepů. Natáčení vnitřního a vnějšího
Víceá í ý ť é ó Í č é ě é Í Í ú Ž Í é í á á ý á ý ě ť é ť á í č čť š é ť Ě í í č á á á á ě í ě ř ě Í š ů ě ř ů ú í ý Í ý é á í č á á ž é ř ř š š ý ý ú áš
ý ť é ó Í č é ě é Í Í ú Ž Í é ý ý ě ť é ť č čť š é ť Ě č ě ě ě Í š ů ě ů ú ý Í ý é č ž é š š ý ý ú š ě Í č Í Í ú ě Á Í ť Í ě Í š š ň ú č š Ů Í č ď š éí é Č ě ů ý ó ěž š ě ť Í ž ě Č Í ý é Í ÁÉ ň ů Ů ě ú
VíceMAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
VíceProudění plynu vakuovým potrubím
Poudění pynu vakuovým potubím - ozdí taků - poud pynu - vodivost, (odpo) potubí Jaká je anaogie s eektickými veičinami? Vacuum Technoogy J.Šandea, FEE, TU Bno Poudění pynu vakuovým potubím Je třeba znát
VíceŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
Víceúvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,
Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit
Víceb) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
VíceVYVAŽOVÁNÍ VNĚJŠÍCH ÚČINKŮ ZPŮSOBENÝCH SETRVAČNÝMI SILAMI OD ROTAČNÍCH A POSUVNÝCH HMOT
VYVAŽOVÁNÍ VNĚJŠÍCH ÚČINKŮ ZPŮSOBENÝCH SETRVAČNÝMI SILAMI OD ROTAČNÍCH A POSUVNÝCH HMOT Předěte vyvažování jsou sekundání síly vyvolané účinky ohybujících se hot otačních a osuvných. o Setvačná síla otačních
VíceDynamika hmotného bodu
Pe Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakula mechaoniky, infomaiky a mezioboových sudií Teno maeiál vznikl v ámci pojeku ESF CZ..07/..00/07.047, keý je spolufinancován Evopským sociálním fondem a sáním
Vícek + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající
Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření
Vícewww.ingstuksa.cz M/61000/M, M/61000/MR Kluzné vedení a dorazové válce
/6/, /6/R Kuzné vedení a dorazové váce Dvojčinné - Ø 32 až 1 mm STANDARDNÍ TYPY TYPY Přesnost vedení Ø,2 mm Přesnost bez otáčení Ø,2 Integrované pevné vodící tyče Varianta s ineárním kuičkovým ožiskem
VícePodpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/
Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,
VíceKmitání systému s 1 stupněm volnosti, Vlastní a vynucené tlumené kmitání
Kitání systéu s 1 stupně volnosti, Vlastní a vynuené tluené kitání 1 Vlastní tluené kitání Pohybová rovnie wɺɺ ɺ ( t ) + w( t ) + k w( t ) = Tluíí síla F d (t) F součinitel lineárního viskózního tluení
Vícečí ř ý č ř ě č ů ý ý ů Ž Í íř é Ž ý ř Ž ž é ě ů ý č Ž Ž Š ě č Ž č ý ěď Ž ž ě ť Í ř ů ř Ť ří ž ř ř š č ř í í ň í Č ě é ř š í ů é í Ž ů í ů č š ř í ě é í í é ž é ě í í ě ž ů í č é ří ž ý é č í ží ž í é ž
Více1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3
lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál
VíceŘešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4)
Řešení úoh ceostátního ko 49. ročníku fyzikání oympiády. Autořiúoh:.Šedivý(1),L.Richterek(),I.Vof(3)B.Vybír(4) 1.) Oznčme t 1, t, t 3čsyzábesků, v 1, v, v 3přísušnérychostistředukoue, veikost zrychení
VícePŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Více= (1.21) a t. v v. což je výraz v závorce ve vztahu (1.19). Normálové zrychlení a H jednoduše jako rozdíl = (1.20)
Tečné zrychlení získáme průmětem vektoru zrychlení a vynásobením jednotkovým vektorem ve směru rychlosti do směru rychlosti a a t v v a v v = (1.19) Podotýkáme, že vektor tečného zrychlení může být souhlasně
Vícemetoda uvolňování metoda redukce G 1 G 2
Dynik echnisů Dynik echnisů pojednává o vzthu ezi sili, působícíi n soustvu těles - echnisus, pohybe echnisu, těito sili způsobené. Seznáíe se se dvě zákldníi etodi řešení dyniky echnisů. etod uvolňování
Více