Lineární perspektiva
|
|
- Vlasta Alena Bláhová
- před 9 lety
- Počet zobrazení:
Transkript
1 Lineární perspektiva Mgr. Jan Šafařík Konzultace č. 4 přednášková skupina P-BK1VS1 učebna Z240
2 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní geometrie, verze 4.0 pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Soubor CD-ROMů Deskriptivní geometrie, Fakulta stavební VUT v Brně, ISBN Bulantová, Jana - Prudilová, Květoslava - Roušar, Josef - Šafařík, Jan - Zrůstová, Lucie: Sbírka zkouškových příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, Bulantová, Jana - Prudilová, Květoslava - Puchýřová, Jana - Roušar, Josef - Roušarová, Veronika - Slaběňáková, Jana - Šafařík, Jan - Šafářová, Hana, Zrůstová, Lucie: Sbírka řešených příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, Puchýřová, Jana: Cvičení z deskriptivní geometrie, Část B, Akademické nakladatelství CERM, s.r.o., Fakulta stavební VUT, Brno Šafařík, Jan: Cvičení z deskriptivní geometrie pro obor Geodézie a kartografie, Fakulta stavební VUT v Brně, Doporučená literatura: Holáň, Štěpán - Holáňová, Libuše: Cvičení z deskriptivní geometrie II. - Promítací metody, Fakulta stavební VUT, Brno Moll, Ivo - Prudilová, Květoslava - Puchýřová, Jana - Slaběňáková, Jana - Roušar, Josef - Slatinský, Emil - Slepička, Petr - Šafářová, Hana - Šafařík, Jan - Šmídová, Veronika - Švec, Miloslav - Tomečková, Jana: 2 Deskriptivní geometrie, verze pro I. ročník Stavební fakulty Vysokého učení technického v Brně, FAST VUT Brno,
3 Osnova úvod, promítací aparát, průsečná metoda, vynášení výšek, metoda sklopeného půdorysu (i s redukovanou distancí), délky úseček v základní rovině, nedostupný úběžník, redukovaná distance v souvislosti s měřícími body, konstrukce volnou metodou (úhly, čtverec, krychle a pod.), met. konstrukcí perspektivy úběžníková, měřících bodů, hloubkových přímek, kružnice v základní a svislé rovině (8 tečen), gratikoláž. (Snížený půdorys podle času.), prostorová křivka. 3
4 Lineární pespektiva Od pradávna můžeme pozorovat, jak se člověk snažil napodobit tvory a věci, které ho obklopovaly. Dělal to dvěma způsoby: řezbou a kresbou. Jihofrancouzské a španělské jeskyně nám uchovaly stopy tohoto úsilí staré několik tisíc let. Uvědomělé hledání zákonitostí perspektivy je však prokazatelné až na sklonku doby gotické a v období nastupující renesance. Tehdy vznikla velká poptávka po uznávaných umělcích, kteří tak přestali být existenčně závislí na jediném mecenáši a osvobodili se i duchovně od nadvlády církve. Začali dokazovat i svými traktáty (vědeckými pojednáními), že umění není činnost šikovné ruky, ale také činnost duchovní, činnost vědecká, protože pomáhá poznat přírodu i člověka. Vědě vůbec přikládali velký význam. Malíři té doby studovali optiku, zabývali se geometrií, mechanikou, pitvali lidská i zvířecí těla, aby pochopili jejich stavbu, a všestranně pozorovali přírodu. Velmi se zasloužili o rozvoj přírodních věd. Jedním z objevů této bouřlivé doby je i lineární perspektiva. 4
5 Rozdělení perspektivy Lineární Křivočará Žabí / ptačí Jedno, dvou, tří úběžníková Malířská Vzdušná 5
6 Ambrogio di Bondone, zvaný Giotto 6 Perspektiva - omyly
7 Ambrogio di Bondone, zvaný Giotto 7 Perspektiva - omyly
8 Ambrogio Lorenzetti Perspektiva - omyly Ambrogio Lorenzetti: Zvěstování, tabulový obraz; Siena, Academia di Belle Arti 8
9 Ambrogio Lorenzetti Perspektiva - omyly Ambrogio Lorenzetti: Zvěstování, tabulový obraz; Siena, Academia di Belle Arti 9
10 Norimberský mistr 10 Zasnoubení sv. Kateřiny (kolem r. 1450)
11 Fillipo di Ser Brunelleschi Brunelleschiho "kukátko" 11
12 Leone Battista Alberti Leone Battista Alberti: Della Pittura libri tre (O malířství) V roce 1435 napsal dílo O malířství (Della Pittura libri tre), které věnoval svému učiteli a příteli Brunelleschimu a do kterého poprvé v dějinách umění zařadil některé poučky o perspektivě. 12
13 Leone Battista Alberti Florentská metoda konstrukce pavimenta. 13
14 Leone Battista Alberti Costruzione legittima (užití pomocného pohledu). 14
15 Leone Battista Alberti Costruzione albertina. 15
16 Leone Battista Alberti Chybné pavimentum. 16
17 Leone Battista Alberti Holbeinova konstrukce pavimenta. 17
18 Tommaso di Ser Giova Mone Cassai Masaccio Masaccio: Nejsvětější trojice, freska; Florencie, Santa Maria Novella. 18
19 Paolo di Dono - Uccello Perspektivní obraz mazzocchia; sbírka v Uffiziích. Perspektivní obraz kalichovité nádoby; sbírka v Uffiziích. 19
20 Carlo Crivelli 20 Carlo Crivelli: Zvěstování se sv. Emidiem.
21 Leonardo da Vinci 21 Leonardo da Vinci: Trattato della pittura (Pojednání o malířství).
22 Leonardo da Vinci Leonardo da Vinci: Studie k obrazu Klanění tří králů, pérová kresba; Florencie, sbírky v Uffiziích. 22
23 Leonardo da Vinci Leonardo da Vinci: Nedokončené dílo Klanění tří králů (L adorazione dei magi), , Galleria degli Uffizi, Florence. 23
24 Leonardo da Vinci Leonardo da Vinci: Večeře Páně, freska; Miláno, klášter Santa Maria delle Grazie. 24
25 Leonardo da Vinci Leonardo da Vinci: Večeře Páně, freska; Miláno, klášter Santa Maria delle Grazie. 25
26 Raffaelo Santi Raffael 26 Raffaelo Santi: Aténská škola, Palazzi Pontifici, Vatikán, Řím, Itálie.
27 Raffaelo Santi Raffael 27 Raffaelo Santi: Aténská škola, Palazzi Pontifici, Vatikán, Řím, Itálie.
28 Albrecht Dürer Albrecht Dürer: Návod pro měření pomocí kružítka a pravítka (Underweysung der messung mit dem zirckel und richtscheydt, 1525) 28
29 Albrecht Dürer Albrecht Dürer: Malířova skleněná deska. 29
30 Albrecht Dürer Albrecht Dürer: Kreslířská síť. 30
31 Albrecht Dürer Albrecht Dürer: Vynález Jacoba de Keyser. 31
32 Albrecht Dürer 32 Albrecht Dürer: Dürerovo zařízení.
33 Albrecht Dürer 33 Albrecht Dürer: Svatý Jeroným, Staatliche Kunsthalle, Karlsruhe, Německo.
34 Paolo Caliari - Paolo Veronese Paolo Caliari - Paolo Veronese: Představení P. Marie v chrámu, tabulový obraz; Benátky, Královská galerie. 34
35 Paolo Caliari - Paolo Veronese Paolo Caliari - Paolo Veronese: Představení P. Marie v chrámu, tabulový obraz; Benátky, Královská galerie. 35
36 William Hogarth 36
37 Maurits Cornelis Escher 37
38 Maurits Cornelis Escher 38
39 Lineární perspektiva Jednoúběžníková perspektiva: interiery, letecké snímky, snímky z výšky také průčelná perspektiva, příklad fotografie s osou fotoaparátu vodorovnou, kolmou k průčelné rovině objektu (geom. ve tvaru kvádru). Dvouúběžníková perspektiva: většina standardních fotografií, u kterých jsou svislé přímky rovnoběžné - také nárožní perspektiva, fotografie, u které je osa fotoaparátu vodorovná a není to průčelný snímek. Tříúběžníková perspektiva: efektní snímky architektur, věží, fotografie, při které je osa fotoaparátu šikmá. 39
40 Jednoúběžníková perspektiva 40
41 Dvouúběžníková perspektiva 41
42 Tříúběžníková perspektiva 42
43 Základní prvky perspektivy Prostorové určení - Střed S - Perspektivní průmětna ρ - Základní rovina π Odvozené pojmy: horizont, základnice, hlavní bod, základní bod, distančník, Používané pojmy: úbežník, hloubková přímka, redukovaný distančník, redukovaný úběžník Určení v průmětu - Hlavní bod H - Distance d = SH - Výška horizontu v h 43
44 Základní prvky perspektivy horizont obzorová rovina hlavní vertikála hlavní bod střed promítání výška oka stanoviště distance výška horizontu základní bod hlavní vertikální rovina základní rovina základnice průmětna 44
45 dále viz Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní geometrie, verze 4.0 pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Soubor CD-ROMů Deskriptivní geometrie, Fakulta stavební VUT v Brně, ISBN
46 Konec Děkuji za pozornost
BA008 Konstruktivní geometrie
BA008 Konstruktivní geometrie pro kombinované studium Lineární perspektiva Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 21. dubna 2017 Základní literatura
Šroubovice a šroubové plochy
Šroubovice a šroubové plochy Mgr. Jan Šafařík Konzultace č. 2 přednášková skupina P-BK1VS1 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt
BA008 Konstruktivní geometrie pro kombinované studium
BA008 Konstruktivní geometrie pro kombinované studium Jana Slaběňáková Jan Šafařík Ústav matematiky a deskriptivní geometrie Vysoké učení technické v Brně 10. února 2017 Kontakt RNDr. Jana Slaběňáková
Středové promítání. Středové promítání E ~ ~ 3. dané průmětnou r a bodem S (S r) je zobrazení prostoru...
Středové promítání Středové promítání dané průmětnou r a bodem S (S r) je zobrazení prostoru... E ~ 3 (bez S) na r takové, že obrazem bodu A je bod A =SA r. rozšířená euklidovská přímka E ~ 1 E1 U E ~
Zářezová metoda Kosoúhlé promítání
Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní
BA03 Deskriptivní geometrie pro kombinované studium
BA03 Deskriptivní geometrie pro kombinované studium RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna D185 letní semestr 2014-2015 Kontakt: Deskriptivní geometrie pro kombinované
RNDr. Jana Slaběňáková Mgr. Jan Šafařík. přednášková skupina P-BK1VS1 učebna Z240 letní semestr
RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 Kontakt: RNDr. Jana Slaběňáková Ústav matematiky a deskriptivní geometrie Žižkova 17, 602 00 Brno
pro obor Geodézie a kartografie
Vysoké učení technické v Brně Fakulta stavební pro obor Geodézie a kartografie BRNO 2006 Tento studijní materiál byl zpracován v rámci projektu Multimediální podpora studia matematiky a deskriptivní geometrie
Test č. 6. Lineární perspektiva
Test č. 6 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Lineární perspektiva (1) Nad průměrem A S B S (A, B leží v základní rovině π) sestrojte metodou osmi tečen
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
ROČNÍKOVÁ PRÁCE. Užití lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Užití lineární perspektivy Vypracoval: Michal Černý Třída: 4. C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Aplikace lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Aplikace lineární perspektivy Vypracoval: Jiří Koucký Třída: 8. M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Prohlašuji,
Vývoj lineární perspektivy ve výtvarném umění
Vývoj lineární perspektivy ve výtvarném umění Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Výtvarné umění malířství, sochařství a architektura Lineární perspektiva
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
Vývoj lineární perspektivy ve výtvarném umění
Vývoj lineární perspektivy ve výtvarném umění RNDr. Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Výtvarné umění malířství, sochařství a architektura Lineární
Geometrie ve výtvarném umění
Geometrie ve výtvarném umění Petra Surynková Katedra didaktiky matematiky Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz www.surynkova.info Přehled Výtvarné umění
Aplikace lineární perspektivy
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Aplikace lineární perspektivy Vypracoval: Jakub Sýkora Třída: 8.M Školní rok: 2015/2016 Seminář : Deskriptivní geometrie Prohlašuji,
OBR. 5: AMBROGIO DI BONDONE (GIOTTO), Vyhnání ďáblů z Areza
Renesance Malíři objevují nebo znovuobjevují realistickou malbu, která není již tak svázaná náboženskou symbolikou a jejími kánony. Samozřejmě, že náboženská tematika je stále hlavním námětem, ale je zpracována
Geometrie architektura umění
Geometrie architektura umění RNDr. Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Geometrie vznik, vývoj, základní fakta Proč je geometrie důležitá? Je možné
Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240
Šroubové plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240 Šroubový pohyb Šroubový pohyb vzniká složením z rovnoměrného otáčení (rotace) kolem dané osy o a rovnoměrného posunutí
VÝVOJ LINEÁRNÍ PERSPEKTIVY VE VÝTVARNÉM UMĚNÍ
VÝVOJ LINEÁRNÍ PERSPEKTIVY VE VÝTVARNÉM UMĚNÍ PETRA SURYNKOVÁ Abstract: This contribution deals with the major development steps in using of the linear perspective in painting during the history. We describe
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Perspektiva v obrazech
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Perspektiva v obrazech Vypracovala: Tamara Salajová Třída: 8.M Školní rok: 2013/2014 Seminář : Deskriptivní geometrie Prohlašuji, že
RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.
RELIÉF Lineární (plošná) perspektiva ne vždy vyhovuje pro zobrazování daných předmětů. Například obraz, namalovaný s osvětlením zleva a umístěný tak, že je osvětlený zprava, se v tomto pohledu "nemodeluje",
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Tříúběžníková perspektiva Vypracoval: Adam Protivanský Třída: 8.M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlášení Prohlašuji,
Zborcené plochy. Mgr. Jan Šafařík. Konzultace č. 3. učebna Z240. přednášková skupina P-BK1VS1
Zborcené plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní
BA03 Deskriptivní geometrie
BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní
ROČNÍKOVÁ PRÁCE PERSPEKTIVA V OBRAZECH
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE PERSPEKTIVA V OBRAZECH Vypracovala: Hana Minaříková Třída: 8.J Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že
Tříúběžníková perspektiva
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Tříúběžníková perspektiva Vypracoval: Martin Bouček Třída: 8. M Škoní rok: 2014/2015 Seminář: Deskriptivní geometrie Prohlašuji, že
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Alena Šarounová Geometrie a malířství. Zrození lineární perspektivy Pokroky matematiky, fyziky a astronomie, Vol. 40 (1995), No. 3, 130--150 Persistent URL: http://dml.cz/dmlcz/139060
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině
FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li
středu promítání (oka) se objekty promítají do roviny (nahrazuje sítnici). Perspektivní obrazy
Lineární perspektiva Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
CZ.1.07/1.4.00/21.2490 VY_32_INOVACE_117_VV8 RENESANCE. Základní škola a Mateřská škola Nikolčice, příspěvková organizace
CZ.1.07/1.4.00/21.2490 VY_32_INOVACE_117_VV8 RENESANCE Základní škola a Mateřská škola Nikolčice, příspěvková organizace Mgr. Andrea Slavíková RENESANCE Renesance znamená znovuzrození římské antiky, ne
Deskriptivní geometrie 0A5
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah
Úvod do Deskriptivní geometrie
Úvod do Deskriptivní geometrie Deskriptivní geometrie se věnuje zkoumání geometrických vztahů trojrozměrných objektů prostřednictvím jejich dvojrozměrného znázornění. www.ak3d.de/portfolio/tutorials/freesample.pdf
pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)
Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným
Deskriptivní geometrie 1
S třední škola stavební Jihlava Deskriptivní geometrie 1 01. Úvod do DG 1 Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace
Deskriptivní geometrie I zimní semestr 2017/18
Deskriptivní geometrie I zimní semestr 2017/18 Rys č. 2 Lineární perspektiva, zrcadlení Pokyny pro vypracování platné pro všechny příklady Pokud není v zadání příkladu uvedeno jinak, zobrazujte pouze viditelné
Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
VŠB-Technická univerzita Ostrava
Úvod do promítání Mgr. František Červenka VŠB-Technická univerzita Ostrava 6. 2. 2012 Mgr. František Červenka (VŠB-TUO) Úvod do promítání 6. 2. 2012 1 / 15 osnova 1 Semestr 2 Historie 3 Úvod do promítání
M A T E M A T I K A A M O N A L I S A A N E B J E Z D R A V Y R O Z U M O P R A V D U Z D R A V Y? JAN ÁMOS VÍŠEK
M A T E M A T I K A A M O N A L I S A A N E B J E Z D R A V Y R O Z U M O P R A V D U Z D R A V Y? JAN ÁMOS VÍŠEK Čtvrtá přednáška INSTITUT EKONOMICKÝCH STUDIÍ, FAKULTA SOCIÁLNÍCH VĚD UNIVERSITA KARLOVA
MASARYKOVA UNIVERZITA
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Diplomová práce BRNO 2014 ANETA ZGODOVÁ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Vznik a vývoj
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
RENESANČNÍ UMĚNÍ EVROPA
RENESANČNÍ UMĚNÍ EVROPA OBECNÁ CHARAKTERISTIKA Etymologicky rinascitá dell arte antica = návrat k antickému umění. Doba 14. 16.století: a) Quattrocento 14.st. počátky v ital.městech b) Cinquecento 15.st.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.
Deskriptivní geometrie BA03
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2006 Obsah 1. Kuželosečky 2 2.
Okruhy otázek k závěrečným zkouškám pro obor 8206R050 Restaurování a konzervace papíru, knižní vazby a dokumentů v akademickém roce 2015/2016
DĚJINY UMĚNÍ 01/ Antické umění malířství: pompejský styl základní architektonické řád 02/ Raně křesťanské umění ikonografie výzdoby (katakomby, mozaiky) významné stavby a jejich mozaiková výzdoba (Ravenna)
JEVIŠTNÍ PERSPEKTIVA TABULKA 19
OBSAH tabulka strana Předmluva 6 Úvod 7 Základní pojmy v perspektivě 1 8 Výška oka sedícího diváka 2 9 Průčelná perspektiva centrální, pozorovací bod je na ose symetrie, základna prochází stranou BC 3
Poznámka: Tento materiál je součástí tematického balíčku Světlo v prostoru pro 2. ročník čtyřletých maturitních výtvarných oborů
Datum: 12. 5. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_523 Škola: Akademie VOŠ, Gymn. a SOŠUP Světlá nad Sázavou
Šroubovice a šroubové plochy
Šroubovice a šroubové plochy Mgr. Jan Šafařík Přednáška č. 10 11 přednášková skupina P-B1VS2 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt
Deskriptivní geometrie BA03
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 Určeno pro studenty studijních
LINEÁRNÍ PERSPEKTIVA
LINEÁRNÍ PERSPEKTIVA Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
Fotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012
Fotogrammetrie zpracovala Petra Brůžková Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie je geometrický postup, který nám umožňuje určení tvaru, velikosti a polohy reálných objektů na základě fotografického
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE
Pracovní listy LINEÁRNÍ PERSPEKTIVA
Tecnická univerita v Liberci Fakulta přírodovědně-umanitní a pedagogická Katedra matematiky a didaktiky matematiky LINEÁRNÍ PERPEKTIVA Petra Pirklová Liberec, květen 07 . Ve stopníkové metodě obrate stupně
Rýsování a 3D modelování na počítači v klasické disciplíně. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta
Moderní geometrie Rýsování a 3D modelování na počítači v klasické disciplíně RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
5.1.2 Volné rovnoběžné promítání
5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
Perspektiva. In: Emil Kraemer (author): Perspektiva. (Czech). Praha: Přírodovědecké nakladatelství, pp
Perspektiva Úvod In: Emil Kraemer (author): Perspektiva. (Czech). Praha: Přírodovědecké nakladatelství, 1951. pp. 7 12. Persistent URL: http://dml.cz/dmlcz/402924 Terms of use: Jednota českých matematiků
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
Mongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze
Promítání Pavel Strachota FJFI ČVUT v Praze 30. března 2011 Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání 4 Implementace promítání Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání
Zobrazovací metody ve stavební praxi
EVROPSKÝ SOCIÁLNÍ FOND Zobrazovací metody ve stavební praxi PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI ČVUT FSv program Stavební inženýrství Grafická komunikace dříve a dnes WWW.OPPA.CZ 2 Grafická komunikace
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Rysč.2 ZobrazeníobjektuvLP,zrcadlení
Deskriptivní geometrie I zimní semestr 2012/13 Rysč.2 ZobrazeníobjektuvLP,zrcadlení Zadání pro druhý rys jsou dvojího typu: Ve variantě 1 3 je třeba kromě samotného objektu zobrazit i jeho zrcadlový obraz
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA
Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L
Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů
RENESANCE. Karel Švuger DVK/ 3. ročník. Červen 2012 Obrazová dokumentace, pojmy, chronologie, rysy, vývoj VY_32_INOVACE_DVK22/04
RENESANCE Karel Švuger DVK/ 3. ročník VY_32_INOVACE_DVK22/04 Červen 2012 Obrazová dokumentace, pojmy, chronologie, rysy, vývoj Vybraná historická data 1431 upálena Panna Orleánská (Jana z Arku) 1450 Jan
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe
Gotika II. Italské malířství 1. poloviny 14. století
Gotika II. Italské malířství 1. poloviny 14. století Nové pojetí prostoru v obrazu Maesta Duccio Cimabue Giotto Cimabue (činný v letech 1272-1302) Maestá di Santa Trinita (Galeria Uffizi, Florencie), 1280-1290
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
Umění renesance v Itálii (úvod)
Umění renesance v Itálii (úvod) Terminologie Renesance, it. rinascimento: znovuzrození umění, návrat k antickým vzorům po barbarské gotice (Giorgio Vasari) Opakující se renesance v evropské kultuře (např.
Konstruktivní fotogrammetrie
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: David Frühauf Třída: 4.C Školní rok: 2011/2012 Seminář: Deskriptivní geometrie Zadavatel: Mgr.
CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy: Střední odborná škola a Střední odborné učiliště Česká Lípa, 28. října 2707, příspěvková organizace Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: CZ.1.07/1.5.00/34.0880
Zobrazení prostoru a optické iluze
Zobrazení prostoru a optické iluze Perspektiva - definice Perspektiva je geometrická transformace, spočívající v projekci trojrozměrného prostoru do prostoru dvojrozměrného (do rovné plochy) podle určitých
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Konstruktivní fotogrammetrie Vypracoval: Barbora Mrázová Třída: 8.M Školní rok: 2014/2015 Seminář: Deskriptivní geometrie Zadavatel:
Ročníková práce. Zrcadlení v lineární perspektivě. Vypracoval: Ondřej Texler. Třída 8.M. Školní rok: 2011/2012. Seminář : Deskriptivní geometrie
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Zrcadlení v lineární perspektivě Vypracoval: Ondřej Texler Třída 8.M Školní rok: 2011/2012 Seminář : Deskriptivní geometrie Prohlašuji,
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
Konstruktivní geometrie BA008
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Konstruktivní geometrie BA008 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2017 Určeno pro studenty studijních
GRAFICKÁ PREZENTACE ARCHITEKTURY
1 GRAFICKÁ PREZENTACE ARCHITEKTURY část: ARCHITEKTONICKÉ KRESLENÍ SYLABUS ZPRACOVAL: PROF. ING. ARCH. JAROSLAV SÝKORA. DRSC. ING. ARCH. JAN KAŠPAR, PH.D. 2 1. ZPŮSOBY ARCHITEKTONICKÉ KRESBY Architektonická
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
Název. Řešení střech. Jméno a ová adresa autora. Obsah. Pomůcky. Poznámky
Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Řešení střech Geometrie Josef Molnár, Jana Stránská, Diana Šteflová josef.molnar@upol.cz Rozvíjet prostorovou představivost,
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE
Přírodovědecká fakulta Univerzity Palackého v Olomouci Katedra algebry a geometrie VÝUKA DESKRIPTIVNÍ GEOMETRIE NA VYSOKÝCH ŠKOLÁCH V ČESKÉ REPUBLICE Diplomová práce Vedoucí diplomové práce: RNDr. Miloslava
Test č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2006-2007 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
ZÁKLADY DĚJIN UMĚNÍ CYKLUS SOBOTNÍCH PŘEDNÁŠEK
ZÁKLADY DĚJIN UMĚNÍ CYKLUS SOBOTNÍCH PŘEDNÁŠEK 2019/2020 Národní galerie Praha připravila kurz dějin umění, jenž zájemcům všech věkových kategorií z řad studentů, dospělých a seniorů nabízí základní orientaci
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
Rozvoj prostorové představivosti
Rozvoj prostorové představivosti Rozvoj prostorové představivosti začínáme již v 1. ročníku základní školy, rozvojem vnějšní a vnitřní orientace ve čtvercové síti. Vnější orientace ve čtvercové síti je
ZS1BP_IVU1 Interpretace výtvarného umění 1. Mgr. Alice Stuchlíková katedra výtvarné výchovy, Pedagogická fakulta, Masarykova univerzita, Brno
ZS1BP_IVU1 Interpretace výtvarného umění 1 Mgr. Alice Stuchlíková katedra výtvarné výchovy, Pedagogická fakulta, Masarykova univerzita, Brno 9. 11. 2011 Slovníček XII. DICKINSOVÁ, Rosie GRIFFITHOVÁ, Mari.
4.OBECNÁ AXONOMETRIE A KOSOÚHLÉ PROMÍTÁNÍ
4.BECNÁ AXNMETRIE A KSÚHLÉ PRMÍTÁNÍ Aonometrie kosoúhlé promítání voenská perspektiva pravoúhlá aonometrie Znalost těchto metod e ákladem skicování, které e potřebné i v době CAD sstémů. Kosoúhlé promítání
Promítání. zobrazovat na body roviny E 2
Promítání I jako nedeskriptiváři tušíme, že sestrojování perspektivních pohledů souvisí nějak se zobrazováním nebo s promítáním. Bylo by užitečné si význam těchto pojmů a metod deskriptivní geometrie ozřejmit